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Abstract

We estimate a Bayesian time-varying parameter VAR model to study evolving Beveridge Curve
dynamics for the US for 1965-2022. This allows us to test the empirical relevance of different
shocks in driving the Beveridge Curve dynamics, as proposed in theoretical literature. We show
that demand and wage shocks play an important role in generating movements in unemployment
and vacancies, in addition to the productivity and job destruction shocks that are the main focus
of the existing literature. We show that the importance of different shocks has varied over time:
the productivity shock is dominant from the 1960s to the mid-1990s, but thereafter the wage
shock is equally important. And we show that changes in the slope of the aggregate Beveridge
Curve reflect changes in the contributions of the different shocks that drive it, so part of the
flattening of the aggregate Beveridge Curve in recent years reflects the growing importance of
wage shocks.

Keywords: time-varying parameter model, Beveridge Curve, unemployment, vacancies, US
labour market

JEL Classification: E23, E32, J23, J30, J64

1 Introduction

The Beveridge curve, the inverse relationship between unemployment and vacancies across the busi-
ness cycle, has played a pivotal role in understanding labour market dynamics. It links equilibrium
unemployment to labour market flows and highlights fluctuations in vacancies as a key determinant
of cyclical movements of labour market variables. Because of this, the Beveridge Curve is central
to policy debates over the functioning and overall efficiency of labour markets.

The large and influential literature on this topic focuses on how economic shocks generate a
negative relationship between unemployment and vacancies: the Beveridge Curve. This literature
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analyses the impact of different shocks through the lens of the search and matching model, in which
shocks to productivity and job destruction are the main drivers of movements in unemployment and
vacancies. We aim to test the empirical relevance of these and other shocks. To do this, we estimate
a Time-Varying Parameter VAR model of US labour productivity, unemployment, vacancies, real
wages and inflation. We have three main contributions. First, we show that demand and wage
shocks play an important role in generating movements in unemployment and vacancies, in addition
to the productivity and job destruction shocks that are the main focus of the existing literature.
This justifies our inclusion of wages, inflation and output in the VAR in addition to unemployment
and vacancies, since this enables us to identify these different shocks. Second, we show that the
importance of different shocks has varied over time, justifying our use of a time-varying parameter
model. The productivity shock is dominant in the first half of the sample, covering the period from
the 1960s to the mid-1990s. But thereafter, the wage shock is as important as the productivity
shock. Third, we show that changes in the slope of the aggregate Beveridge Curve in part reflect
changes in the contributions of the different shocks that drive it. Movements in unemployment and
vacancies across the business cycle are driven by productivity, wage and demand shocks, so the
aggregate Beveridge Curve reflects the differing impacts of these shocks. The slope of the Beveridge
Curve generated by wage shocks is smaller than the curves generated by productivity and demand
shocks: the increasing importance of this shocks therefore implies a flattening of the aggregate
Beveridge Curve.

Our finding that the Beveridge Curve reflects the impact of multiple shocks builds on previous
theoretical work which has challenged the focus on productivity and job destruction shocks that
characterises much of the literature on labour market volatilty. Contributors include Michaillat
and Saez (2015) and Ravn and Sterk (2021), who stress the role of aggregate demand shocks, and
Drautzburg et al. (2021) and Ellington et al. (2021), who highlight wage shocks1. Most of those
papers focus on the role of the different shocks through the lens of search and matching models. We
contribute to this literature by confronting those theoretical predictions with data and providing
a systematic and empirical evaluation of the contribution of the different shocks that have been
suggested in the theoretical literature.

Our empirical approach to the Beveridge Curve builds on influential work by Blanchard and
Diamond (1989), who analyse the impact of shocks to aggregate activity, reallocation, and labour
supply in a VAR model. They find that aggregate activity shocks, which move unemployment and
vacancies in the opposite direction, dominate short- and medium-run fluctuations in unemploy-
ment2. Unlike Blanchard and Diamond (1989), we do not consider reallocation and labour supply

1In addition, Hall (2017) expresses scepticism about the ability of productivity shocks alone to account for move-
ments in unemployment across the business cycle.

