Architectural Engineering MEng
2025-26 entryThis course combines subjects from all of the engineering disciplines associated with buildings and their infrastructure, as well as providing an understanding of architectural thinking and practice.
Key details
- A Levels AAA
Other entry requirements - UCAS code HK2D
- 4 years / Full-time
- September start
- Accredited
- Find out the course fee
- Optional placement year
- Study abroad
Explore this course:
Course description
Why study this course?
This degree supports a diversity of potential career pathways both within and outside of the built environment.
You’ll learn civil and mechanical engineering, and architectural/planning from specialists in each discipline.
Get hands-on experience, including access to the unique urban flows observatory.
Explore both concept and detailed design for a range of real-world built-environment problems.
Be part of the interface between structural and mechanical engineering, and architectural thinking and practice – ready to create the next generation of low environmental-impact buildings.
There is an increasing demand for building systems engineers with multidisciplinary skills. Study at Sheffield and you'll become the kind of engineer who recognises social responsibility and holistic thinking. Someone ready to step into a career creating buildings which make minimal impact on our environment.
After two years studying the principles of engineering, building infrastructure and architectural perspective, you'll spend a full semester of your third year on an integrated design project.
You’ll unleash your creativity on a grand scale: devising plans for an entire urban regeneration project based on a real site in Sheffield. You'll investigate new methods and construction materials while focusing on passive design measures and low impact systems.
Finally, in year four you’ll be exposed to advanced methods of analysis and simulation techniques for certain building services, particularly fluids, civil, structural and mechanical engineering.
These will feed into your major investigative project, developing your ability to work independently and carry out research – graduating with all the skills you need to contribute to the continuous development and innovation within the low-impact built-environment of the future.
This degree is accredited by the Chartered Institution of Building Services Engineers (CIBSE), Institution of Mechanical Engineers (IMechE) and the Joint Board of Moderators (JBM), comprising the Institution of Civil Engineers, Institution of Structural Engineers, Institute of Highway Engineers, the Chartered Institution of Highways and Transportation and the Permanent Way Institution, on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer (CEng).
Find more information on the CIBSE and JBM websites.
Modules
A selection of modules are available each year - some examples are below. There may be changes before you start your course. From May of the year of entry, formal programme regulations will be available in our Programme Regulations Finder.
Choose a year to see modules for a level of study:
UCAS code: HK2D
Years: 2022, 2023
Core modules:
- Mathematics and Python Programming
-
This module aims to reinforce and extend students' previous knowledge of mathematics studied before university, and introduces the use of computer programming to solve engineering and mathematical problems.
20 credits
Mathematics is further taught to develop new basic mathematical techniques needed to support the engineering subjects taken at levels 1 and 2. It also provides a foundation for the level 2 mathematics courses in the department. Combined with the mathematics teaching, this module teaches the opensource programming language, Python, which can be used to efficiently solve a variety of practical scientific and numerical problems.
A combination of formal lecture content, tutorials and assisted computer lab sessions, help the students learn and apply mathematical and programming theory. Practice problems are presented showing the links between mathematics and programming learning, to show how the skills learnt can solve practical problems of relevance to the students. - Engineering Surveying
-
In this module you will learn basic engineering surveying skills and the role spatial data plays in civil engineering design and construction. You will gain hands-on experience in using different types of surveying equipment and in basic manipulation of spatial data. You'll gain key transferable skills in metrology and checking data accuracy.
10 credits - Civil and Structural Engineering Mechanics
-
This module is delivered in both the Autumn and Spring Semesters. Teaching in the first semester is designed to provide a basis of knowledge and understanding of elastic structural analysis and will be applied to two key structural forms - trusses and beams. The focus of the second semester is on the analysis of stress, strain and elastic deformation of beams.
20 credits - Thermofluids
-
Architectural Engineers are required to understand design and construct buildings that provide human comfort with minimal energy consumption. This module will develop the fundamental thermofluids basis and the necessary skills and interdisciplinary agility to address this global challenge. The module will give an introduction to the fundamental principles of thermodynamics required to analyse and design engineering processes, and the basic principles of fluid mechanics and their application to flow systems and devices. Real world examples will be used throughout, to highlight the importance of thermofluid systems and their integration with a wide range of engineering areas.
