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Water quality in a water distribution system (WDS) is determined by a variety of complex 
processes, affected directly or indirectly by numerous factors including changing water 
demand, infrastructure condition and environmental variation. Whilst most of the hydraulic 
and physico-chemical variables that are relevant to water quality are quite well understood, 
measures of microbiological processes are less developed and have so far been difficult to 
use in water quality decision support tools. DNA-based molecular techniques are now 
being used to analyse environmental samples. Bio- and HydroInformatics can be defined as 
disciplines that generate computational methods and tools, databases, and methods to 
support DNA-based and hydraulic related research. This paper demonstrates how Kohonen 
self-organizing maps (SOM) can be used for integrative data mining of disparate hydraulic, 
physico-chemical and microbiological data sources from a unique experimental pipe test 
facility. Results are reported from a four week test period to examine the impact of three 
separate flow profiles on the accumulation and mobilization of particles. Genetic signatures 
acquired by terminal restriction fragment length polymorphisms (T-RFLPs) were obtained 
from samples, and analysed using principal component analysis (PCA). A range of single 
parameter hydraulic and chemical variables were logged. These datasets were then 
analysed by SOM networks. Results show that the visual output of the SOM analysis 
provides a useful tool for identifying novel microbiological relationships.  
 
INTRODUCTION  
 
Customers regard a safe supply of water as one of the most important aspects of the water 
supply service. Water quality in a WDS is a very complex system, affected directly or 
indirectly by numerous factors including changes in the source and final water quality, as 
well as changing demand and climatic variation. Changing hydraulic operations at the 
utility (e.g.  the operation of tanks, pumps, and valves etc.) and failure of infrastructure can 
all cause a change in water quality.  

High quality water leaving treatment facilities generally deteriorates as it travels 
through extensive, often convoluted, distribution networks, via a number of mechanisms 
associated with distribution network materials, hydraulic conditions, chemical and 
biological reactions, or ingress of polluting materials. The presence of biofilms attached to 
the inner pipe surface is a major concern but not yet well understood. The increase of 
microorganisms in distribution networks generates a number of problems such as loss of 

 



residual chlorine, discolouration, negative changes in water taste and odour, pipe corrosion 
etc. Traditionally, microbial assessment of drinking water has been based on the study of 
plankton (microorganisms inhabiting the bulk water). However recent research has 
observed that the majority of microorganism in the network is actually attached to the inner 
pipe surface as biofilms. Bacterial communities within biofilm can be analysed to 
determine their abundance, diversity and to compare communities separated in space and/or 
time. Over the past few decades rapid developments in genomic and other molecular 
research technologies and developments in IT have combined to produce large datasets in 
the area of molecular biology. Bioinformatics is the name given to mathematical and 
computing approaches used to glean understanding of biological processes and it covers the 
creation and development of databases, algorithms, computational and statistical techniques 
and theory to solve formal and practical problems arising from analysis of this data.  

The Kohonen self-organizing feature map, generally referred to as the Self Organising 
Map (SOM), is a neural network model which draws inspiration from biological processes. 
In this paper SOMs are used for examining the relationships between water physico-
chemical and microbiological characteristics. The data mining approach was applied to the 
results from experiments conducted in a test loop facility. The research presented here was 
a part of the Pipe Dreams Project (http://www.sheffield.ac.uk/pipedreams). 
 
BACKGROUND 
 
T-RFLP profiling 
Terminal restriction fragment length polymorphism (T-RFLP) is a fast way of screening 
and analysing complex microbial communities. T-RFLP is based on the amplification of 
the 16S rRNA gene with a fluorescent label attached to the end of one or both primers 
followed by digestion of the PCR product with restriction enzymes [1]. The sizes of the 
resulting terminal restriction fragments (TRFs) containing the fluorescent label are 
subsequently determined using an automated fragment length analysis system. The number 
of peaks and peak area in a T-RFLP profile immediately give insight into the richness and 
evenness of the population providing a “fingerprint” of the bacterial community. 

