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Abstract 

 

Many synergisms have been described in the past between soft computing 

techniques such as Neural Networks (NN), Fuzzy Logic (FL) and Genetic 

Algorithms (GA) which have not only shown that such hybrid structures can 

work well but also add more robustness to the control system under 

consideration. In this paper, a new control architecture is proposed whereby the 
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on-line generated fuzzy rules relating to the Self-Organising Fuzzy Logic 

Controller (SOFLC) are obtained via integration with the popular Generalised 

Predictive Control (GPC) algorithm using a Takagi-Sugeno Kang (TSK) based 

CARIMA model structure. In this approach, GPC replaces the Performance 

Index (PI) table which, as an incremental model, is traditionally used to find new 

rules, delete rules and amend existing rules. Because the GPC sequence is 

computed using predicted future outputs, the new hybrid approach rewards the 

time-delay very well. The new generic approach, named Generalised Predictive 

Self-Organising Fuzzy Logic Control (GPSOFLC), is applied to a well-known 

non-linear chemical process, the distillation column, and is shown to lead to the 

elicitation of an effective fuzzy rule-base in both qualitative and quantitative 

terms. 

 

 

 

1. Introduction 

 

It is common knowledge that in the last 40 years most control designs have been 

based on linear models, despite the fact that most systems are inherently nonlinear, 

due to the difficulty associated with analysing nonlinear systems. One common 

approach has been to linearise the system around various operating points. Among the 

most popular model-based control approaches are three term PID controllers, Model-

Based Predictive Control (MBPC) and robust control ( H ). However, in recent years, 

there has been a move among system engineers towards intelligent control with a 

qualitative dimension due to the widespread dissatisfaction with quantitative 
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engineering. One of the main attractions of intelligent system design is the possibility 

of multivariable system control without the need for extensive dynamic models of the 

process. The main difficulty in the multivariable case is the interaction between 

variables together with sensitivity to faults in various channels. Neural Networks 

(NN) [1], Fuzzy Logic Control (FLC) [2], [3], and Genetic Algorithms (GA) have 

been at the forefront of such methodologies and have proved to be strong contenders 

for other forms of control. 

 

Various synergisms have been described between fuzzy logic, neural networks and 

genetic algorithms [4], [5] which not only showed that these intelligent structures can 

interact together but also can make the resultant overall structure more robust against 

model uncertainties as well as disturbances. In this present work, we show that a 

synergism between a mathematical model-based approach in the form of self-tuning 

Generalised Predictive Control (GPC) [6] and Self-Organising Fuzzy Logic Control 

(SOFLC) [7] is possible with the former being used as a mechanism to make the latter 

adjust itself to improve the overall system’s performance. As will be expanded in later 

sections, both GPC and SOFLC are multi-level control designs; the former relying on 

a mathematical model formulation to derive the future control moves, whereas the 

latter is purely linguistic and relies on a fuzzy linguistic table (the Performance Index- 

PI) to issue control corrections to the low-level layer to allow it to adjust itself. In this 

paper the proposed architecture consists of replacing the above Performance Index 

(PI) table with the computed GPC moves as the corrections which will allow the 

generation of new fuzzy rules, deletion of redundant fuzzy rules, and alteration of the 

existing fuzzy rules. Both paradigms are adaptive (GPC runs with a Recursive Least-

Squares- RLS estimation algorithm and in SOFLC the PI organises the fuzzy rules) 
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and have been shown to work on a variety of systems, including distillation columns 

[8] and muscle relaxation [9], both systems being characterised by time-delays and 

nonlinearities. In addition, the GPC algorithm has been modified to reflect a fuzzy 

Takagi-Sugeno-Kang (TSK) Controlled Autoregressive Integrated Moving Average 

(CARIMA) model structure [10]. 

 

The paper is organised as follows: in Section 2 the TSK-based GPC and SOFLC 

algorithms are reviewed briefly. Section 3 presents the new modified algorithm which 

we call Generalised Predictive Self-Organising Fuzzy Logic Control (GPSOFLC). 

Simulation results using a distillation column are presented and discussed in Section 

4. Finally, in Section 5, conclusions are drawn with regard to the new proposed 

algorithm. 