20 credits - Environment and Technology 1
-
The overall aim of the Environment and Technology modules is to provide the knowledge and ability in building technology, environmental design and construction methods that are necessary to undertake design projects in the Design Studio. This module presents principles of planet and place including:
10 credits
- climate literacy and climate justice, building in the era of the climate emergency
- principles of regenerative design and ecology
- historical overview of solar architecture - Environment and Technology 2
-
The overall aim of the Environment and Technology modules is to provide the knowledge and ability in building technology, environmental design and construction methods that are necessary to undertake design projects in the Design Studio.
10 credits
This module (ALA104) and the preceding module (ALA103) are paired thematically and present principles of planet and place, including in this module:
- designing with site and context
- designing with climate and microclimate
- designing with passive solar principles
- designing with air and water
- designing with materials and layers - Soil Mechanics
-
This module is an introductory module to the use of soils in engineering practice. As soils are a naturally varying material, the creation of different soil types is first discussed giving the student a background in why soils differ. This then progresses into the engineering classification of soils followed by the design of simple geotechnical structures. These include retaining walls and earth embankments.
10 credits - Introduction to Structural Materials Engineering
-
This lecture course focusses on materials for structural applications and covers all the main classes of materials (ceramics, metals, polymers, natural materials and composites), describing the properties that they show, the root cause of their properties, the structure, and how we can affect this by processing to get the properties we want. The course will also introduce some ways that the best material for a purpose can be selected.
10 credits - Global Engineering Challenge Week
-
The Faculty-wide Global Engineering Challenge Week is a compulsory part of the first-year programme. The project has been designed to develop student academic, transferable and employability skills as well as widen their horizons as global citizens. Working in multi-disciplinary groups of 5-6, for a full week, all students in the Faculty choose from a number of projects arranged under a range of themes including Water, Waste Management, Energy and Digital with scenarios set in an overseas location facing economic challenge. Some projects are based on the Engineers Without Borders Engineering for people design challenge*.
*The EWB challenge provides students with the opportunity to learn about design, teamwork and communication through real, inspiring, sustainable and cross-cultural development projects identified by EWB with its community-based partner organisations. - Sustainable Design and Engineering Skills
-
This module is designed to ensure students have the skills to design solutions and assess options against sustainability criteria to make evidence based recommendations. Students will be able to look at the bigger picture of a projects impact on our complex systems and society.
10 credits
Core modules:
- Structural Analysis
-
This module is designed to improve your knowledge understanding of how elastic and plastic methods of structural analysis can be applied to various structural forms. The module will be delivered via lectures, supported by problem-solving, and computer and laboratory classes. You will develop your ability to analyse structures under working and ultimate loads, by hand and via computer.
20 credits - Structural Engineering Design and Appraisal
-
This module will discuss the fundamental principles of structural engineering philosophy and design. The theories and concepts of analysis and design of structural elements will be presented for the most commonly used structural materials and discussed along with the more prescriptive design rules included in the relevant Eurocodes.
20 credits - Further Civil Engineering Mathematics and Computing
-
This module is part of a series of second-level modules designed for the particular group of engineers shown in brackets in the module title. Each module consolidates previous mathematical knowledge and new mathematical techniques relevant to the particular engineering discipline.
10 credits - Geotechnical Engineering 2a
-
This module is aimed at extending your knowledge of soil mechanics and geotechnical engineering. The focus is on applying fundamental understanding of mechanics to geotechnical problem solving with an emphasis on fluid-soil interaction. The approach is designed to link soil mechanics theory (e.g. seepage, consolidation and settlement) to practical application (e.g. deformation of foundations) through the use of physical models and case studies. The course will encompass lectures, tutorials, group work including laboratories, and directed and independent reading.
10 credits - Thermal and Fluid Engineering for Architectural Engineers
-
A deep understanding of the flows of fluids and heat are fundamental to the design and operation of a wide range of engineering systems and equipment. This module will add to the basic tools of thermodynamics and fluid mechanics by introducing diffusive processes, thermodynamic cycles, compressibility, exotic fluids and the various modes of heat transfer. Using examples from various engineering disciplines, this module will show you how heat and mass transfer systems and advanced thermodynamic and fluid mechanics principles can be modelled and understood. You will develop an appreciation of the parallels between various important processes, and their application to engineering design.