A recurring problem in T-RFLP analysis is the comparison of profiles. In the past, 
comparison of multiple T-RFLP profiles to identify shared and unique components of 
microbial communities has been a manual process which is both time consuming and liable 
to the introduction of errors. The use of a web based tool, T-Align [2] allows rapid 
comparison of numerous T-RFLP profiles. T-Align has been applied to T-RFLP profiles 
obtained in response to discolouration events in an experimental WDS [3]. The comparison 
matrix produced by T-Align is of uniform size, containing all the consensus profiles 
compared with all others, with each point containing either a zero (in the absence of a TRF) 
or the relative percentage fluorescence when the TRF was present. These uniform profiles 
facilitate the comparison of samples and can be subsequently further analysed using 
ordination statistics or transformed for further comparison with binary matching. 
Techniques from the field of Artificial Intelligence, such as Cellular Automata, Genetic 
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Algorithms and Artificial Neural Networks (ANNs), are now being explored to provide 
sophisticated data mining in the bioinformatics domain [4]. 

 
SOMs and water resources 
There are some applications for which the ‘correct’ outputs are unknown. In unsupervised 
learning (also referred to as self-organisation) the inputs are presented to an ANN which 
forms its own classifications of the training data thus allowing it to derive information from 
data when it is suspected that distinct classes exist in a collection of samples. The SOM is 
one of the most well-known ANNs employing unsupervised learning having properties of 
both vector quantization and vector projection algorithms [5]. The prototype vectors are 
positioned on a regular low-dimensional grid in a spatially ordered fashion hence 
facilitating improved visualisation.  

SOMs have been used for analysis and modelling of water resources as reviewed in 
[6]. Carstea et al. [7] presented results of real-time fluorescence excitation-emission 
matrices (EEM) spectroscopy using an in-situ fibre-optic probe installed in a small urban 
river. SOMs were used to cluster fluorescence EEMs of different character, demonstrating 
seven distinct clusters. Chang et al. [8] used SOMs for expressing water quality 
comprehensive evaluation in a water network by high-dimensional water quality indicator 
projection to a low dimensional topology grid for higher level interpretation. Mustonen et 
al. [9] generated pressure shocks in a pilot-scale drinking water distribution system to 
explore water quality changes, with a particular emphasis on particle size. The data 
collected was analysed with SOM and Sammon’s mapping. The pressure shocks led to 
detachment of biofilms and soft deposits, and this was observed to increase electrical 
conductivity, turbidity and the number of particles in drinking water. 
 
MATERIALS AND METHODS 
 
Test loop facility and experimental work 
Following the findings of and development after Husband et al. [10] a test loop facility, 
housed in a temperature controlled room, has been constructed at the University of 
Sheffield (Figure 1). It consists of three connecting loops which can be individually 
controlled to represent three different hydraulic regimes. Individual loops consist of nine-
and-a-half 21.4m long coils of HPPE pipe, with a total length of ~200m and a combined 
height of 4m. Unlike bench scale experiments the full scale pipe surface area of the test 
loop facility enables fully realistic exchange processes and interactions between the bulk 
fluid and the pipe wall to occur, replicating realistic conditions in a typical WDS including 
boundary layer hydraulics. This facility has been used to conduct growth and flushing 
experiments to determine the processes which lead to discoloured potable water [11]. 
Investigating the microbiological component of the pipe wall material was achieved by 
fitting the test loop facility with PWG coupons, as described in Deines et al. [12]. Coupons 
were fitted along the length of each pipe loop to facilitate microbiological studies of the 
accumulation and mobilisation of material on the pipe wall. 



