Physics and Astrophysics MPhys
2025-26 entryStudy the matter of our universe and the laws that govern it with our accredited course. Gain fundamental knowledge necessary for a successful future career and spend most of your final year working on your own research project.
Key details
- A Levels AAA
Other entry requirements - UCAS code F3F5
- 4 years / Full-time
- September start
- Accredited
- Find out the course fee
- Optional placement year
- Study abroad
Explore this course:
Course description
Why study this course?
Research Excellence Framework 2021
Complete University Guide 2025
This course is accredited by the IOP for fully meeting the educational requirement for Chartered Physicist.
Opt to spend a full year on a work placement. Our students have secured placements with a range of organisations, including CERN, Jaguar Land Rover, Sellafield, EDF Energy, UKRI and the Isaac Newton Group of Telescopes.
This four-year accredited MPhys Physics and Astrophysics course will give you the skills, knowledge and research experience you’ll need for a successful career.
Our Institute of Physics accredited course has more astrophysics content than most. Along with essential physics modules, half of your time will be dedicated to studying astrophysics and you’ll complete a year-long research project in your final year.
In your first two years, you’ll study fundamental physics theories such as heat, motion and quantum mechanics. You’ll also explore key concepts in astrophysics, including the formation of our solar system, stars and galaxies, the evolution of our universe and observing the night sky.
You’ll have access to the two telescopes on the roof of our building from your first year. We also run a telescope on La Palma in the Canary Islands, which students can use during our annual field trip and during their final year project.
From the start of your degree, you’ll gain hands-on experience in our specialist teaching lab, developing lab skills and learning how theories can be applied in the real world. You’ll also take part in programming classes, which will teach you skills that are valuable in a variety of graduate careers ranging from data science to computer game design.
In your third year, you’ll have the opportunity to explore a variety of optional modules on subjects including dark matter and nuclear physics. You’ll also get the chance to complete an astrophysics research project, a Quantum Information Laboratory project, physics education and outreach project, or work with an external partner on an industrial group project. Through your project, you’ll gain valuable hands-on experience in an area of your choosing.
In your fourth year, you’ll have the opportunity to develop your research skills through advanced study and a year-long research project. You’ll work with academic researchers who are experts in their field to investigate a real scientific question.
Alongside research experience, you’ll also gain time management, project planning and analysis skills, which are valuable for careers in research or industry.
Accredited by the Institute of Physics (IOP) for the purpose of fully meeting the educational requirement for Chartered Physicist.
Modules
A selection of modules are available each year - some examples are below. There may be changes before you start your course. From May of the year of entry, formal programme regulations will be available in our Programme Regulations Finder.
Choose a year to see modules for a level of study:
UCAS code: F3F5
Years: 2023, 2024
Core modules:
- Our Evolving Universe
-
The course provides a general overview of astronomy suitable for those with no previous experience of the subject. The principal topics covered are (1) how we deduce useful physical parameters from observed quantities, (2) the structure and evolution of stars, (3) the structure of the Milky Way, and the classification, structure and evolution of galaxies in general, (4) an introduction to cosmology and (5) extrasolar plantets and an introduction to astrobiology. All topics are treated in a descriptive manner with minimal mathematics.
10 credits - Introductory Mathematics for Physicists and Astronomers
-
This module provides the necessary introductory level 1 mathematics for students taking physics and / or astronomy degrees except those taking theoretical physics degrees.
20 credits
Topics will be covered in two equally weighted streams: Stream A: common functions of one variable, differentiation, series expansions, integration and ordinary differential equations. Stream B: basic complex numbers, vector manipulation, properties and applications of matrices. - Introduction to Astrophysics
-
One of four half-modules forming the Level-1 Astronomy course, MPS118 aims to equip students with a basic understanding of the important physical concepts and techniques involved in astronomy with an emphasis on how fundamental results can be derived from fairly simple observations. The module consists of three sections:
10 credits
(i) Basic Concepts, Fluxes, Temperatures and Magnitudes;
(ii) Astronomical Spectroscopy;
(iii) Gravitational Astrophysics.
Parts (i), (ii) and (iii) each comprise some six lectures. The lectures are supported by problems classes, in which you will learn to apply lecture material to the solution of numerical problems. - The Solar System
-
One of the four half-modules forming the Level 1 astronomy course, but may also be taken as a stand-alone module. MPS104 covers the elements of the Solar System: the Sun, planets, moons and minor bodies. What are their structures and compositions, and what do they tell us about the formation and history of the Solar System?