20 credits - Cities, space and urban design
-
The module will explore the fundamentals of urban design and its role in the mediation, analysis and design of space. This module introduces the core principles of reading, representing, and interpreting the physical organisation of space in cities, and examines the core components of the spatial environment and how they can be analysed. The module will equip students with analytical skills to explore, make sense of and develop spatial urban design data and foundational orthographic projection drawing (a means of representing a three-dimensional object in two dimensions). Students will also learn the fundamentals of visual/graphical communication via posters. Teaching will draw on practical examples, using workshops, lectures, context-based study and student-led site visits to develop skills in the analysis of urban spaces and their design.
10 credits - Materials for Structural Engineering
-
This module looks at the role of materials and materials properties used for structural design. The module will be delivered using a combination of lectures, on-line learning initiatives and group-based practicals.
10 credits
The module aims to introduce you to a variety of materials used for structural applications. You will be exposed to materials selection, mechanics and physical principles responsible for specific materials being utilised to meet specific design requirements. A range of test methods for materials properties will be discussed, as well as, non-destructive methods used for assessing quality and the extent of defects in materials. - Sustainable Buildings
-
Buildings account for 40% of global carbon emissions. Current design practice across the globe creates buildings that produce 10 times as much carbon as a sustainable building. This module will define what a sustainable building means and demonstrate how to design one for any given climatic, social and economic environment with a particular focus on an International approach to sustainable design.
20 credits - Engineering - You're Hired
-
The Faculty-wide Engineering - You're Hired Week is a compulsory part of the second year programme, and the week has been designed to develop student academic, transferable and employability skills. Working in multi-disciplinary groups of about six, students will work in interdisciplinary teams on a real world problem over an intensive week-long project. The projects are based on problems provided by industrial partners, and students will come up with ideas to solve them and proposals for a project to develop these ideas further.
Core modules:
- Integrated Building Design
-
This module follows on from Integrated Design Project - Concept Design Stage. In this module Architectural Engineering students will demonstrate integration of their previous studies in developing the design of a low carbon building. Consideration of Structural Engineering and Environmental Engineering must be carried out whilst demonstrating an awareness of the Architectural implications of the engineering design.
30 credits - Integrated Design Project - Concept Design Stage
-
The Integrated Design Project - Concept Design Stage is a series of linked modules running for 14 weeks of the spring semester. The aim of these modules is to give you the opportunity to experience the engineering design process by working on proposals for redevelopment of a real brownfield site located in Sheffield.
20 credits
At the start of this 5 week long module, known as Integrated Design Project - Concept Design Stage Part 1, you will take part in a master-plannning exercise, giving you the opportunity to develop various skills whilst working collaboratively with students from the University's School of Architecture.
You will build on the above master-plannning exercise in subsequent parts of the module/project, which involve engineering development of a scheme considering stakeholder requirements, through option identification and evaluation, to the production of design calculations and drawings. Accordingly, you will consider the overall concept/scheme design, where ability to consider and integrate a wide range of issues is more important than detailed design calculations. - Advanced Engineering Thermodynamic Cycles
-
The course will consolidate and expand upon the fundamental and general background to Thermofluids engineering developed during first and second year courses. This will be achieved through the study of more realistic systems, machines, devices as well as their application.
10 credits
To introduce students to more realistic energy conversion and power production processes. Use of irreversibility to analyse plant. Introduction of reheat and heat recovery as methods of achieving improved efficiency. To look at total energy use by means of combined gas and steam and combined heat and power cycles and understand some of the environmental issues. A variety of refrigeration cycles will also be illustrated as well as the Otto and Diesel cycles. - Advanced Structural Analysis
-
Advanced Structural Analysis aims to teach you the most modern theories suitable for performing the static assessment of structural members subjected to in-service multiaxial loading. Initially, this module focuses on the linear-elastic behaviour of structural members loaded in torsion as well as in bending. The fundamental equations modelling the behaviour of beams under the above loading conditions are derived by following rigorous mathematical procedures. The module examines also those equivalent stresses (such as von Mises, Tresca, etc.) commonly used in situation of practical interest do design structural members against complex systems of forces and moments. Finally, the problem of designing notched structural members against multiaxial static loading is addressed in great detail by considering both ductile and brittle materials.
10 credits - Advanced Structural Design and Appraisal
-
This module takes students through the structural design process, based around a case study of a real building.
10 credits
The process initially looks at options for gravity load-bearing elements, (such as floor slabs, beams and columns) as well as options for lateral load resisting systems (such as reinforced concrete shear walls / cores and steel bracing frames), before carrying out analysis and design of the selected options.
