2026-27 entry

Statistics MSc

School of Mathematical and Physical Sciences , Faculty of Science

Develop the skills and knowledge a professional statistician needs to solve problems across a range of career paths.
  • Start date
    September 2026
  • Duration
    1 year 2 years 3 years
  • Attendance
    Full-time Part-time Distance learning

Explore this course:

    Apply now for 2026 entry or register your interest to find out about postgraduate study and events at the University of Sheffield.

    Postgraduates at desk with computer

    Course description

    Our MSc Statistics course will teach you the theories behind a variety of statistical techniques and how to apply them in scenarios that professional statisticians face every day.

    Statistical skills open all kinds of doors, and through our MSc Statistics course you’ll develop the knowledge and experience needed for roles spanning finance and consultancy, healthcare, data science, public administration and research.

    Whether you want to advance your understanding of the topics you found most interesting during your undergraduate studies or gain the skills needed to achieve your goals, you’ll develop a detailed working knowledge of important statistical techniques and concepts.

    You’ll explore topics including linear and generalised linear modelling, Bayesian statistics, time series and machine learning. You’ll learn how to collect data and design experiments, and the role of statistics in clinical trials.  You’ll also develop the ability to analyse and draw meaningful conclusions from data, and grow your programming skills using the statistical computing software R.

    You’ll spend around a third of your time working on your dissertation, under the supervision of an active researcher who is an expert in their field. This may focus on investigating a data set, or a more theoretical or methodological topic. You’ll blend theoretical knowledge with practical skills, mastering project planning, data acquisition, problem specification and analysis skills. You’ll also learn how to present statistical information, and gain experience communicating your findings verbally and in writing.

    Examples of recent dissertation topics include:

    • Spatio-temporal Modelling of Social Phenomena
    • Feature selection for high dimensional data
    • Modelling Sports Results
    • Neural Networks with Python

    Dissertation topics are often provided by external clients, such as pharmaceutical companies or sports modelling organisations. Distance learning students also often come with projects designed by their employer.

    Do you have a question? Talk to us

    Book a 15-minute online meeting with the course director to find out more information and ask further questions.

    Book an appointment with Dr Bryony Moody

    Accreditation

    This course is accredited by the Royal Statistical Society

    Modules

    A selection of modules is available each year - some examples are below. There may be changes before you start your course. From May of the year of entry, formal programme regulations will be available in our Programme Regulations Finder.

    Core modules:

    The Statistician's Toolkit

    This is the first of two 'core' modules students studying on statistics MScs. The aim of this module is to prepare statisticians for the workplace, equipping them with essential statistical modelling, computing and professional skills. The module includes the study of linear and generalised linear modelling, and data analysis using the programming language R.

    30 credits
    Bayesian Statistics and Computational Methods

    This module develops the Bayesian approach to statistical inference. The Bayesian method is fundamentally different to the approach taken in earlier statistics courses. It is a more general and more powerful approach, and it is widely used, but it relies on modern computers for much of its implementation. It is based on the idea that if we take a (random) statistical model, and condition this model on the event that it generated the data that we actually observed, then we will obtain a better model. This course covers the foundations of Bayesian statistics and the incorporation of prior beliefs, as well as computational tools for practical inference problems, specifically Markov Chain Monte Carlo and Gibbs sampling. Computational methods will be implemented using R and Python. Advanced computational techniques will be explored, in the second semester, using STAN.

    30 credits
    Machine Learning

    Machine learning lies at the interface between computer science and statistics. The aims of machine learning are to develop a set of tools for modelling and understanding complex data sets. It is an area developed recently in parallel between statistics and computer science. With the explosion of 'Big Data', statistical machine learning has become important in many fields, such as marketing, finance and business, as well as in science. The module focuses on the problem of training models to learn from training data to classify new examples of data.

    15 credits
    Sampling Theory and Design of Experiments

    Whereas most statistics modules are concerned with the analysis of data, this module is focussed on the collection of data. In particular, this module considers how to collect data efficiently: how to ensure the quantities of interest can be estimated sufficiently accurately, using the smallest possible sample size. Three settings are considered: sample surveys (for example when conducting an opinion poll), physical experiments, as may be used in industry, and experiments involving predictions from computer models, where there is uncertainty in the computer model prediction.