10 credits - Further Mathematics for Physicists and Astronomers
-
This module provides the necessary additional mathematics for all students taking physics and/or astronomy degrees including those taking theoretical physics degrees. The following topics will be covered: introduce the students to vector calculus; elementary probability theory; ensure that the students have a thorough knowledge of how to apply mathematical tools to physical problems.
10 credits - Fundamentals of Physics
-
This module introduces the fundamentals of University Physics that are built on in later years of study. This includes the development of data analysis skills, laboratory skills, scientific report writing and communication along with the ability to analyse physics problems and solve them using pen and paper, experiment and computer programming. Key concepts in electromagnetism, classical mechanics, thermal physics, waves and oscillations and quantum mechanics will be studied and used to develop problem solving.
50 credits - Observing the Night Sky
-
This module aims to equip the student with a grounding in the observational and computational data analysis skills they will need as part of an astronomy degree programme, and is an essential pre-requisite of the more advanced handling of astrophysical data that will be expected as part of Levels 2, 3 and 4. The module consists of a mixture of taught material, workshops, and practical activities in positional astronomy, telescope optics, practical observing skills, basic python programming, and astrophysical data analysis.
10 credits
Core modules:
- Special Relativity & Subatomic Physics
-
Special relativity is a key foundation of modern physics, particularly in the contexts of particle physics and astrophysics where E = mc2 and relativistic speeds are crucial concepts. In this module, the fundamental principles of special relativity will be explained, emphasising the energy-momentum four-vector and its applications to particle collisions and decays. Applications to nuclear physics include nuclear mass and binding energy, radioactive decay, nuclear reactions, nuclear fission and fusion. We will also cover the structure of the nucleus (liquid drop model and an introduction to the shell model).
10 credits - Stellar Structure and Evolution
-
The module aims to provide an understanding of the physical processes occurring in stars and responsible for their internal structure and evolution from the main sequence to white dwarfs, neutron stars stars and black holes. It builds on Introduction to Astrophysics (MPS118) and seeks to explain the evolutionary phenomena described in Our Evolving Universe (MPS119).
10 credits - Observational Astronomy
-
This level 2 module builds upon astronomy material taught in level 1 and aims to equip students with the skills and understanding to plan, obtain and analyse optical imaging data of astronomical objects. Topics include astronomical telescopes, instrumentation, electronic detectors and data analysis in the Python computing language.
10 credits - Galaxies
-
This Level 2 Astronomy half-module aims to provide a comprehensive introduction to galaxies. It consists of six parts: (i) astronomical distance determination and galaxy classification; (ii) the properties of the main stellar and a gas components of our Milky Way galaxy, and its local environment; (iii) the properties of spiral galaxies; (iv) the properties of elliptical galaxies; (v) active galaxies; (vi) galaxy evolution. Students' presentation and research skills are developed through a 2500 word essay assignment.
10 credits - Astronomical Spectroscopy
-
This level 2 module provides an overview of astronomical spectroscopy for astrophysics dual students, covering how spectrographs work, the nature of spectra, atomic physics relevant to astronomical spectroscopy, line broadening mechanisms (natural, pressure, thermal) and the Curve of Growth for the determination of ionic abundances in stellar atmospheres, plus spectral diagnostics of ionized nebulae. Content from lectures are reinforced through an exercise involving specialist astronomical software relating to nebular diagnostics, plus the manipulation of stellar spectroscopic datasets using the programming language Python for the calculation of ionic abundances.
10 credits - Classical and Quantum Physics
-
This module provides the core level 2 physics content for non-theoretical degrees. It integrates physics content with supporting mathematics and practical work. Transferable skills are covered via different presentation modes for lab work. A further item is employability. The module also contains one or more items of group work. Physics topics covered are classical physics and oscillations, thermal physics, quantum mechanics, properties of matter and electromagnetism. Mathematics topics are Fourier techniques and partial differential equations. Both mathematical topics are applied to a range of the physics covered and are integrated with aspects of the practical work.
70 credits
To pass the module the following must all be satisfied:
1. Pass the Portfolio
2. Obtain an average mark over the 4 exams of 40% or greater
3. Submit all lab assignments and obtain an average mark of 40 or greater
Core modules:
- Particle Physics
-
This Level 3 Physics half module introduces students to the exciting field of modern particle physics. It provides the mathematical tools of relativistic kinematics, enabling them to study interactions and decays and evaluate scattering form factors. Particles are classified as fermions - the constituents of matter (quarks and leptons) - or as bosons, the propagators of field. The four fundamental interactions are outlined. Three are studied in detail: Feynman diagrams are introduced to describe higher order quantum electrodynamics; weak interactions are discussed from beta decay to high energy electroweak unification; strong interactions, binding quarks into hadrons, are presented with the experimental evidence for colour. The role symmetry plays in the allowed particles and their interactions is emphasised.