2In a recent paper, Ahn and Rudd (2024) use this approach to investigate linkages between the Phillips Curve
and the Beveridge Curve. They identify two job destruction shocks in order to to study different aspects of labour
reallocation. They include an aggregate activity shock which, because it increases price inflation on impact, resembles
the aggregate demand shock analysed in this paper; they do not identify the type of productivity shock we analyse.
They identify a shock to wages; this differs from the wage shock identified in this paper as it is assumed not to affect
vacancies on impact.
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shocks. However, the job separation shocks we analyse are similar to reallocation shocks. Our work
also builds on previous analysis of changes in the slope of the Beveridge Curve. Most prominent in
this literature is Benati and Lubik (2014), who estimate a Time-Varying Parameter VAR model for
vacancies, unemployment and labour productivity. They identify a permanent productivity shock
and two temporary shocks, one which moves unemployment and vacancies in opposite directions,
generating the Beveridge Curve, and one that moves them in the same direction, accounting for
changes in the position of the curve. A Forecast Error Variance Decomposition (FEVD) shows that
the first temporary shock explains almost all movements in the data, consistent with the view that
shifts in the Beveridge Curve do not occur at business cycle frequencies. They document changes
in the slope of the Beveridge Curve across the business cycle, with a steeper relationship during
recessions as the economy moves up the concave curve3.

Our analysis is based on a structural time-varying parameter VAR model with stochastic volatil-
ity (TVP VAR) for productivity, vacancies, unemployment, real wages and inflation for the US,
1954Q3 to 2022Q44. We identify four transitory structural shocks using robust sign restrictions that
stem from a DSGE model with search frictions (DSGE-SF) (similar to Mumtaz and Zanetti, 2012),
following the procedure in Canova and Paustian (2011). We identify three shocks that move unem-
ployment and vacancies in opposite directions: a productivity shock, an aggregate demand shock,
and a wage bargaining power shock. These generate the Beveridge Curve observed at business
cycle frequencies. We also identify a shock to job destruction. This shock accounts for longer-term
shifts in the Beveridge Curve but plays little role in this paper. Our addition of inflation and real
wages to the set of variables used by Blanchard and Diamond (1989) and Benati and Lubik (2014)
enables us to identify a richer set of structural shocks than those papers; we essentially decompose
the aggregate activity shock of Blanchard and Diamond (1989), and the first temporary shock of
Benati and Lubik (2014), into shocks to productivity, aggregate demand and wages. We analyse
the impact of the different shocks using impulse response functions and measure the slope of the
Beveridge Curve generated by different shocks as the ratio of the impulse response function for
vacancies following a shock to the impulse response for unemployment following the same shock.

The structure of the remainder of this paper is as follows. Section 2) describes our data,
outlines the econometric model and details our identification strategy. Section 3) presents our
results, outlining the varying importance of different shocks and showing the implications for the
Beveridge Curve. Section 4) concludes and outlines areas for future research.

3Some more recent papers demonstrate a range of different approaches to estimation of the Beveridge Curve,
but are less closely related to our work. Klinger and Weber (2016) use an Unobserved Components model for
unemployment, vacancies and the job finding rate to decompose Beveridge Curve movements into permanent and
transitory components, but, unlike this paper, focus on the permanent component to analyse the Harz reforms to
the German labour market. Schuman (2021) uses a VAR comprising employment, unemployment and vacancies to
identify a shock to labour supply in addition to the two temporary shocks identified by Benati and Lubik (2014).
This shock is used to analyse how migration has shifted the Beveridge Curve in Austria.

4We de-trend our data to remove the impact of permanent shocks.
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2 Data, Econometric Model and Identification

We use quarterly US data from 1954Q3 to 2022Q4 on productivity, real wages, the vacancy rate,
the unemployment rate, and inflation. Our measures of US productivity and real wages are Non-
farm Business Sector: Real Output Per Hour of all Persons, and Nonfarm Business Sector: Real
Compensation Per Hour5. The vacancy rate is the Help Wanted Index in Barnichon (2010) and the
unemployment rate is from the Bureau of Labor Statistics (BLS). For inflation, we take the Non-
farm Business Sector: Implicit Price Deflator6. We take the natural logarithm of productivity, real
wages and the implicit price deflator. We next apply the Hamilton (2018) filter to every variable7.
The resultant vacancy and unemployment gaps are plotted in the Online Appendix8.

We work with the following TVP VAR model, with p = 2 lags and N = 5 variables:

Yt = β0,t + β1,tYt−1 + · · · + βp,tYt−2 + ϵt ≡ X
′
tθt + ϵt (1)

where Yt ≡ [yt, wt, vt, ut, πt]
′

is a vector of endogenous variables. Here yt is the filtered value of
labour productivity, wt is the filtered value of real wages, vt and ut are the vacancy and unemploy-
ment gaps, and πt is the filtered value of the implicit price deflator. X ′

t contains lagged values of
Yt and a constant.