 

 

2. Theoretical Background relating to TSK-based GPC and SOFLC 

 

2.1 The Fuzzy TSK-based Generalised predictive Control Algorithm 

 

One common factor in all Model Based Predictive Control strategies [11], which 

represents their “raison d’etre”, is their assumption of a model which has to be quite 

accurate. The modelling of real world systems, however, often presents problems. As 

processes increase in complexity, they become less amenable to direct mathematical 

modelling based on physical laws since they may be distributed, stochastic, non-linear 

and time-varying, uncertain, etc. According to Zadeh’s Principle of Incompatibility 

[12], the closer one looks at a real world problem, the fuzzier becomes the solution. 
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An alternative to modelling the operator’s response is to use a fuzzy logic system to 

provide a computing paradigm for modelling the non-linear process dynamics when a 

sufficiently accurate model of the process to be controlled is unavailable. The 

modelling problem, instead of being posed within a strictly analytical framework, is 

based on empirically acquired knowledge regarding the operation of the process. 

 

An alternative method of expressing fuzzy rules was proposed by Takagi and Sugeno 

[13] which include fuzzy sets only in the premise part and a regression
1
 model as the 

consequent, i.e. 

 

 nn

n

n xcxccyTHENBisxandandBisxIF   110

1

1                            (1) 

where  Tnxxx ,,1   and  y are the input and output linguistic variables 

respectively, iB  are linguistic values characterised using membership functions, and 

ci are real-valued parameters. It is considered that this fuzzy rule representation 

provides a convenient framework to incorporate human experts' knowledge. 

 

A complex high dimensional non-linear modelling problem is decomposed into a set 

of simpler linear models valid within certain operating regimes defined by fuzzy 

boundaries. Fuzzy inference is then used to interpolate the outputs of the local models 

in a smooth fashion to get a global model. This modelling approach provides a good 

modelling accuracy [13], [14] and is free of the problems arising from model 

incompleteness. Also, as demonstrated by Takagi and Sugeno, standard identification 

                                                 

1
 This model can be either linear or non-linear. 
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techniques such as the method of least squares can be easily applied for determining 

the model parameters. 

 

2.1.1 Fuzzy Process Model 

Consider a single input single output (SISO) system which can be modelled using the 

method proposed by Takagi and Sugeno. Assuming that the input space is partitioned 

using p fuzzy partitions and that the system can be represented by fuzzy implications 

(one in each fuzzy sub-space), we can write the following [10]: 
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where y(t) and u(t) are the process and controller outputs at time t, )1( tym  is the 1-

step ahead model prediction at time t, iB  is a fuzzy set representing the fuzzy sub-

space in which implication iL  can be applied for reasoning, and 11  z , with 1z  

being the backward shift operator. 

 

Such model representation in the consequent part of the above implication is called a 

CARIMA
2
 structure [16] which was found to be effective against offsets which can be 

present in the data.   

 

 

 

                                                 

2
 Controlled Auto-Regressive Integrated Moving Average 
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The model parameters can be expressed in the following matrix form: 
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The overall fuzzy model output (in incremental form) can be written as follows: 

 

)()1( ttym                                                                                                      (4) 

 

where, 

 

 Tba ntututuntytytyt )1(,),1(),(),1(,),1(),()(          (5) 

 

'  represents a matrix of the i weighted parameters of   
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and, 
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 )(tyB i  is the grade of membership of y(t) in iB and   is a vector of the weights 

assigned to each of the p implications at each sampling instant.  
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It is worth noting that in order to design long-range predictive controllers using an 

analytical approach, one needs to linearise the above fuzzy model about the current 

operating point by weighting the fuzzy model parameters at each sampling instant as 

follows: 
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where   denotes the vector with the weighted fuzzy model parameters such that:. 
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The above modelling techniques will form the basis for the development within the 

long-range predictive control strategy. 

 

2.1.2 Controller Formulation 

 

The long-range predictive controller developed in this research study is based on the 

popular Generalised Predictive Control (GPC) strategy [6] whose theoretical 

background is briefly reviewed here: 

Consider the following locally linearised discrete model in the backward shift 

operator 1z : 
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where )(tu  represents the control input and )(ty  is the measured variable. The 

controller computes the vector of controls using optimisation of a function of the 

form: 
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where 1N  is the minimum costing (output) horizon, 2N  is the maximum costing 

horizon, NU is the control horizon,   is the future set-point, )( j is the control 

weighting sequence, and )( 1zP  is the inverse model in the model-following context 

with 1)1( P . Furthermore, the )( 1zC  polynomial in Equation (11) is replaced by a 

fixed polynomial )( 1zT  known as the observer polynomial for the 

predictions ).(ˆ)( 1 jtyzP    

 

The minimisation of the cost function described in Equation (11) leads to the 

following projected control increment: 
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where Tg  is the first row of the matrix 
T

dd

T

d GIjGG 1))((   , dG  is the dynamic 

(step-response) matrix of the form given in [6], and  is a vector of future output 

responses weighted by )( 1zP . 