10 credits - Stellar Atmospheres
-
This module describes how astronomers obtain information about the properties of stars from their atmospheres. On completion, you should be able to appreciate differences between the main spectral types, understand how the interaction of radiation with matter affects the appearance of a stellar atmosphere, including the major sources of opacity. You will have a knowledge of the formation of spectral lines, line broadening mechanisms, plus an appreciation of the use of stellar continua and lines as atmospheric diagnostics. The outer solar atmosphere will also be discussed, together with outflows from late and early type stars.
10 credits - Atomic and Laser Physics
-
This module covers the physics of atoms and lasers at an intermediate level. The course begins with the solution of the Schrodinger equation for the hydrogen atom and the atomic wave functions that emerge from it. It then covers atomic selection rules, spectral fine structure and the effects of external fields. The spectra of selected multi-electron atoms are described. The basic operation of the laser is then covered by introducing the concepts of stimulated emission and population inversion. The course concludes with a description of common lasers and their applications.
10 credits - Solid State Physics
-
Covering the electronic properties of solids, this module details the classification of solids into conductors, semiconductors and insulators, the free electron model, the origin of electronic band structure, the fundamental electronic properties of conductors and semiconductors, carrier statistics, experimental techniques used to study carriers in a solid, and the classification and physics of the principal types of magnetism.
10 credits - Introduction to Cosmology
-
Cosmology is the science of the whole Universe: its past history, present structure and future evolution. In this module we discuss how our understanding of cosmology has developed over time, and study the observed properties of the universe, particularly the rate of expansion, the chemical composition, and the nature of the cosmic microwave background, can be used to constrain theoretical models and obtain value for the parameters of the now-standard Hot Big Bang cosmological model.
10 credits - Statistical Physics
-
Statistical Physics is the derivation of the thermal properties of matter using the under-lying microscopic Hamiltonians. The aims of this course are to introduce the techniques of Statistical Mechanics, and to use them to describe a wide variety of phenomena from physics, chemistry and astronomy.
10 credits - Problem Solving and Professional Skills in Physics and Astronomy
-
This module is a 'big picture' look at physics problem solving. The module develops techniques for solving unfamiliar problems in physics and astronomy using mathematical and statistical methods.
10 credits
This module is split into two halves: Statistics and data analysis (S1), and Physics and Astronomy Problem Solving (S2).
Statistics covers the basics of Frequentist vs. Baysian approaches and data analysis, and applies them to data analysis tasks from a wide range of physics. It also looks at common statistical mistakes and fallacies and examines how to present data graphically and in writing.
Physics and Astronomy Problem Solving uses weekly problems classes to examine how physics knowledge can be applied to unfamiliar (often 'real world') problems to obtain quick, rough, but sound and useful conclusions/answers (often known as the 'back of the envelope' approach to problem solving). Problems cover the full range of core physics, requiring identification of which aspect of physics and astronomy is relevant to a particular problem.
Optional modules:
A student will take 20 credits (two modules) from this group.
- History of Astronomy
-
The module aims to provide an introduction to the historical development of modern astronomy. After a brief chronological overview and a discussion of the scientific status of astronomy and the philosophy of science in general, the course is divided into a series of thematic topics addressed in roughly chronological order. We will focus on the nature of discovery in astronomy, in particular the interplay between theory and observation, the role of technological advances, and the relationship between astronomy and physics.
10 credits - Dark Matter and the Universe
-
This course aims to provide students with an understanding of Dark Matter in the Universe from both the astrophysics and particle physics viewpoints. This course is split into two halves. The first half of the course is on the astrophysical evidence for Dark Matter, and the second half of the course is on the detection of candidate Dark Matter particles. The main teaching method is the standard 50-minute lecture, which is well suited to the delivery of the factual information in this course. This is backed up by a blackboard site containing copies of the lecture notes, lecture recordings, and non-assessed exercises.