Stacking the VAR’s time-varying parameters in the vector θt, they evolve as a driftless random
walk

θt = θt−1 + γt (2)

with γt ≡ [γ1,t, : γ2,t, ..., : γN ·(Np+1),t]′. We consider two specifications for the variance of γt. The
first case is where γt ∽ N(0, Q), with Q is a full matrix containing parameter innovation variances
and covariances (Primiceri (2005)). The second is where γt ∽ N(0, Qt) with Qt being a diagonal
matrix where such diagonal elements of Qt follow independent log-stochastic volatility processes as
in Baumeister and Benati (2013). Bayesian DIC statistics suggest that the Primiceri (2005) model
fits our data best and we proceed in this case. Results using the specification in Baumeister and
Benati (2013) have the same conclusions as we report here and are available upon request.

The innovations in (1) follow ϵt ∽ N(0,Ωt). Ωt is the time–varying covariance matrix which is
factored as

Ωt = A−1
t Ht(A−1

t )′ (3)

with At being a lower triangular matrix with ones along the main diagonal, and the elements
5Both series are available from the Federal Reserve Bank of St. Louis (FRED) database with codes OPHNFB and

COMPRNFB for productivity and wages respectively.
6Also from the FRED database with code: IPDNBS.
7The use of this filter implies that we analyse the unemployment and vacancy gaps.
8We note the very high values of the unemployment gap in the second and third quarters of 2020, at the height

of the Covid-19 pandemic, as well as the large negative value of the unemployment gap, and the very high value of
the vacancy gap in 2021-22.
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below the diagonal contain the contemporaneous relations. Ht is a diagonal matrix containing the
stochastic volatility innovations. Collecting the diagonal elements of Ht and the non-unit non-zero
elements of At in the vectors ht ≡ [h1,t, : h2,t, ..., hN,t]′, αt ≡ [α21,t, : α31,t, . . . , αNN−1,t]′ respectively,
they evolve as

ln hi,t = ln hi,t−1 + ηt (4)

αt = αt−1 + ζt (5)

where ηt ∽ N(0, Zh), and ζt ∽ N(0, S). The innovations in the model are jointly Normal, and
the structural shocks, ψt are such that ϵt ≡ A−1

t H
1
2
t ψt. Similar to Primiceri (2005), S is a block

diagonal matrix; this implies the non-zero and non-unit elements of At evolve independently. The
specification of the priors of our model are similar to Baumeister and Benati (2013). To calibrate the
initial conditions of the model, we use the point estimates of the coefficients and covariance matrix
from a time-invariant VAR model using the first 10 years of data. Therefore the estimation sample
of our results span 1964Q2–2022Q4. We estimate the model using Bayesian methods allowing
for 20,000 runs of the Gibbs sampler. Upon discarding the initial 10,000 iterations as burn-in,
we sample every 10th draw to reduce autocorrelation which leaves 1000 draws from the posterior
distribution. Details of our prior specification, and an outline of the posterior simulation algorithm
as well as estimates of the total prediction variation of our model, the stochastic volatilities of each
variable and the reduced form correlations between our variables are available upon request..

Our empirical results contain COVID-19 pandemic. Estimation of the TVP-VAR models uses
Kalman filters and hence conditional on the full-sample. Naturally, this brings into question the
robustness of our results in light of the pandemic. Existing studies propose various ways to account
for this period. Lenza and Primiceri (2022) show how one can estimate linear VAR models that
account for outliers throughout this period by re-scaling the residual covariance matrix if one wishes
to utilise such models for forecasting. The former also indicate that dropping the observations may
be acceptable for parameter estimation; Schorfheide and Song (2021); Baumeister and Hamilton
(2023) use such a strategy for identification purposes. Carriero et al. (2022) suggest a method to
allow for persistent and transitory changes in a VAR with stochastic volatility to handle outliers.
Their analysis shows superior fit throughout the pandemic relative to competing models and that
forecasts are at least as good as conventional stochastic volatility models. To the best of our
knowledge at the time of writing, there are no approaches that allow one to account for parameter
evolution throughout the pandemic. Therefore in light of the existing literature we explore the
sensitivity of our results to the pandemic similar to Schorfheide and Song (2021); Baumeister
and Hamilton (2023). Specifically, we adopt two approaches. First, we estimate the TVP VAR
until 2020Q1 thus omitting the pandemic and also all observations from 2022. Second, we omit
observations from 2020Q1–2021Q4 from the sample, and so pool data from 1951Q1–2019Q4 and
2022Q1–2022Q4. Results from these alternatives deliver qualitatively similar results to those we
present in the main text; and are available upon request.
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Our strategy for identifying structural shocks follows Canova and Paustian (2011) and Mumtaz
and Zanetti (2015). We simulate a theoretical model using a range of alternative calibrations, based
on randomly sampling parameter values within a specified range, constructing a distribution of
impulse responses of our endogenous variables to a variety of shocks. We identify structural shocks
for which the sign of the impulse responses on impact is unambiguous across this distribution.
In this way, we ensure that our identifying sign restrictions are credible, robust to alternative
calibrations of the structural parameters. Our identifying restrictions are based on a standard New
Keynesian DSGE model without capital but with search frictions in the labour market, similar to
Faia (2008), Krause and Lubik (2007), Blanchard and Gali (2010), Mumtaz and Zanetti (2012) and
others. Details of our procedure and the model used are contained in the Online Appendix.

