Wireless Communication Systems MSc
School of Electrical and Electronic Engineering,
Faculty of Engineering
-
Start date
September 2025 -
Duration
1 year -
Attendance
Full-time
Explore this course:
Apply now for 2025 entry or register your interest to find out about postgraduate study and events at the University of Sheffield.

Course description
Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems. There is a current shortage of communications engineers with a comprehensive appreciation of wireless system design from RF through baseband to packet protocols.
Accreditation
Modules
Opportunities exist for dissertation studies to be carried out in collaboration with other university research centres or with industrial organisations. Examples of previous projects include:
- Hand gesture-based computer user interface using Kinect.
- Wireless signal propagation in jet engines.
- Optically controlled smart antenna.
- MIMO antenna on mobile phone.
- Wi-Fi mesh network for LTE/LTE-advanced small cell backhaul.
Core modules:
- MSc Investigative Research Project
-
The aim of this module is to provide a structured individual project to enable you to carry out practical and/or theoretical work that underpins your academic studies and allows for the acquisition and demonstration of a wide range of research skills.
60 credits - Advanced Signal Processing
-
This module focuses on introducing advanced signal processing methods and technologies and their applications. Topics include multi-rate filtering and filter banks; signal transforms; random signals; adaptive filtering and array signal processing.
15 credits - Principles of Communications
-
This course considers the mathematical foundations and the derived theories and techniques used by a wide range of communication systems, particularly the more recent digital systems. The aim is to provide the very mathematical foundation for understanding modern communication systems, present the structure of modern communication systems and the basic issues at each stage in the system, and create a theoretical background that applies to all communication systems and is not affected by any particular technology.
15 credits - Antennas, Propagation and Satellite Systems
-
Review and application of electromagnetic theory for antenna analysis. Radiation pattern, gain, input impedance. Half wave, full wave dipole antennas, monopole antennas. Image theory. Antenna arrays. Polarization: linear, elliptical, axial ratio. Aperture theory: Fourier analysis, Huygens-Kirchhoff formula, rectangular and circular aperture, effective aperture. Microstrip antennas. Propagation in a plasma: critical frequency, refractive index. Ionospheric/tropospheric propagation of HF/VHF radio waves: MUF, ionosonde. Satellite communications systems. Earth stations - types and performance. Satellite transponders - amplifiers, redundancy, transmitters, frequency translation. Multiple access systems.
15 credits - Mobile Networks and Physical Layer Protocols
-
This module aims to provide an overview of how mobile communications networks operate and descriptions of the radio technology used over the air interface and the physical layer protocols used in GSM, 3G, 4G and 5G mobile networks. More specifically, the syllabus will cover: the description and demonstration of current UK cellular mobile networks with a historical perspective; antenna design for the radio-frequency interface, including handset, vehicle and base station antennas; multiple antenna arrays; health related issues of mobile handsets; radio propagation issues, diversity gain, Rake reception; link budgets; cellular network design and deployment strategies; modulation schemes; and GSM/3G/4G/5G physical layer protocols.
15 credits - Broadband Wireless Techniques
-
This module will give an understanding of the most up-to-date communication techniques used in the design and operation of broadband wireless systems based on OFDM technology such as WiFi, WiMAX and LTE. The module will explore the physical (PHY) layer, medium access control (MAC) and radio resource management functionalities of broadband wireless systems. It will also include an introduction to broadband wireless systems; the principles of OFDM, OFDMA and TDD/FDD multiple access; bit interleaved convolutional and turbo channel coding/decoding for OFDM systems; adaptive coding and modulation; frequency selective fading, channel estimation and equalisation; MIMO techniques; and network architectures.
15 credits - Engineering Research and Design Project
-
The aim of this module is to equip students with skills, knowledge and experience needed to carry out research independently and as a team for solving engineering problems set in a range of globally applicable contexts. As members of a team, students will develop and demonstrate a range of skills that will enhance their ability to tackle research projects and add value to their employability. Specifically, students will develop skills in the areas of critical literature review, engineering design, project management, team working, and communication.