The module also looks at key considerations such as fire, robustness and vibration.
This module is intended to prepare students for carrying out the analysis and design of structures in the 'Integrated Design Project' (IDP).
- Electric Circuits
-
This module provides a basic introduction to electric circuits for engineers of all disciplinary backgrounds. It introduces the passive circuit elements (resistance, capacitance and inductance), and explores their behaviour when driven by ideal voltage and/or current sources. DC and AC power delivery will be discussed, including batteries and transformers. The module also introduces the basics of electromechanical energy conversion, including common motor topologies. The module will include examples and applications of the electrical engineering concepts, to ensure it is relevant and accessible for all disciplines of engineering.
10 credits - Thermodynamics for Buildings
-
This module covers thermodynamic principles as they apply to buildings and cities. It considers the fundamental principles required to understand energy flows in the built environment. Practical examples related to heat networks, and the design of systems to achieve comfort.
10 credits - Accounting and Law for Engineers
-
The module is designed to introduce engineering students to key areas of accounting and legal risk that engineers should be aware of in their working environment. The module will draw directly on practical issues of budgeting, assessing financial risks and making financial decisions in the context of engineering projects and/or product development. At the same time, the module will develop students' understanding of the legal aspects of entering into contracts for the development and delivery of engineering projects and products, and enhance their awareness of environmental regulation, liability for negligence, intellectual property rights and the importance of data protection. Through a series of parallel running lectures in the two disciplines, the module will provide a working knowledge of the two areas and how they impinge on engineering practice.
10 credits - Integrated Design Project - International Report and Individual Portfolio
-
International/Global Context of Engineering' (5 credits)The CEO of your group has just been made aware of a project very similar to that in the CIV3201 module (Part 1 of the IDP) being planned in a specified location overseas (note that each group will be given a different location) and is considering submitting a tender for the design and construction works. If the tender is successful, it may lead to further opportunities for working on similar projects in the region.The CEO has therefore requested that you prepare a report, to be presented at the next board meeting, which discusses and critically evaluates the risks and opportunities of carrying out such projects. Your report will help the board to decide whether or not to submit a tender for the project.For this part of the project, you will work in the same groups as for Part 2 if you are a Y3 MEng student, or if a newly formed group if you are a BEng student. You will need to undertake research into conditions in the country specified, identifying the principal differences and similarities between working in the UK and overseas, thinking broadly about the conditions (environmental, political, cultural, social etc as well as technical issues) that could impact on the design or construction of the project. By evaluating the risks and opportunities, associated with these issues, you should be able to recommend what additional measures /considerations your company would have to take so they can make an informed and objective decision whether to tender.'Individual Reflection', ' Portfolio and Training Scheme Document' (5 credits). This part of the project should be carried out individually. The final stage in any project should be to review the process undertaken, identifying and evaluating successes (so they can be repeated) and failures (so improvements can be made), and noting requirements for further training and development. This process is also reflected in graduate training towards a professional qualification such as becoming a Chartered Engineer. This involves demonstrating achievement of levels of competence in a range of areas for development as a professional engineer, as well as planning your professional development.Therefore, at the end of this project, you should draw together reflections on your project and group work experience throughout the semester to develop a report and portfolio demonstrating your learning and achievements, relating this to achievement of at least 3 of the ICE member Attributes or IStructE Core Objectives or the Sheffield Graduate Award (SGA) scheme equivalent.
10 credits
Core modules:
- Individual Research Project for Architectural Engineering
-
The MEng individual final year project is a major piece of investigative research in a subject that is not of a routine nature that will enable students to gain expertise in investigative techniques and understanding research methods. It is intended to be intellectually challenging. It is expected that during their research, students will develop and exhibit competence in the following: defining a problem, researching and critically analysing information and data, problem solving, writing a report, and discussing and defending their findings. Students are also expected to take initiative, to plan / organise their own programme of research, to work independently and to display originality and creativity.
30 credits - Computational Fluid Dynamics
-
This module is designed to provide and reaffirm an understanding of computational fluid dynamics from underlying governing principles modeling the behavior of fluids to typical numerical mathods used for solving them. Through lectures, practical computer sessions, and labs the module aims to provide students with a working understanding of transport equations, turbulence, pressure-velocity coupling in steady flows, and implementation of various boundary conditions in a built-environment context. The module will additionally develop students skills in effectively and professionally communicating implemetation of CFD models.