 

2.1.3 Adaptation Mechanism 

 

For the purpose of application of parameter estimation techniques, equation (4) can be 

re-formulated in the following form: 
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where )(t is the regressor vector which is determined from )(),( tuty  and )(t and 
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and )(t is the parameter vector determined from )(t and is given by: 
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The least-squares estimates of model parameters are found by minimising a certain 

cost function, which is not shown here due to lack of space. It should be stressed that 

in most circumstances the standard recursive least squares (RLS) in its UD-

factorisation form is used [17].  

 

Adopting the above control strategy to work with the fuzzy model requires the 

weighted model parameters determined at each sampling instant from the fuzzy model 

using the method proposed above, instead of the normal linear CARIMA model 

parameters. Hence, the overall control strategy consists of the following 5 simple 

steps at each sampling instant: 

 

a) A process output is measured and fuzzified to obtain the vector of confidences  . 

 

b) Calculate the weighted information vector )(t , using the vector of confidence 

 and the vector of information )(t given by Equation (5) 

 

c) Estimate the process parameters )(t  using a RLS algorithm. 

 

d) Calculate the weighted model parameters vector   using Equations (8-9). 

 

e) Calculate the optimal controller output sequence )(tu , using Equation (12). 

 

Figure 1 is a schematic diagram representing the structure of the resultant fuzzy TSK-

based GPC architecture. 
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2.2 A Qualitative Dimension from SOFLC 

 

The first Self-Organising Fuzzy Logic Controller was proposed by Procyk and 

Mamdani [7] and includes a control policy that can change with respect to the process 

it is controlling and the environment it is operating in. This is what is often called an 

adaptive or learning controller to stress that its operation relies on the acquisition of 

past experience, i.e. a suitable combination of past control actions and the effects they 

produced. One interesting characteristic of this controller is that it strives to improve 

its performance until there is convergence to a predetermined quality. In doing this, 

the SOFLC performs two tasks at the same time which are a) observe the environment 

while ensuing the appropriate control action and b) use the results of these control 

actions to improve them even further. A considerable amount of work has been 

carried out using the SOFLC, originally in Queen Mary College, London, but, 

perhaps, the most interesting applications of the controller is that related to muscle 

relaxation control [9] and Sugeno’s fuzzy car [18]. The car has the ability to learn 

how to park itself. 

 

2.2.1 Description of the Controller 

 

As illustrated in Figure 2 the SOFLC comprises two levels. The first level consists of 

a simple fuzzy controller, whereas the second level acts as a monitor and performance 

evaluator of the previous level and is usually called the self-organising mechanism. It 
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includes four blocks: the performance index, the process reference model, the rules 

modifier, and the state buffer. 

 

In the first level, the input signal to the controller is taken at each sampling instant in 

the form of error and change in error. Each signal is mapped to its corresponding 

discrete level by appropriate scaling factors and then sent to the SOFLC. According to 

control rules issued by the second level, the SOFLC calculates the output with respect 

to the inputs. The output signal is scaled to its actual value using the output-scaling 

factor and afterwards sent to the process being controlled. 

 

The second level is basically the part which realises the adaptation referred to above. 

Based on the trajectory of the process being controlled, any deviation from the desired 

path is corrected by modifying the rule responsible for that particular undesirable 

deviation. 

 

2.2.2 The Performance Index (PI) 

 

The performance index measures the deviation from the path of the desired trajectory 

and issues the appropriate changes that are required at the output of the controller. It 

can be written in the form of a “look-up” table. If the antecedents of the performance 

index rules are the process output error and the change in the process output error, 

then the credit value of a particular process output U at a sample nT is given by: 

 

 )).(),(()( tetefnTPi
                                                                                               (16) 

)(.)(0 nTPMnTP i                                                   (17) 
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where f is the mapping performed by the Performance Index and M is a reference 

model [7]. 