10 credits
The syllabus will include the astrophysical evidence for dark matter in the Universe, the search for dark matter candidates, including direct and indirect searches for Weakly Interacting Massive Particles (WIMPs), the search for supersymmetry at the Large Hadron Collider, and axion searches. - Nuclear Physics
-
This half-module Level 3 Physics course aims to study the general properties of nuclei, to examine the characteristics of the nuclear force, to introduce the principal models of the nucleus, to discuss radioactivity, to study nuclear reactions, in particular fission and fusion, and to develop problem solving skills in all these areas. The motivation is that nuclear processes play a fundamental role in the physical world, in the origin of the universe, in the creation of the chemical elements, as the energy source of the stars and in the basic constituents of matter - plus the best of all motives - curiosity.
10 credits - Astrobiology
-
Is anybody out there? In this module we explore how we hope to find alien life in the near future and discuss what this might be like and where we should be looking. We critically examine ideas about the frequency of life, advanced life, and technological civilisations in the universe.
10 credits
- La Palma Field Trip
-
This Level 3 Astronomy half module provides an opportunity for students to develop and exercise their skills and ability to undertake independent, albeit closely supervised, research. Students are able to select from a wide variety of proposals for projects, many involving practical observation and field work; others are essentially theoretical or interpretative or require the development of computer programmes designed to simulate a variety of astronomical phenomena. Many projects are collaborative and encourage students to work with others in a team, especailly those projects involving a field trip (currently to Teide Observatory in Tenerife). Assessment is based on individual written reports and oral examination. These provide exercise in presentational skills.
10 credits - Origin of the Chemical Elements
-
This course looks at the origin, distribution and evolution of the chemical elements, which are created in the early Universe, during the life cycles of stars and in the interstellar medium.The main teaching method is the standard 50-minute lecture, which is well suited to the delivery of the factual information in this course. This is backed up by a blackboard site containing copies of the lecture notes, lecture recordings, and non-assessed exercises. Syllabus includes topics such as: Experimental evidence for elemental abundances; Observational evidence for elemental abundances; Primordial nucleosynthesis; Stellar nucleosynthesis; Neutron capture Supernovae and kilonovae; Cosmic rays.
10 credits
Optional project modules:
A student will take 20 credits (one module) from this group.
- Industrial Group Project in Physics
-
MPS372 provides students with an industrial project where team working, planning, time management; presentation and report writing are integrated with science problem solving. The industrial client poses a problem that a group work on over two semesters to resolve. Interim and final presentations are made to the client and academic supervisors. Project work may use laboratory measurement and computational approaches as well as referencing leading research literature.
20 credits - Quantum Information Laboratory
-
This predominantly laboratory-based module provides a foundation in quantum optics experiments and associated theory. The quantum nature of light will be studied in core experiments involving single photon generation and detection, measurements of photon statistics and photon interference. Experimental activities will be supported by a series of lectures and problems classes. The link with quantum information research is made through research seminars from university research groups and companies, plus a 'journal club' where key scientific papers are presented and discussed. Transferable skills acquired will prepare students for higher study and employment in industries involving quantum technologies.
20 credits - Physics Education and Outreach
-
This 20-credit Extended Project unit is intended primarily for students considering a career in teaching, but may also be of interest to those wishing to pursue careers in science communication in general. The first half of the unit will introduce a range of topics including theory of learning and teaching, skills such as video editing, physics in the National Curriculum, and a range of hands-on exercises in science teaching and communication. Students will undertake a range of assignments related to the taught material, which may include lesson observations in schools, making videos or podcasts, radio broadcasts, writing popular articles or creating resources for schools. The second half consists of a 10-credit project: a wide range of schools and outreach-related topics are available.
20 credits
Note that admission to this unit is subject to an interview and a DBS check. This is because parts of the unit require students to visit schools and interact with pupils.
Optional modules:
A student will take 10 credits (one module) from this group.
- Nuclear Physics
-
This half-module Level 3 Physics course aims to study the general properties of nuclei, to examine the characteristics of the nuclear force, to introduce the principal models of the nucleus, to discuss radioactivity, to study nuclear reactions, in particular fission and fusion, and to develop problem solving skills in all these areas. The motivation is that nuclear processes play a fundamental role in the physical world, in the origin of the universe, in the creation of the chemical elements, as the energy source of the stars and in the basic constituents of matter - plus the best of all motives - curiosity.
10 credits - Physical Computing
-
Digital circuits underpin our modern lives, including the acquisition and processing of data for science. In this course we will study the fundamental building blocks of digital processing circuits and computers. We will learn to describe circuits using the language VHDL, and how to program computers using the hardware-oriented high level language C. We will build interesting and useful digital architectures, and apply the skills we have acquired in laboratory exercises.