    15 credits
    Time Series

    This module considers the analysis of data in which the same quantity is observed repeatedly over time (e.g., recordings of the daily maximum temperature in a particular city, measured over months or years). Analysis of such data typically requires specialised methods, which account for the fact that successive observations are likely to be related. Various statistical models for analysing such data will be presented, as well as how to implement them using the programming language R.

    15 credits
    Medical Statistics

    This module introduces an important application of statistics: medical research, specifically, the design and analysis of clinical trials. For any new drug to be approved by a regulator (such as the Medicines and Healthcare products Regulatory Agency in the UK) for use on patients, the effectiveness of the drug has to be demonstrated in a clinical trial. This module explains how clinical trials are designed and how statistical methods are used to analyse the results, with a particular focus on 'survival' or 'time-to-event' analysis.

    15 credits
    Dissertation

    The dissertation is an extensive study giving the student the opportunity to synthesise theoretical knowledge with practical skills and giving experience of the phases of a relatively large piece of work: planning to a deadline; researching background information; acquisition and validation of data; problem specification; the carrying through of relevant analyses; and reporting, both at length through the dissertation and in summary, through, for example, a poster display. Most dissertations involve the investigation of a data set, entailing both a description of the relevant background and a report on the data analysis.

    60 credits

    Optional modules:

    With the approval of the MSc Course Director and School up to 30 credits of modules can be replaced with up to two modules from this group.

    Machine Learning and Adaptive Intelligence

    The module is about core technologies underpinning modern artificial intelligence. The module will introduce statistical machine learning and probabilistic modelling and their application to describing real-world phenomena. The module will give students a grounding in modern state-of-the-art algorithms that allow modern computer systems to learn from data. It has a considerable focus on the mathematical underpinnings of key ML approaches, requiring some knowledge of linear algebra, differentiation and probability.

    15 credits
    Data Modelling and Machine Intelligence

    All of our lives are affected by machine intelligence and data models - Google is a very visible example. But if you are a victim of identity theft, if you want a loan to buy a house or if you want to pass through immigration at an airport, a model derived from data using some form of machine learning technique will be involved.
    Engineers increasingly look to machine intelligence techniques such as neural networks and other machine learning methods to solve problems that are not amenable to conventional analysis e.g. by application of Newton's and Kirchhoff's laws, and other physical principles. Instead they use measurements of system variables to compute a model of the process that can then be used in design, analysis and forecasting. System identification is a specific example of data modelling.
    We will look at the underlying principles of machine learning, the advantages and limitations of the various approaches and effective ways of applying them with the aim of making you a competent practitioner.

    15 credits
    Optimisation: Theory, algorithms and applications

    This unit provides detailed presentations on the use of numerical optimisation and search methods for a wide range of engineering problems. Traditional approaches drawn from Operations Research will be enhanced by topics based on recent developments in heuristic methods, such as evolutionary computing, e.g. genetic algorithms and swarm intelligence.

    15 credits
    Economic Evaluation

    This module introduces the basic principles of economic evaluation as applied to healthcare interventions.  The course introduces the concept of economic evaluation, the different types that are available and the various stages and techniques that need to be applied to generate results.  Current practice guidelines will be described so that students can understand the current policy context of the methods.  Also, as alternative techniques are described, their strengths and weaknesses will be highlighted, with the students being encouraged to critically appraise their appropriateness to different contexts.

    15 credits
    Epidemiology

    Epidemiology is the discipline underpinning both effective public health practice and research into the causes, control and prevention of disease. Knowledge and understanding of epidemiological concepts and methods is a basic requirement for effective public health practice.

    This module will provide an introduction to epidemiology covering key epidemiological concepts; measures of disease; association and causation; confounding and bias. It will also introduce research designs including cross-sectional, ecological, cohort, case-control and intervention studies and introduce population health measures such as screening.

    15 credits
    Qualitative Research Design and Analysis

    On completing the module students will be expected to be able to: understand a range of qualitative research approaches, data collection methods and forms of analysis; plan and undertake a simple analysis of student-generated qualitative data; critically appraise the methods and results of qualitative research.

    15 credits
    Systematic Reviews and Critical Appraisal Techniques

    To familiarise students with principles of systematic reviews and critical appraisal and the acquisition of skills necessary to undertake such work. The unit includes an introduction to information systems; principles of systematic literature reviews and critical appraisal; search strategies; computer-assisted search methods; practicalities of writing up the results of a systematic review; introduction to Meta- analysis; and dissemination of findings.