15 credits
Optional modules - two from:
- Advanced Computer Systems
-
This module looks at modern computer systems from operating systems down to the underlying computer architectures to provide a coherent view of how such systems work and how their performance can be improved, looking, in particular, at parallelism.
15 credits - Advanced Integrated Electronics
-
This module will advance your understanding of analogue and digital VLSI design. It concentrates on issues such as power consumption, the effect of interconnect, non-CMOS logic, circuit layout, analog amplifiers, data converters, and using Spice.
15 credits - Optical Communication Devices and Systems
-
The course examines the behaviour of the components in a communications system and the way in which their design and individual performance is determined by that of the system requirements.
15 credits - Electronic Communication Technologies
-
This module aims to provide you with a range of skills that are required when designing circuits and systems at high frequencies. Topics covered will include: electromagnetic interference mechanisms, circuit design techniques, filtering, screening, transmission lines, S-parameters, Smith charts, equivalent circuits for passive and active devices, radio frequency (RF) amplifier design, noise performance and nonlinearities of RF circuits and systems.
15 credits - Data Coding Techniques for Communication and Storage
-
Processing techniques to enable transmission and storage of data, in a reliable and secure fashion, are a key element in nearly all modern communication systems. This module deals with data-coding techniques required for reliable and secure data transmission and storage. It covers various aspects of digital communication combining elementary communication theory with practical solutions to problems encountered.
15 credits - System Design
-
This module is concerned with the management of complexity in system design. To learn the basics of structured approach to design of complex systems, you will undertake a design project that requires the application of state of the art design tools that help to achieve appropriate error free design structures.
15 credits
The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we will inform students and take reasonable steps to minimise disruption.
Open days
Interested in postgraduate taught study? Register your interest in studying at Sheffield or attend an event throughout the year to find out what makes studying at here special.
Duration
1 year full-time
Teaching
We deliver research-led teaching with support for your research project and dissertation.
Assessment
Assessment is by examinations, coursework, and a project dissertation with oral presentation.
School
School of Electrical and Electronic Engineering
The School of Electrical and Electronic Engineering has been a leader in teaching and research for over a century in electrical engineering, and since the mid-20th century in electronics.
Our postgraduate taught programmes offer students the opportunity to deepen their expertise while specialising in areas such as semiconductor technologies, electrical machines and drives, digital electronics and computing, artificial intelligence for engineering, robotics, control and systems engineering, and wireless communication systems.
Our one-year, full-time postgraduate taught programmes combine advanced taught modules with an individual research project, allowing students to engage with cutting-edge topics and gain hands-on experience in our state-of-the-art laboratories. Our courses are accredited by the Institution of Engineering and Technology (IET), the Engineering Council UK, and the Institute of Measurement and Control and are informed by the latest research and strong links with industry partners.
The school is part of a vibrant, inclusive academic community and is closely affiliated with major research centres, including the Rolls-Royce University Technology Centre, Sheffield Robotics, and the Insigneo Institute. Our research collaborations span global institutions such as the European Space Agency.
Students benefit from access to student-led engineering teams and societies, gaining practical experience and transferable skills essential for their future careers.
Entry requirements
Minimum 2:1 undergraduate honours degree in a relevant subject with relevant modules.
Subject requirements
We accept degrees in the following subject areas:
- Communication
- Control
- Electrical / Electronic
- Information
We may also consider other engineering subjects
Module requirements
You should have studied at least one Mathematics module and one module from the following areas:
- Analogue Circuits
- Communications Electronics
- Data Structures
- Digital Circuits
- Digital Signal Processing
- Electromagnetics
- Principles of Communications
- Signals and Systems
- Software Engineering
We may also consider other related modules.
English language requirements
IELTS 6.5 (with 6 in each component) or University equivalent.
If you have any questions about entry requirements, please contact the school/department.
Fees and funding
Alumni discount
Save up to £2,500 on your course fees
Are you a Sheffield graduate? You could save up to £2,500 on your postgraduate taught course fees, subject to eligibility.
Apply
You can apply now using our Postgraduate Online Application Form. It's a quick and easy process.
Contact
Any supervisors and research areas listed are indicative and may change before the start of the course.
Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.