 

The credit represents the required change in the system output to enable the rules 

modifications. It is worth noting that the performance rules are written using a 

qualitative feel for a general monotonic undamped process, and are intended to 

provide fast convergence coupled with the required damping around the equilibrium 

state to achieve high accuracy.  

 

2.2.3 The Rules Modification Block 

 

The rules modification procedure can be explained by the following: 

Assume that the process has a time lag of m samples. This means that the control 

action at sampling instant )( mTnT  has most contributed to the process performance 

at sampling instant nT . For a SISO process, )( mTnte  and )( mTnTe  would have 

been the error and change in error at that time, E  and CE  are the fuzzified sets 

relating to )(te and )(te respectively, and )( mTnTU   would have been the controller 

output. Consequently, the controller output that would have been required is 

)()( 0 nTPmTnTU  which needs to be scaled and fuzzified, in order to be registered 

as the new rule. Hence, the rule 

)()()( mTnTUmTnTCEmTnTE                            (18) 

is modified to become: 

)()()( mTnTVmTnTCEmTnTE                            (19) 

where, 
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 )()()( 0 nTPmTnTUFmTnTV                             (20) 

and F refers to the fuzzification operation. 

 

 

2.2.4 The State Buffer 

 

For a process with dead time, the control action should be rewarded an adequate 

amount of time earlier. The state buffer is a first in / first out register (FIFO) which 

records the values of the scaled error, scaled change in error, and the defuzzified 

output before scaling, and produces the registered values on the buffer output after a 

time equal to the Delay-in-Reward parameter. 

 

2.2.5 Delay-in-Reward 

 

The Delay-in-Reward mT  is a parameter that reflects the time-delay present in the 

system. Only rules which include antecedents and consequents delayed by the amount 

mT  must be modified. If this parameter is not taken into account, amplitudes of 

oscillations around the set-point will be too large for convergence to take place. 

Hence, this parameter introduces an amount of compensation for phase lag in the 

system. 

 

As it stands, the SOFLC design includes only rules modification within specific 

definitions of the peak and width of each fuzzy set. Automatic selection of the scaling 

factors can also be added to the overall design [9]. For instance, as the process output 

approaches the set-point, the scaling factors can be chosen so to realise finer tuning. 
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One criticism, though, of the SOFLC scheme is that it starts from an empty rule-base 

(although this is not essential), which in sensitive areas of control applications such as 

medicine and aeronautics will not be favoured. However, because the SOFLC’s ethos 

is to improve its performance as it learns about the process, it is always recommended 

to conduct “dry” runs on an approximate model of the process, build an initial rule-

base and start the SOFLC with that particular initial rule-base in real-time. Moreover, 

because for the first mT  samples, the SOFLC uses the rules directly from the PI 

table, then it is important to set an adequate reference trajectory, for example via the 

adaptive fuzzy TSK-based GPC algorithm proposed in this paper. The next Section 

reviews how this can be achieved within the new algorithm structure. 

 

3 The Generalised Predictive Self-Organising Fuzzy Logic Control (GPSOFLC) 

 

The idea behind the new algorithm lies in substituting a different mechanism for the 

PI table that will allow the Rules Modifier in Figure 2 to generate new fuzzy rules, 

delete existing but redundant rules and alter the fuzzy rules in a similar way to the 

SOFLC described in Section 2 but more effectively. This, we believe, will not only 

add more robustness to the self-learning architecture but will allow one to elicit, on-

line, the fuzzy control rules of a Mamdani-type without the need for an off-line 

analysis. 

 

The fuzzy rules which are included in the PI table are standard and are used for a wide 

range of systems and reflect characteristics of a system with adequate damping, 

overshoot, and settling-time. Since the index )(nTPi  used for the Rules Modifier 

block is an incremental sequence and represents the ‘best’ correction that can be 
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issued at time nT then we propose to replace it with the future control moves 

generated by the fuzzy TSK-based GPC described in Section 2, particularly )(nTu , 

whose parameters are adjusted via a Recursive Least-Squares (RLS) algorithm. It is 

worth noting that the adaptive predictive algorithm will only calculate the control 

increment based on ‘gain’ information as the fuzzy TSK-based GPC is not explicitly 

controlling the process. Hence, the RLS-based parameter estimates stem from a 

closed-loop identification operation which uses input-output data relating to the 