    15 credits

    The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we will inform students and take reasonable steps to minimise disruption.

    Open days

    Interested in postgraduate taught study? Register your interest in studying at Sheffield or attend an event throughout the year to find out what makes studying at here special.

    Duration

    • 1 year full-time
    • 2-3 years part-time by distance learning

    Teaching

    You’ll be taught through lectures, tutorials, computing sessions and group work.

    You’ll be expected to spend around 35 hours each week on your studies, with 8 to 12 hours in lectures or computing classes, and the remainder consisting of independent study.

    Distance learning option

    Our distance learning option is taught online with support via email and an online forum.

    You're expected to spend around 20 hours each week on your studies if you're doing the two-year version of the course, and around 12 to 15 hours each week if you're doing the three-year version.

    Assessment

    You'll be assessed in a variety of ways, including project work for some modules, examinations, coursework and a dissertation.

    Your career

    Employers hire our graduates because of their ability to analyse problems and reach solutions in a clear, precise and logical way. Our courses are designed to give you the skills that will help you succeed in a range of careers, spanning areas such as:

    • finance and banking
    • consultancy
    • data science
    • computing and IT
    • public administration and policy 

    Strong mathematical skills open all kinds of doors, whether you want a job that involves doing lots of complex calculations, or one where you help businesses, charities and policymakers to find the best solutions to real-world problems. 

    Our graduates have been hired by a variety of employers, such as BAE Systems, Barclays, Dell, Deloitte, Goldman Sachs, HSBC, IBM, Lloyds, PwC, Unilever, the Civil Service and the NHS.

    You’ll cover advanced topics and gain extensive research training, which is also great preparation if you’d like to pursue a career in research. Sheffield mathematics graduates have secured PhDs at many of the world's top 100 universities.

    School

    School of Mathematical and Physical Sciences

    The School of Mathematical and Physical Sciences is leading the way with groundbreaking research and innovative teaching.

    Our mathematicians and statisticians have expertise across pure mathematics, applied mathematics, probability and statistics. We focus on a variety of topics, from the most abstract questions in number theory to the calculations helping to understand climate change.

    In the Research Excellence Framework 2021, 96 per cent of our mathematical sciences research was rated in the highest two categories as world-leading or internationally excellent.

    Mathematics and statistics students are based in the Hicks Building, which has classrooms, lecture theatres, computer rooms and social spaces. 

    Entry requirements

    Minimum 2:1 undergraduate honours degree in a relevant subject with relevant modules.

    We look for applications that demonstrate background within mathematics (particularly calculus and linear algebra), probability (and/or stochastic processes) and statistics (eg Linear modelling, multivariate methods, machine learning, time series etc). Typically we require a selection of modules from each of the three areas to cover each year of undergraduate study and at least 50% of the degree to be in a mathematical subject.

    Applications with employment history in statistical or data science fields are also welcomed, including for distance learning courses. In such cases we consider the balance of both relevant parts of the employment history and academic qualifications.

    We also consider a wide range of international qualifications:

    Entry requirements for international students

    We assess each application on the basis of the applicant’s preparation and achievement as a whole. We may accept applicants whose qualifications don’t meet the published entry criteria but have other experience relevant to the course.

    The lists of required degree subjects and modules are indicative only.  Sometimes we may accept subjects or modules that aren’t listed, and sometimes we may not accept subjects or modules that are listed, depending on the content studied.

    English language requirements

    IELTS 6.5 (with 6 in each component) or University equivalent.

    Other requirements

    We will not ask you to provide references or referee details as part of your application.

    We do not require a supporting statement for this programme.

    Pathway programme for international students

    If you're an international student who does not meet the entry requirements for this course, you have the opportunity to apply for a pre-masters programme in Science and Engineering at the University of Sheffield International College. This course is designed to develop your English language and academic skills. Upon successful completion, you can progress to degree level study at the University of Sheffield.

    If you have any questions about entry requirements, please contact the school.

    Alumni discount

    Save up to £2,500 on your course fees

    Are you a Sheffield graduate? You could save up to £2,500 on your postgraduate taught course fees, subject to eligibility.

    Apply

    You can apply now using our Postgraduate Online Application Form. It's a quick and easy process.

    Apply now

    Contact

    Start a conversation with us – you can get in touch by email, telephone or online chat.

    Contacts for prospective students

    Any supervisors and research areas listed are indicative and may change before the start of the course.

    Our student protection plan

    Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.