 
Figure 1. Test loop facility [11] 
 
A 16°C study was conducted to assess microbiological and physico-chemical parameters 
over a 28 day experimental growth phase, followed by a flushing phase. During the growth 
phase mains water was circulated through the three loops, each set with a different flow 
condition. The three loops compared a low varied flow, ranging from 0.2 to 0.8 l/s (loop1), 
a steady state 0.4 l/s flow (loop 2) and a high varied flow, ranging from 0.2 to 1.2 l/s (loop 
3). The varied flow profiles were based on the daily pattern usually observed in WDS [10]. 
To maintain consistent water quality and hydraulic condition, water was re-circulated 
throughout the test loops, but with a system trickle drain and refill rate set to ensure a 
system hydraulic residence time of 24 hours. In the flushing phase, the flow is 
incrementally increased in the pipes up to 4.5 l/s, allowing for three turnovers of the system 
for each flush so that the water becomes well mixed. PWG coupons were removed from 
multiple positions on the pipe wall during the accumulation phase (after 3, 7, 14, 21 and 28 
days) and at the beginning and end of flushing. Water chemistry spot samples (chlorine, 
ORP, temperature, pH, manganese, iron and turbidity) were taken for each loop after 1 
turnover of the system (where the peak was expected) at the start and end of the flushing. 
 
Microbiology 
Biofilms were removed from PWG coupons as described in [12], filtered through 0.22 µm 
nitrocellulose membrane filters (Millipore, Corp) and DNA extracted using a standard 
phenol:chloroform method. To study the planktonic communities within the pipes, 1L of 
bulk water was filtered as above and DNA extracted from the filter. Bacterial DNA was 
amplified by PCR with the primer set FAM-63F and 518R, followed by individual digest 
with the restriction enzyme AluI (Roche Diagnostic). T-RFLPs were separated by capillary 
electrophoresis using an automater sequencer 3730 (Applied Biosystems). Differences in 
abundance and length of T-RFLPs were determined by comparison with a known size 
internal standard (ROX®500 size standards, Applied Biosystems) and the actual sizes were 
estimated by interpolation using a Local Southern algorithm with the software GeneMapper 
3.7 (Applied Biosystems). Subsequently, T-Align was applied with confidence interval 0.5.  
 
Data mining with SOM and PCA 
In this work T-RFLP profiles were utilised both in isolation and in conjunction with 
physico-chemical data from test loop experiments. The SOM was generated using the 
program MATLAB (Version 7.2.0.635; The Mathworks Inc.) using the SOM toolbox 



developed at the Helsinki University of technology (available on line at 
http://www.cis.hut.fi/projects/somtoolbox) [13]. T-RFLP T-Aligned profiles can be 
reduced in dimensionality by Principal Components Analysis (PCA). Microbiological data 
were normalised as part of the T-Align processing and linear scaling was also conducted on 
the PCA variables so that the variance of each was one. The network parameters were 
selected on the basis of trial runs and default suggested values in the SOM toolbox. The 
input layer consisted of a number of neurons corresponding to PCA components (and, 
where relevant, physico-chemical parameters) and the output layer consisted of a hexagonal 
Kohonen map whose size was optimally selected by the SOM toolbox. Figure 2 shows an 
example SOM for the case study for the flushing phase.  

 
Figure 2. Self Organising Map structure for test loop flushing data 
 
A batch training method was used with a Gaussian neighbourhood. The initial learning rate 
of 0.5 was used for the first rough phase of training corresponding to the creation of a 
‘coarse’ mapping – when the global order is imposed on the map. Later the learning rate is 
reduced to 0.05 for the second phase in which the fine structure is added to the map while 
preserving the global order. A trained network can be labelled in a manner described in [5].  
 
RESULTS 
 
Firstly, the T-RFLP data was examined independently from other parameters in the 
accumulation (material growth) phase to assess microbiological similarity over time only. 
After T-Align was applied, the complete input data set for the growth phase consisted of 51 
profiles with 329 potential peaks representing the relative abundance of each type of 
bacteria. PCA was applied to this full T-RFLP data setusing the princomp function in 
MATLAB. The first five principal components account for 68.1% of the total variability of 
the data set (with the first two components describing only 46.6 %).  