SOFLC controlling the process (see Figure 3). In all the simulations that we carried-

out on a wide range of processes a second-order discrete-time model with no time-

delay but using the filter polynomial )( 1zT was sufficient to characterise the fuzzy 

TSK-based GPC layer. Moreover, in the same way in which the performance index 

output is scaled to be used as the actual fuzzy correction (through the block Model in 

Figure 3) the GPC increment is also scaled to map the real world onto the fuzzy 

world. Hence, in light of the above considerations Equations (18-20) become: 

 

)()()( mTnTUmTnTCEmTnTE                  (21) 

 

)()()( mTnTVmTnTCEmTnTE                            (22) 

 

where, 

 

 )()()( nTumTnTUFmTnTV                             (23) 

 

The algorithm hence obtained is named Generalised Predictive Self-Organising Fuzzy 

Logic Control (GPSOFLC). As it stands the algorithm allows transparency and 
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interpretability of the fuzzy rules obtained given the fuzzy partitioning of the input 

output spaces. It is also worth noting that such fuzzy partitioning (in terms of the 

number of fuzzy partitions) does not have to be identical for ‘the TSK-based GPC’ 

layer and the ‘Mamdani-type fuzzy system’ layer. Hence, summarising the GPSOFLC 

algorithm leads to the formulation of the following steps: 

1. A process output is measured and fuzzified to obtain the vector of confidences  . 

 

2. Calculate the weighted information vector )(t , using the vector of confidence 

 and the vector of information )(t given by Equation (5). 

 

3. Estimate the process parameters )(t  using a RLS algorithm. 

 

4. Calculate the weighted model parameters vector   using Equations (8-9). 

 

5. Calculate the first control move )(tu , using Equation (12). 

6. )(tu is first scaled then sent to the ‘Rules-Modifier’ block to apply the correction 

(if necessary) to the rule (taking into account the value of the delay-in-reward) which 

was responsible for the current performance (see Equation (23)). 

 

7. The values of error )(te and its derivative )(te are used in ‘the simple fuzzy logic 

control’ layer to infer the actual process input. 

 

8. All values are shifted back in time ready for the next sample. 
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The next sections will present and discuss a series of simulations results obtained 

using the new proposed algorithm on a difficult process, namely a distillation column 

[8]. 

 

4 Simulation Results 

 

The simulation experiments involving the proposed adaptive control will use the 

binary distillation column as a test-bed. The distillation column is an extensively 

researched process in control engineering literature as it offers the most known 

challenges such as nonlinearities, offsets, time-delays, loop interactions, etc.  

 

4.1 The Binary Distillation Column 

 

Distillation is used in many chemical processes to separate feed streams and for 

purification of final and intermediate product streams. Figure 4 is a schematic 

representation of a binary distillation column. Feed is separated into an overhead 

product or "distillate" and a bottoms product or "bottoms". Heat is transferred into the 

process in the reboiler to vaporise some of the liquid from the base of the column. The 

vapour coming from the top of the column is liquified in another tube-and-shell heat 

exchanger called the condenser and liquid from the condenser drops into the reflux 

drum. The distillate is removed from this drum. In addition, some liquid, called 

"reflux", is fed back to the top of the column. A mathematical model of a 20-tray 

binary distillation column is provided in the text by Luyben [8]. A simplified version 

of this model, which neglects the dynamics introduced by tray fluid mechanics, has 

been considered in this study. 
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4.2 The Control Problem 

 

The objective of the controller would be to control the distillate composition by 

manipulating the reflux flow-rate. Hence, the following fuzzy relations can be used 

for model identification: 
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where )(txD  and )(tL  are the distillate composition and reflux rate respectively and i  

is an index referring to the ith fuzzy partition. 

 

Different fuzzy partitions (of triangular or Gaussian shapes) of the input space can be 

used. For the GPC algorithm, the following parameters were chosen to be identical for 

both channels: 
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It is worth noting here that the observer polynomial )( 1zT is usually taken to be 

identical for both calculating the control sequence ( )( 1zTco ) and the Recursive Least 

Squares parameter estimation (RLS) ( )( 1zTest ), but can sometimes include different 

dynamics and gains to enhance robustness in either case [9]. 

For parameter estimation, a second-order model with â2 ’s and b̂2 ’s was adopted 

throughout all experiments with an initial covariance matrix of Ii .10cov 3  and a 

forgetting factor of 95.0 , with all parameter estimates initially set to zero except 

1b and 2b which were set to 1. 