10 credits - Mathematical Physics
-
Linear algebra: matrices and vectors; eigenvalue problems; matrix diagonalisation; vector spaces; transformation of basis; rotation matrices; tensors; Lie groups; Noether's theorem. Complex analysis: analytic functions; contour integration; Cauchy theorem; Taylor and Laurent series; residue theorem; application to evaluating integrals; Kronig-Kramers relations; conformal mapping; application to solving Laplace's equation.
10 credits - Advanced Programming in Python
-
Python is a widely-available programming language that can be used to design powerful computer programmes suitable for scientific applications. Python is also used widely in the computing industry and in research. This module builds on the basic introduction provided in MPS212/MPS227 by introducing advanced concepts such as defensive programming, classes, program design and optimisation. This teaching will be underpinned with a series of projects which will furnish the students with the ability to design complex Python scripts to address a wide variety of problems including those involving analysis of 'big data' with emphasis on presentation of results using advanced visualisation methods.
10 credits - Physics in an Enterprise Culture
-
This is a seminar and workshop based course where students will create a proposal for a new business. Seminars will cover topics such as innovation, intellectual property, costing and business planning. Workshops will support students to develop ideas and communicate them effectively. This module gives students an opportunity to develop a business proposal, using their physics knowledge as a starting point. The module starts with a series of seminars and workshops designed to help students come up with possible new ideas for products or services that they are interested in developing further. Further seminars formalise how business ideas are tested to ensure that basic assumptions about customers and markets are sensible and also guidance is given in terms of how to estimate the costs and revenues associated with the idea. Finally seminars to support writing the idea into a proposal are given. Evaluation of ideas using peer feedback is a key part of the module and midway through a review panel is organised to give an opportunity for students to formally evaluate other ideas to help them develop their own.
10 credits
Core modules:
- Star Formation and Evolution
-
The module will cover advanced astrophysics topics including observations and theory of star and planet formation, plus the evolution of low, intermediate and high mass stars, close binary evolution and end states (white dwarfs, neutron stars, black holes) plus astrophysical transients originating from stars (novae, supernovae, gamma ray bursts) and their chemical and mechanical feedback on galaxies.
15 credits - Galaxy Formation and Evolution
-
This module will cover one of the most exciting and fast moving topics in current astrophysics research, the formation and evolution of galaxies, from an observational perspective. Starting with a brief historical introduction, the module will then summarise what we can learn about galaxy evolution from studies of galaxies in the local Universe, before discussing the results obtained from recent deep field observations of the high redshift Universe. The last part of the module will concern the important role that active galactic nuclei play in galaxy evolution. Through a series of 18 lectures students will learn the main types of galaxies together with how we currently understand them to have formed and evolved. A key aspect of the module is how astronomers construct theories of galaxy evolution through observations and computer models, with a particular focus on how astronomers convert measured flux into physical properties such as mass and rates of star formation. The latter third of the module focuses on the growth of supermassive black holes and the role we believe that this has had on the formation and evolution of galaxies.
15 credits - Research project
-
Students will undertake a supervised research project during the whole of the 4th year of an MPhys degree, applying their scientific knowledge to a range of research problems experimental and/or theoretical projects spanning the research expertise of the Department. Along with applying their knowledge, students will manage their project, ensuring that they develop skills in time management, project planning, scientific record keeping, information retrieval and analysis from scientific and other technical information sources.
60 credits
Optional modules:
A student will take 30 credits (two modules) from this group.
- History of Astronomy
-
Astronomy is at once the oldest of the exact sciences, having been practised by most ancient civilisations, and one of the youngest: modern astronomy, with its focus on the physics of astronomical objects, is only a century old. In this course we will study how astronomy developed from a simple awareness of the phases of the Moon and the existence of the planets to its present position as a major branch of physics. Although the heritage of modern astronomy is largely from the eastern Mediterranean and Mesopotamia, we will also look at astronomy as it was practised in other cultures, particularly India, China and Mesoamerica.
15 credits
This unit aims to provide an introduction to the historical development of modern astronomy, with a focus on the nature of discovery in astronomy, the interplay between theory and observation, the role of technological advances, and the relationship between astronomy and physics. The course is divided into a series of thematic topics arranged in approximate chronological order, prefaced by a brief introduction to philosophy of science. In contrast to the BSc version, this unit also has a focus on non-Western astronomy, with students required to research and write a report on some aspect of the history of astronomy outside the Mediterranean/Mesopotamian area.