15 credits - Structural Dynamics and Applications to Vibration Design
-
This module is designed to provide students with a systematic knowledge and understanding of structural dynamics and its applications in Civil Engineering. On successful completion of this module, students will be able to perform calculation and analyse vibration response of single-degree-of-freedom and multi-degree-of-freedom systems and apply simple structural dynamics theory to solve practical problems in vibration engineering design.
15 credits - Building Performance Modelling and Simulation
-
The aim of the module is to give you an exposure to a building performance simulation interface and engine that is being widely used by engineers and designers in the built environment sector. This module will focus on the modelling and simulation of thermal phenomena occurring in buildings. The module will develop your building simulation and analytical skills, by testing your ability to use building simulation to optimise low energy design and intervention in view of net zero performance targets. One of the key elements will also involve in-depth understanding and knowledge of evaluating the influential parameters that may affect the building energy and carbon performance the most, by way of ranking the influential parameters using sensitivity analysis.
10 credits - Civil Engineering Research Skills
-
This module introduces academic engineering research and associated skills to students. Hence, it provides an academic training basis for independent dissertation projects later in the course of study, as well as, more generally, helping students understand various methodologies they are exposed to in their course of study, develop a data analysis capability and develop skills reading and critiquing the original academic literature in civil engineering and allied disciplines. Such skills are also essential for undertaking high calibre consultancy work when employed by industry.
10 credits - Environment and Technology 5 (MAC)
-
This module is a sister-module of the main Environment and Technology 5 module (ALA348) and has been designed specifically for students undertaking a dual-honours programme combining studies in Architecture and Engineering (MAC).
10 credits
ALA303 and ALA348 are delivered jointly and there are no additional principles presented for MAC students.
The overall aim of the Environment and Technology modules is to provide the knowledge and ability in building technology, environmental design and construction methods that are necessary to undertake design projects in the Design Studio.
The ALA348 module and the following module in the year (ALA311) are paired thematically and present principles of people and comfort, including in this module:
- human comfort, human experience and architectural spatial qualities regarding lighting, daylighting and thermal perception
- an understanding of passive heating, cooling and ventilation of buildings considering operational energy (operational carbon)
Optional modules:
- Blast and Impact Effects on Structures
-
This module introduces students to issues related to material and structural response high-magnitude, transient loading, such as those generated by explosions or impacts. The module includes quantification of blast load parameters, qualitative assessment of material and structural response, development of closed-form and numerical calculation methods to quantify structural response and an appraisal of codes of practice guidance intended to increase the resilience of structures to these loads. Teaching takes place predominantly in lecture and tutorials with some computer laboratories.
15 credits - Parametric Architectural Geometry
-
This module aims to support an emerging need to better understand concepts and skills for architectural geometry construction using parametric modelling processes. In particular, the course emphasizes computational schemes that can assist designers in managing geometry data and propagating designs. Students are introduced to both the theoretical framework and implementation of architectural geometry construction. This module is delivered through a series of lectures, hands-on workshops and individual assignments/projects. As a result students will learn contemporary parametric modelling techniques for customizing generative design systems, navigating design variations, analysing design artefacts and exploring design manifestations.
15 credits - Parametric Modelling and Computational Design
-
Parametric design involves a workflow that allows for changes in key model parameters to be observed rapidly, generally in a computer aided design workspace. It provides the designer with immense design and analysis freedom when undertaking tasks that would be repetitive or not feasible to perform manually. It also allows for a rapid exploration of the design space at the initial conceptual stage of a project. It can also be used in conjunction with optimisation methods and other computational design techniques to automatically generate candidate designs, taking advantage of the vast computational resource available in a modern PC. This module provides lectures describing the fundamentals underpinning parametric modelling and computational design techniques and gives you hands-on experience of modelling and optimising engineering structures using the Rhino modelling software and the inbuilt Grasshopper visual programming environment.
15 credits - Urban Microclimate
-
With the risk of climate change and the growing urbanisation of cities it is essential that we design cities in such a way as to reduce the impact on the local climate. This module will give you an understanding of the fundamental processes which result in alterations to the local climate in cities followed by best practice design approaches to reduce the impact on the climate. This will cover consideration of heat, wind and pollution. You will develop your understanding through lectures, seminars, case study reviews and through design. Related topics such as soundscapes will also be discussed.