The binary distillation column was simulated using the MATLAB-SIMULINK 

Toolbox with a sampling interval of 0.1 minute. A total time of 250 minutes was used 

for simulation with the initial set point of 0.98 for the distillate composition 

corresponding to the tuning phase, and from then on the set point was changed using 

decrements of 0.01 then was incremented with the same amount again. 

 

For the purpose of this research, the low-level simple fuzzy controller assumed five 

fuzzy sets; Negative Big (NB), Negative Small (NS), Zero (Z), Positive Small (PS), 

and Positive Big (PB), which have been defined in a universe linearly. It is worth 

noting that the choice of the shape relating to the Membership Functions (MF’s), in 

this case Gaussian, is arbitrary and the same MF’s can be chosen to be triangular also 

without any significant effect on performance. 

 

The first experiment considered the use of the standard SOFLC algorithm with the 

modified Performance Index of Tables 1a,b which uses 5 fuzzy membership 

functions, in contrast to earlier proposed tables which used up to 13 fuzzy labels [7]. 



 22 

The simulation run produced the performance of Figure 5 where it can be seen that 

the output tracked the set-point quite well although low-magnitude limit cycles were 

reached between times 175 and 225 minutes. In turn, the control signal was very 

active displaying oscillatory modes.  The run generated 20 fuzzy rules in the lower 

level of the control structure with a non-linear control surface of Figure 5c. 

 

The second experiment considered the use of a linear CARIMA partition of the input-

output space. The run produced the performance of Figure 6 where it can be seen that 

the output tracked the reference target very efficiently with a reasonably active control 

signal despite a control horizon of 3NU . Also, the run generated 18 fuzzy rules out 

of a maximum of 25 rules with a control surface, shown in Figure 8c, which 

emphasises a non-linear mapping between inputs and output. Table 2 displays the 

corresponding fuzzy rules in the lower level obtained at the end of the run which also 

emphasises the free structure as opposed to the grid-like rule-base.  

 

The third experiment considered the use of a 5-partition fuzzy model. The run 

produced the performance of Figure 7 which was better than those of Figures 5 and 6, 

in terms of the overshoots at times 200 and 250 minutes and also in terms of control 

activity where the ringing modes have been de-emphasised. Similarly to the previous 

run the number of generated fuzzy rules reached 18 out of a maximum of 25 rules. 

 

The above experiments were conducted with the parameter estimation switched-on all 

the time which allowed the model to be updated on-line. In order to test the robustness 

of the proposed algorithm when the model is fixed the parameter estimation was 

switched off at a time of 150 minutes during the simulation run. Figure 8 shows the 
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performance of the new algorithm when a linear model is considered. The 

performance obtained is similar to that of Figure 6 except that the number of fuzzy 

rules generated increased to 19 fuzzy rules (see also Table 3 for the individual rules 

obtained at the end of the run). When a 5-partition fuzzy TSK model was used the 

performance of Figure 9 was obtained where it can be seen that an equally good 

performance in terms of output tracking and control signal activity was obtained with 

the same number of fuzzy rules being generated as in the case of Figure 7, i.e. 18 

rules; this number did not increase due to the fact that the relatively high number of 

fuzzy partitions compensated for the absence of the on-line parameter estimation, this 

being in contrast to the run of Figure 8 where the number of rules increased by 1 

fuzzy rule. 

 

5 Conclusions 

 

Soft computing which includes the three intelligent systems approaches, neural 

networks, genetic algorithms, and fuzzy logic theory has been increasingly embraced 

by a wide section of systems engineers. Various synergisms are known to exist 

between the above three strands which can work well together by forming structures 

which can tackle complex problems in a robust way. In this study, a new algorithm 

was proposed in which a synergism was shown to be possible between a mathematical 

model-based approach (self-tuning GPC) and an intelligent control system with a 

qualitative dimension (fuzzy logic control). This substitutes the GPC algorithm for the 

performance index table used in the standard SOFLC algorithm to modify the rules of 

the low-level represented by the direct fuzzy controller. Whatever the structure of the 

process in question, a second order model was found to be sufficient for the GPC 
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structure. This is compatible with the performance index table used in the standard 