The unit is taught by a combination of lectures and written course resources for the main thread, with students expected to research their report on non-Western astronomy independently, in line with expectations for students at masters level ('holders will have the independent learning ability required for continuing professional development'). - The Development of Particle Physics
-
The module describes the development of several crucial concepts in particle physics, emphasising the role and significance of experiments. Students are encouraged to work from the original literature. The module focuses not only on the particle physics issues involved, but also on research methodology - the design of experiments, the critical interpretation of data, the role of theory, etc. Topics covered include the discoveries of the neutron, the positron and the neutrino, the parity and CP violations, experimental evidence for quarks and gluons, etc.
15 credits - Dark Matter and the Universe
-
This course aims to provide students with an understanding of Dark Matter in the Universe from both the astrophysics and particle physics viewpoints. This course is split into two halves. The first half of the course is on the astrophysical evidence for Dark Matter, and the second half of the course is on the detection of candidate Dark Matter particles.
15 credits - Advanced Quantum Mechanics
-
Quantum mechanics at an intermediate to advanced level, including the mathematical vector space formalism, approximate methods, angular momentum, and some contemporary topics such as entanglement, density matrices and open quantum systems. We will study topics in quantum mechanics at an intermediate to advanced level, bridging the gap between the physics core and graduate level material. The syllabus includes a formal mathematical description in the language of vector spaces; the description of the quantum state in Schrodinger and Heisenberg pictures, and using density operators to represent mixed states; approximate methods: perturbation theory, variational method and time-dependent perturbation theory; the theory of angular momentum and spin; the treatment of identical particles; entanglement; open quantum systems and decoherence. The problem solving will provide a lot of practice at using vector and matrix methods and operator algebra techniques. The teaching will take the form of traditional lectures plus weekly problem classes where you will be provided with support and feedback on your attempts.
15 credits - Optical Properties of Solids
-
The course covers the optical physics of solid-state materials. The optical properties of insulators, semiconductors, and metals from near-infrared to ultraviolet frequencies are considered, covering both established technologies and the latest developments in photonics. The infrared properties of materials are then discussed, and the course concludes with an introduction to nonlinear crystals. The module will be taught via lectures and problem classes.
15 credits
The course first develops the classical model of absorption and refraction based on Lorentz oscillators, and then discusses the use of quantum theory to understand the absorption and emission spectra. The optical properties in state-of-the-art materials are discussed in the context of photonics research and applications. The topics covered include:
Dispersion in optical materials, including optical fibres,
Interband absorption,
Excitons,
Luminescence,
Low-dimensional materials,
Free carrier effects,
Phonon effects,
Nonlinear crystals. - An Introduction to General Relativity
-
A course on Einstein's theory of gravity. We start with the principle of equivalence, then move on to tensors. We motivate and then write down Einstein's equations. We use Schwarzschild black holes, Friedmann Robertson Walker cosmology and gravitational waves as examples. Einstein invented general relativity in 1915. The theory makes a link between geometry and the presence of energy and matter. This is expressed in the principle of equivalence, which we introduce and discuss. General relativity calls for a sophisticated mathematics called differential geometry, for which an important tool set is tensors and tensor components. We spend about the first half of the course learning about this, and using the formalism to write down Einstein's equations. We then study solutions that have been found to correspond to black holes without spin or charge, the Friedmann Robertson Walker cosmology thought to provide a useful description of the large-scale structure of the Universe, and gravitational waves that were first detected by the LIGO experiment in 2015. The course has no formal prerequisites, but it is very mathematical. Familiarity with special relativity will be helpful, but is not required.
15 credits - Physics in an Enterprise Culture
-
This is a seminar and workshop based course where students will create a proposal for a new business. Seminars will cover topics such as innovation, intellectual property, costing and business planning. Workshops will support students to develop ideas and communicate them effectively. Both a business proposal and a pitch to investors are assessed. This modules give students an opportunity to develop a business proposal, using their physics knowledge as a starting point. The module starts with a series of seminars and workshops designed to help students come up with possible new ideas for products or services that they are interested in developing further. Further seminars formalise how business ideas are tested to ensure that basic assumptions about customers and markets are sensible and also guidance is given in terms of how to estimate the costs and revenues associated with the idea. Finally seminars to support writing the idea into a proposal are given. Evaluation of ideas using peer feedback is a key part of the module and midway through, a review panel is organised to give an opportunity for students to formally evaluate other ideas to help them develop their own.