15 credits - Reuse of Existing Structures
-
The main focus of most Civil and Structural Engineering programmes is on how to design new buildings and structures, which fails to address the reality that many practicing Structural Engineers also work on existing buildings and structures. Furthermore, it is out of step with Society's efforts to address the climate emergency, and the current focus on reusing existing buildings and structures wherever possible. This module is designed to equip students with the knowledge and skills to assess existing buildings and structures, in terms of their materials, condition and structural behaviour / capacity, in order to develop sustainable solutions which extend the life of buildings and structures, thereby addressing some of the climate emergency challenges currently facing society .The module assessment will comprise a single piece of group coursework, involving the evaluation of an existing building or structure, and the development of detailed proposals for its reuse. 50% of the module grade will be based solely on the sections of the report / calculations / drawings / risk assessments which an individual student contributed to (with no peer assessment applied), whilst the remaining 50% will be based on the whole submission (with peer assessment applied).
15 credits
The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption.
Learning and assessment
Learning
The following are the main learning and teaching methods implemented within the programme:
- lectures
- tutorials (and example classes)
- practical activities
- design classes
- coursework assignments (including oral, video and poster presentations)
- Individual Investigative Project (final year)
- integrative projects
- online resources
We've academic staff who are world-leaders in their respective fields and some have over 20 years’ experience in industry. Our staff experience demonstrates how engineering fundamentals are applied in practice through project work that mimics real-life situations. We also bring in leading industry experts to enhance and support our teaching and advise on our curriculum.
Assessment
Students are assessed via a mix of the following:
- examinations
- coursework assignments
- online tests
- reports
- group projects
- presentations
- design work
- dissertations
Programme specification
This tells you the aims and learning outcomes of this course and how these will be achieved and assessed.
Entry requirements
With Access Sheffield, you could qualify for additional consideration or an alternative offer - find out if you're eligible.
The A Level entry requirements for this course are:
AAA
including Maths
- A Levels + a fourth Level 3 qualification
- AAB including A in Maths + A in a relevant EPQ; AAB including Maths + A in AS or B in A Level Further Maths
- International Baccalaureate
- 36 with 6 in Higher Level Maths
- BTEC Extended Diploma
- DDD in Engineering + A in A Level Maths
- BTEC Diploma
- DD in Engineering + A in A Level Maths
- Scottish Highers + 1 Advanced Higher
- AAAAB + A in Maths
- Welsh Baccalaureate + 2 A Levels
- A + AA including Maths
- Access to HE Diploma
- Award of Access to HE Diploma in a relevant subject, with 45 credits at Level 3, including 39 at Distinction (to include Maths and Science or Engineering units), and 6 at Merit + Grade A in A Level Maths
-
GCSE Physics (or Combined Science) grade 6/B
-
Acceptable Maths subjects include Maths, Maths with Mechanics, Further Maths or Applied Maths, but not Statistics or Use of Maths. Pure Maths is only acceptable when combined with Physics
The A Level entry requirements for this course are:
AAB
including Maths
- A Levels + a fourth Level 3 qualification
- AAB including A in Maths + A in a relevant EPQ; AAB including Maths + A in AS or B in A Level Further Maths
- International Baccalaureate
- 34 with 5 in Higher Level Maths
- BTEC Extended Diploma
- DDD in Engineering + B in A Level Maths
- BTEC Diploma
- DD in Engineering + B in A Level Maths
- Scottish Highers + 1 Advanced Higher
- AAABB + B in Maths
- Welsh Baccalaureate + 2 A Levels
- B + AA including Maths
- Access to HE Diploma
- Award of Access to HE Diploma in a relevant subject, with 45 credits at Level 3, including 36 at Distinction (to include Maths and Science or Engineering units), and 15 at Merit + Grade A in A Level Maths
-
GCSE Physics (or Combined Science) grade 6/B
-
Acceptable Maths subjects include Maths, Maths with Mechanics, Further Maths or Applied Maths, but not Statistics or Use of Maths. Pure Maths is only acceptable when combined with Physics
You must demonstrate that your English is good enough for you to successfully complete your course. For this course we require: GCSE English Language at grade 4/C; IELTS grade of 6.5 with a minimum of 6.0 in each component; or an alternative acceptable English language qualification
Equivalent English language qualifications
Visa and immigration requirements
Other qualifications | UK and EU/international
If you have any questions about entry requirements, please contact the school/department.