SOFLC which reflects characteristics similar to a second order system with specific 

damping, overshoot, and settling-time. Using the distillation column as a test bed, the 

new proposed strategy named Generalised Predictive SOFLC (GPSOFLC) was shown 

to perform better than the standard SOFLC algorithm and to lead to a more 

transparent architecture by generating the necessary number of fuzzy control rules to 

control the process effectively. During an extensive simulation study which included 

also other processes, such as muscle relaxant anaesthesia, it transpired that the 

following guidelines for parameter tuning of the algorithm are recommended in order 

to achieve the best performance: 

 

 A second-order linear or fuzzy TSK model with up to 5 fuzzy partitions is 

sufficient for the GPC algorithm to generate the necessary control moves for the 

Rule- Modifier block. 

 

 A high control horizon ( 2NU ) is recommended; this is to enable proper 

excitation of the ‘Rules-Modifier’ block. 

 

 The use of a second-order observer polynomial )( 1zT is also recommended to 

compensate for any unmodelled dynamics. 

 

Finally, it is worth noting that these current findings are now the focus of extensive 

research which aims at demonstrating that superior performance need not be linked 

with a large number of rules but rather to the quality of these rules. It is planned to 

extend the work to include multivariable structures. 
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(a) 

Figure 5 Performance of the standard SOFLC algorithm 

(a) Set-point and output. 

(b) Controller output signal. 

(c) 3D-surface relating to the fuzzy rule-base. 
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Figure 6 Performance of the GPSOFLC algorithm 

               using a linear CARIMA model; 

(a) Set-point and output. 

(b) Controller output signal. 

(c) 3D-surface relating to the fuzzy rule-base. 

(a) 
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Figure 7 Performance of the GPSOFLC algorithm 

               using a 5-partition fuzzy TSK based  

               CARIMA model; 

(a) Set-point and output. 

(b) Controller output signal. 

(c) 3D-surface relating to the fuzzy rule-base. 

(a) 



 38 

 
 

 

 

 

 

 

(b) 

(c) 



 39 

 

 

 

 

 

 
 

Figure 8 Performance of the GPSOFLC algorithm 

                 using a linear CARIMA model when RLS 

                 is switched-off at time 150 minutes; 

(a) Set-point and output. 

(b) Controller output signal. 

(c) 3D-surface relating to the fuzzy rule-base. 

(a) 
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Figure 9 Performance of the GPSOFLC algorithm 

                 using a 5-partition fuzzy TSK based  

                 CARIMA model when RLS is switched-off 

                 at time 150 minutes; 

(a) Set-point and output. 

(b) Controller output signal. 

(c) 3D-surface relating to the fuzzy rule-base. 
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PB 

NB NB NS NS ZO 

NB NS NS ZO PS 

NS NS ZO PS PS 

NS ZO PS PS PB 

ZO PS PS PB PB 

e  

e  

Table 1a The modified performance index  

                which uses 5 membership functions 

                in a “rules” format;  

                N = Negative, P= Positive,  

                ZO = Zero, B = Big, S = Small,  

                M = Medium. 
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NB NS ZO PS PB 

NB 

NS 

ZO 

PS 

PB 

-1 -1 -0.5 -0.5 0 

-1 -0.5 -0.5 0 0.5 

-0.5 -0.5 0 0.5 0.5 

-0.5 0 0.5 0.5 1 

0 0.5 0.5 1 1 

e  

e  

Table 1b The modified performance index  

                which uses 5 membership functions 

                in a “look-up-table” format;  

                N = Negative, P= Positive,  

                ZO = Zero, B = Big, S = Small,  

                M = Medium. 
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Table 2 The final free structure of the fuzzy 

              rule-base relating to the run of 

              Figure 6. 

              N = Negative, P= Positive, ZO = Zero, 

              B = Big, S = Small. 

               

Table 3 The final free structure of the fuzzy 

              rule-base relating to the run of 

              Figure 8 (RLS switched-off at time 

              150 minutes). 

              N = Negative, P= Positive, ZO = Zero, 

              B = Big, S = Small. 

NB NS ZO PS PB 

NB 

NS 

ZO 

PS 

PB 

-0.47 

-0.25 

-0.05 

0.10 

0.17 

-0.61 

-0.41 

0.68 

-0.71 

-0.14 

-0.11 

0.26 

0.70 

-0.34 

-0.13 

-0.11 

-0.37 

-0.30 

e  
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-0.24 