15 credits - Astrobiology
-
Does other life exist, what might it be like, and how could we find it? In this course we examine how planets are found, and what we know about them. We consider what we know about 'life' looking at what we know about the processes, origin, and evolution of life on Earth and how life has changed the planet. This leads us to ideas about how to look for alien life and to think about what that life might be like. We finish by discussing the possibilities of intelligent technological civilisations, and the future of the human race.
15 credits - Advanced Particle Physics
-
The module provides students with a comprehensive understanding of modern particle physics. Focusing on the standard model, it provides a theoretical underpinning of this model and discusses its predictions. Recent developments including the discovery of the Higgs Boson and neutrino oscillation studies are covered. A description of the experiments used to probe the standard model is provided. Finally the module looks at possible physics beyond the standard model.
15 credits - Advanced Electrodynamics
-
This module gives a detailed mathematical foundation for modern electrodynamics, starting from Maxwell's equations, charge conservation and the wave equation, to gauge invariance, waveguides, cavities and antennas, and an introduction to quantum electrodynamics. After a brief recap of vector calculus, we explore the role of the scalar and vector potential, the multi-pole expansion of the field, the Poisson and Laplace equations, energy and momentum conservation of the fields, and waveguides and cavities. After a relativistic treatment of the fields we consider the quantisation of the electromagnetic field modes, the Hamiltonian for the dipole coupling between a field and a radiation emitter, and finally we explore the Aharonov-Bohm effect.
15 credits - Origin of the Chemical Elements
-
This course looks at the origin, distribution and evolution of the chemical elements, which are created in the early Universe, during the life cycles of stars and in the interstellar medium. The main teaching method is the standard 50-minute lecture, which is well suited to the delivery of the factual information in this course. The syllabus includes topics such as: Experimental evidence for elemental abundances; Observational evidence for elemental abundances; Primordial nucleosynthesis; Stellar nucleosynthesis; Neutron capture; Supernovae and kilonovae; Cosmic rays; Galactic chemical evolution.
15 credits
The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption.
Learning and assessment
Learning
To make sure you get the skills and knowledge that every physicist needs, you’ll learn through lectures, small group tutorials, programming classes, practical sessions in the lab and research projects.
Assessment
You’ll be assessed in a variety of ways, including a portfolio of problem sets and lab work, as well as exams, essays, lab reports and presentations.
Programme specification
This tells you the aims and learning outcomes of this course and how these will be achieved and assessed.
Entry requirements
With Access Sheffield, you could qualify for additional consideration or an alternative offer - find out if you're eligible.
The A Level entry requirements for this course are:
AAA
including Maths and Physics + pass in the practical element of any science A Levels taken
- A Levels + a fourth Level 3 qualification
- AAB including AA in Maths and Physics + A in a relevant EPQ
- International Baccalaureate
- 36 with 6 in Higher Level Maths and Physics
- BTEC Extended Diploma
- Not accepted
- BTEC Diploma
- Not accepted
- Scottish Highers + 2 Advanced Highers
- AAABB + AA in Maths and Physics
- Welsh Baccalaureate + 2 A Levels
- A + AA in Maths and Physics
- Access to HE Diploma
- Award of Access to HE Diploma in Science, with 45 credits at Level 3, including 39 at Distinction (all in Maths/Physics units), and 6 at Merit
The A Level entry requirements for this course are:
AAB
including Maths and Physics + pass in the practical element of any science A Levels taken
- A Levels + a fourth Level 3 qualification
- AAB including AA in Maths and Physics + A in a relevant EPQ
- International Baccalaureate
- 34 with 6, 5 (in any order) in Higher Level Maths and Physics
- BTEC Extended Diploma
- Not accepted
- BTEC Diploma
- Not accepted
- Scottish Highers + 2 Advanced Highers
- AABBB + AB in Maths and Physics
- Welsh Baccalaureate + 2 A Levels
- B + AA in Maths and Physics
- Access to HE Diploma
- Award of Access to HE Diploma in Science, with 45 credits at Level 3, including 36 at Distinction (all in Maths/Physics units), and 9 at Merit
You must demonstrate that your English is good enough for you to successfully complete your course. For this course we require: GCSE English Language at grade 4/C; IELTS grade of 6.5 with a minimum of 6.0 in each component; or an alternative acceptable English language qualification
Equivalent English language qualifications
Visa and immigration requirements
Other qualifications | UK and EU/international
If you have any questions about entry requirements, please contact the school/department.