Graduate careers
School of Mechanical, Aerospace and Civil Engineering
Our graduates work all over the world, from the UK to Australia and the USA. Recent graduates have gone on to work for AECOM, Arup, Atkins, Buro Happold, Eastwood & Partners, and Kier.
You'll be able to apply your knowledge and skills to fields as diverse as the built environment, sustainability and improving the environment.
In addition, architectural engineering graduates might go into a broad range of engineering areas ranging from building services to mechanical, electrical or acoustic engineering.
Or as a structural engineer, you'll be helping to shape the world around us. Structural engineers design and construct multi-storey buildings, bridges, sports stadiums, tunnels, airports and schools.
School of Mechanical, Aerospace and Civil Engineering
National Student Survey 2024
The Times UK University Rankings 2024
Research Excellence Framework (REF2021)
Civil engineering is at the forefront of improving the way we live. Whether it's providing the facilities that keep our day-to-day lives running smoothly - from roads and railways to clean water supplies - or working to meet the ever-changing needs of our society in the areas of sustainability, renewable energy and climate change, you'll be helping to create and protect the world we live in.
Our courses will make you the kind of engineer the world needs right now; forward-thinking, interdisciplinary, environmentally conscious, and capable of the kind of complex thinking our rapidly changing society needs. Wherever you choose to start your career, you'll be in demand.
We're in the UK top ten for civil engineering, according to The Times UK University Rankings 2024. Our research is internationally recognised, with 96% of our research rated as world-leading or internationally excellent, according to the Research Excellence Framework 2021 (REF2021). Industry and government value our expertise.
Our industry partners contribute to teaching through lectures, design classes, projects and site visits. We work with leading consultants, contractors and specialist civil engineering companies to provide industrial opportunities for a number of students each year. We also have industrial tutors and professionals who mentor our first-year students.
You'll be taught in The Diamond, one of the best teaching spaces in the UK.
Facilities
The Diamond is home to dedicated laboratories and facilities such as our structures and dynamics lab, fluids engineering lab, and our thermodynamics and mechanics lab. This means you'll directly apply what you’ve learnt in lectures to lab sessions helping you to put theory into practice. Alongside teaching and study spaces, the Diamond is also home to iForge – the UK's first student-led makerspace.
University rankings
Number one in the Russell Group
National Student Survey 2024 (based on aggregate responses)
92 per cent of our research is rated as world-leading or internationally excellent
Research Excellence Framework 2021
University of the Year and best for Student Life
Whatuni Student Choice Awards 2024
Number one Students' Union in the UK
Whatuni Student Choice Awards 2024, 2023, 2022, 2020, 2019, 2018, 2017
Number one for Students' Union
StudentCrowd 2024 University Awards
A top 20 university targeted by employers
The Graduate Market in 2023, High Fliers report
A top-100 university: 12th in the UK and 98th in the world
Times Higher Education World University Rankings 2025
Student profiles
Fees and funding
Fees
Additional costs
The annual fee for your course includes a number of items in addition to your tuition. If an item or activity is classed as a compulsory element for your course, it will normally be included in your tuition fee. There are also other costs which you may need to consider.
Funding your study
Depending on your circumstances, you may qualify for a bursary, scholarship or loan to help fund your study and enhance your learning experience.
Use our Student Funding Calculator to work out what you’re eligible for.
Placements and study abroad
Placement
Study abroad
Visit
University open days
We host five open days each year, usually in June, July, September, October and November. You can talk to staff and students, tour the campus and see inside the accommodation.
Subject tasters
If you’re considering your post-16 options, our interactive subject tasters are for you. There are a wide range of subjects to choose from and you can attend sessions online or on campus.
Offer holder days
If you've received an offer to study with us, we'll invite you to one of our offer holder days, which take place between February and April. These open days have a strong department focus and give you the chance to really explore student life here, even if you've visited us before.
Campus tours
Our weekly guided tours show you what Sheffield has to offer - both on campus and beyond. You can extend your visit with tours of our city, accommodation or sport facilities.
Apply
Contact us
- Telephone
- +44 114 222 5738
- study@sheffield.ac.uk
The awarding body for this course is the University of Sheffield.
Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.
Any supervisors and research areas listed are indicative and may change before the start of the course.