This dataset was then presented to a SOM in order to examine temporal variation in the 
growth phase as shown in figure 3a. The U-matrix allows examination of the overall cluster 
patterns in the input data set after the model has been trained. In the component planes for 
individual variables, the colouring corresponds to actual numerical values for the input 
variables that are referenced in the scale bars adjacent to each plot. The first two strongest 
principal components are shown along with a labelled map with sampling days as 
categories. The map shows, in general, clustering based on the date of the sample i.e. the 
microbial similarity over the growth phase. Once a SOM map is trained it can also be used 
for classification via the Best Matching Unit (BMU). This feature is not generally available 



in conventional clustering analysis. In order to test the labelled maps, a leave-one-out 
bootstrap approach (used in ANN testing when a dataset size is limited) was carried out so 
that all testing was conducted unseen. For two principal components, the accuracy was 
41.2% and to within the nearest sampling date 74.5%.  

In the final flushing phase, microbiology samples were taken as previously described 
from both coupons (i.e. pipe wall biofilm) and flushed water. The T-RFLP data was 
examined independently to explore micro-organism difference in these two mediums. After 
T-Align was applied, the complete input data set consisted of 36 profiles with 393 peaks. 
The first two principal components account for 67.1% of the total variability of the data set. 
Experimentation revealed that only two PCAs were needed to describe the data clustering 
around sample type successfully. Figure 3b shows the SOM with two PCA component 
planes and a labelled map with type of sample as category. Clearly, there is significant 
microbiological diversion between the two categories. Using the bootstrap testing 
approach, the SOM had 100% accuracy classifying an unseen profile as either the biofilm 
or water. 

 
Figure 3a. SOM for growth phase data 

 
Figure 3b. SOM for flushing phase (type) 

 
Finally, the start (0.4 l/s) and post flushing along with individual loop conditions were 
analysed by bringing together the microbiological data and measured physico-chemical 
parameters. Five variables describing T-RFLP patterns were used to represent community 
structure (largest PCA components) leading to 12 component planes as shown in Figure 4. 
 
DISCUSSION 
 
The value of the SOM analysis is in observing interrelationships that exist between the 
various variables and potentially providing a basis for generating hypotheses that can be 
subsequently examined experimentally. In Figure 4 it can be observed that by integrating 
the data sources the labeled maps show distinctive regions of clusters when comparing 
variables from pre/post flushing and between loops. For example, the temperature is clearly 
lower in loop 1, chlorine is lower in loop 3 and a low value of PCA3 seems to relate to pre-
flushing conditions in loop 1. Some common patterns exist between several variables; for 
example, turbidity, Fe and Mn all have higher values after flushing (as should be expected) 
hence corroborating the key role of these metals in the process of water discolouration [10]. 



The SOM does not replace existing statistical tools, particularly those in the 
bioinformatics domain, but enables the visual examination of relationships between 
disparate types of variables. Future work is planned to explore the development of this 
approach further, first by conducting additional test loop studies with more significant 
water source variation between loops; for example, a higher iron content in one of the 
loops. Secondly, field trials in a real distribution system enabling microbiology and 
physico-chemical sampling of multiple sites will allow further evaluation and data mining. 

 
Figure 4. SOM for integrated data with labelling for before/after flushing and loop number   
 
CONCLUSIONS 
 
In this paper the bacterial communities grown in a test loop facility were analysed for a 28 
day accumulation (growth) period and a final day flushing phase. SOM analysis of the 
growth phase revealed that strong clustering of PCA reduced T-RFLP profiles existed in 
terms of similarity of microorganisms over time (day of sample taken). T-RFLPs of 
samples from the coupon wall (biofilm) versus from the water revealed divergent typical 
profiles, and using the SOM as a classifier on unseen data achieved 100% accuracy. 
Finally, by combining the T-RFLPs with physico-chemical sampled data in the flushing 
phase, the interrelationships between variables for differing conditions was explored. 

The results show that the visual output of the SOM provides a rapid and intuitive 
means of examining covariance between variables and exploring hypotheses for increased 
understanding. A particular advantage of the approach is the ability to present data in a 
visual way that provides easy interpretation of multi-dimensional and complicated data 
sets. 
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