Graduate careers
School of Mathematical and Physical Sciences
You won’t be short of career options with a degree in physics from Sheffield. Our courses are designed to give you the skills that will help you succeed in your chosen career. Employers hire our graduates because of their ability to plan projects, work to deadlines, analyse data and solve complex problems, independently and as part of a team
A physics degree from Sheffield can take you far, whatever you want to do. Whether you want a job that involves developing renewable energy technologies, improving medical treatments, creating quantum telecommunications systems or exploring outer space.
We have graduates putting their skills to use in computer programming, software engineering, data science, and research and development roles for companies such as BT, EDF energy, HSBC, IBM, Nissan, the NHS and the Civil Service.
Many of our graduates also choose to pursue a research career. Students who want to work as a physics researcher often do a PhD, which can lead to a career at a top university or a major international research facility such as CERN.
We are part of the White Rose Industrial Physics Academy (WRIPA), a partnership with other universities and technical industries. Our students benefit from collaborations with industrial partners through internships, year in industry placements, final-year projects and careers activities. WRIPA also organises the UK’s largest physics recruitment fair, where our students can meet potential employers.
School of Mathematical and Physical Sciences
Research Excellence Framework 2021
The School of Mathematical and Physical Sciences is leading the way with groundbreaking research and innovative teaching.
Our physics and astronomy researchers are focusing on some of the biggest questions in science, such as how to build a quantum computer, how to detect dark matter and how to distribute clean energy. Our lecturers run experiments on the Large Hadron Collider at CERN, help to map the universe using the Hubble and James Webb Space Telescopes, and are working with the National Grid to help maximise the potential of solar energy.
Physics and astronomy students are based in the Hicks Building, which has classrooms, lecture theatres, computer rooms and specialist undergraduate teaching laboratories.
Facilities
We have telescopes and a solar technology testbed on the roof, and run a telescope at the Isaac Newton Group of Telescopes on La Palma in the Canary Islands.
We’re home to the UK’s first Quantum Information Laboratory, where students can study the fundamental science behind the next technological revolution.
We also have facilities for building super-resolution microscopes and analysing 2D materials.
University rankings
Number one in the Russell Group
National Student Survey 2024 (based on aggregate responses)
92 per cent of our research is rated as world-leading or internationally excellent
Research Excellence Framework 2021
University of the Year and best for Student Life
Whatuni Student Choice Awards 2024
Number one Students' Union in the UK
Whatuni Student Choice Awards 2024, 2023, 2022, 2020, 2019, 2018, 2017
Number one for Students' Union
StudentCrowd 2024 University Awards
A top 20 university targeted by employers
The Graduate Market in 2023, High Fliers report
A top-100 university: 12th in the UK and 98th in the world
Times Higher Education World University Rankings 2025
Student profiles
What it's really like to study in the School of Mathematical and Physical Sciences
We asked some of our students and graduates to share their experiences of studying at the University of Sheffield, and to tell us what they've ended up doing with their degree.
Fees and funding
Fees
Additional costs
The annual fee for your course includes a number of items in addition to your tuition. If an item or activity is classed as a compulsory element for your course, it will normally be included in your tuition fee. There are also other costs which you may need to consider.
Funding your study
Depending on your circumstances, you may qualify for a bursary, scholarship or loan to help fund your study and enhance your learning experience.
Use our Student Funding Calculator to work out what you’re eligible for.
Additional funding
Placements and study abroad
Placement
Our students have secured placements with a range of organisations, including CERN, Jaguar Land Rover, Sellafield, EDF Energy and the Isaac Newton Group of Telescopes.
If you know you want to do a placement we also offer a dedicated BSc Physics with an Industrial Placement Year course, which you can apply to directly via UCAS.
Another great way to gain extra experience and inform future career aspirations is by applying to join the Sheffield Undergraduate Research Experience (SURE) scheme. You’ll spend around six weeks working in one of our research groups over the summer, pursuing research in an area of physics that you’re excited about.
Study abroad
Visit
University open days
We host five open days each year, usually in June, July, September, October and November. You can talk to staff and students, tour the campus and see inside the accommodation.
Subject tasters
If you’re considering your post-16 options, our interactive subject tasters are for you. There are a wide range of subjects to choose from and you can attend sessions online or on campus.
Offer holder days
If you've received an offer to study with us, we'll invite you to one of our offer holder days, which take place between February and April. These open days have a strong department focus and give you the chance to really explore student life here, even if you've visited us before.
Campus tours
Our weekly guided tours show you what Sheffield has to offer - both on campus and beyond. You can extend your visit with tours of our city, accommodation or sport facilities.
Apply
The awarding body for this course is the University of Sheffield.
Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.
Any supervisors and research areas listed are indicative and may change before the start of the course.