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Introduction

Microbial biofilms formed on inner-pipe surfaces in drinking
water distribution systems (DWDS) may affect the quality and
safety of drinking water, particularly if mobilised from the pipe
~ wall into the bulk water (Fig. 1).
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within drinking water pipes material from the pipe wall results in
discoloured water (Fig. 2).

Objectives

» To improve knowledge on bacterial ecology of DWDS using 454
pyrosequencing of the 16s rRNA gene

» To assess the potential mobilisation of biological material from pipe walls

Materials and Methods
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Results

Pyrosequencing analysis showed significant differences
(p<0.05) in the relative abundance of bacteria at
different taxonomic levels between biofilm and
water samples. Gammaproteobacteria (27-50%) at

class level and Pseudomonas (up to 48%) at genus
level were predominated in biofilms, while
Alphaproteobacteria (68-77%) and species belonging
to the genera Methylocystis (23-31%) and
Methylocella (17-21%) were abundant in water
samples (Figs. 6 and 7).
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Research was carried out in a full scale test-loop facility to reproduce
characteristics occurring in live distribution systems (Fig. 3). The facility was fed from
the local network with a 24h water retention time to maintain a chlorine residual and
nutrient supply. To facilitate DNA-based analysis of microbial biofilms HDPE coupons
were inserted around the mid-length of each loop (Fig. 3).

Verrucomicrobiae

Fig. 6: Heatmaps showing the percentages of the most
abundant species at genus level within bulk water and
biofilms
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Fig. 7: Bacterial community composition of biofilm and bulk water samples at class level

After flushing the pipe-test facility, considerable shifts in Gammaproteobacteria
(increased 23 %) and Alphaproteobacteria (decreased 21 %) relative abundance were
observed in biofilm samples. At genus level, the main changes in relative species
abundance within biofilms were in the genera Pseudomonas, Methylophilus,
Sphingomonas and Erythromicrobium (Figs. 6 and 7).

Chao1 estimator Shannon (H')

The Chao1l richness indicator,
calculated at 95 % similarity cut
off showed that bacterial
species richness was higher in 00 -
biofilm than in bulk water
samples. Species richness also
decreased in post-flushing
biofilm samples. Shannon
Diversity index (H') indicated 0 4
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Fig .3 : Temperature controlled pipe-test facility at Sheffield University. Coupons are inserted

along the length of each loop to allow for subsequent biofilm removal and examination.
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Conclusions

p=0.002). ANOSIM also showed significant
differences between pre- and post-flushing

biofilm samples (class level; R=0.33, p=0.01
and species level; R=0.37, p=0.01).

Fig. 9: Two-dimensional plot of the MDS analysis based on Bray-Curtis
similarities of the percentage sequence abundance. W = water and B
= biofilm.

for subsequent DNA extraction

» Pyrosequencing analysis highlighted that bulk water and biofilms had significant different bacterial structure and composition
» Flushing did not completely removed biofilms from the pipes but altered the pipe-wall bacterial community structure
» Higher bacterial diversity and species richness were detected before flushing, indicating that pipe-wall material might have been mobilised into the

bulk water during the experimental discolouration event

References

Dowd et al.,, 2008. Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella infected pigs. Foodborne Pathog Dis 5(4):459-472.
Caporaso et al,, 2010. QIIME allows analysis of high-throughput community sequencing data. Nature methods, 7 (5),335-336.


mailto:I.Douterelo@sheffield.ac.uk
http://www.epsrc.ac.uk/default.htm