Table 1: Contemporaneous Impact of Short-run Shocks on Labour Market Variables
Notes: This table shows the contemporaneous sign restrictions imposed on variable x = {yt, vt, ut, wt} to a
productivity shock, ψP

t ; a job separation shock, ψJ
t ; a shock to workers bargaining power, ψW

t ; and a demand
shock, ψD

t , respectively. yt is the log-level of productivity; wt is the log-level of real wages; vt is the vacancy
rate; ut is the unemployment rate; and πt is inflation. x denotes no restriction.

yt wt vt ut πt

ψP
t + + + − −

ψJ
t x − + + x

ψW
t x + − + x

ψD
t x + + − +

We identify four temporary structural shocks within our empirical model as in Table 1). We
identify: a productivity shock, ψP

t ; a job separation shock, ψJ
t ; a shock to workers’ bargaining

power, ψW
t ; and a demand shock ψD

t . The productivity shock increases productivity, wages and
vacancies, while reducing unemployment and inflation. The demand shock increases wages, inflation
and vacancies but reduces unemployment; we are agnostic as to its impact on productivity. The
job separation shock increases unemployment and vacancies, thus shifting out the Beveridge Curve.
It also reduces wages; we are agnostic about its impact on productivity and inflation. The shock to
wage bargaining increases wages and unemployment but reduces vacancies; we are again agnostic
about its impact on productivity and inflation. As noted above, the positive relationship between
wages and unemployment implied by this shock is important for our results.

3 Results and Analysis

3.1 The empirical relevance of the four structural shocks

Figure 1) shows the contribution of each of the four structural shocks to the Forecast Error Variance
Decomposition for vacancies and unemployment. This shows that demand and wage shocks play
an important role in generating movements in unemployment and vacancies, in addition to the
productivity and job destruction shocks that are the main focus of the existing literature. This
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Figure 1: Forecast Error Variance Decomposition for Vacancies and Unemployment

justifies our inclusion of wages, inflation and output in the VAR in addition to unemployment and
vacancies, since this enables us to identify these different shocks. In addition, the importance of
different shocks has varied over time, justifying our use of a time-varying parameter model and
suggesting that changes in the Beveridge Curve may in part reflect changes in the contributions
of the different shocks that drive it. The productivity shock was dominant for both vacancies
and unemployment in the first half of the sample, covering the period from the 1960s to the
mid-1990s. But thereafter, the wage shock is as important as the productivity shock, especially for
unemployment. The demand shocks consistently explains 20-25% of the variances of unemployment
and vacancies, but is never dominant. The job destruction shock never explains more than 20% of
the variance.

The upper panel of Figure 2) shows the impact of productivity shocks on the unemployment
and vacancy gaps9. In the Online Appendix, we present this information as a scatter plot, giving a
different perspective on the impact of shocks. We note that the productivity shock is closer to the
data on unemployment and vacancy gaps in the 1970s and during the pre-2007 Great Moderation,
explaining a larger part of the movements in these variables in those periods. This supports the
view that the relationship between labour productivity and unemployment is contingent and time-

9The unemployment gap predicted by our model can be written as ût =
∑

j∈{P,D,W,J}

∑K

k=0 ϕ
u,j
t−k,tψ

j
t−k, where ψj

are the shocks defined in the previous section and ϕu,j
t is the impulse response of the unemployment gap, on impact,

following a structural shock; we use K = 40. Given this, a natural measure of the impact of structural shock j on
the unemployment gap is ωu,j

t =
∑K

k=0 ϕ
u,j
t−k,tψ

j
t−k, with a corresponding measure for the vacancy gap. The upper

panel of Figure 2) plots these measures for the productivity shock; the lower panel plots the corresponding measures
for the wage shock.
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Figure 2: The Impact of Productivity and Wage Shocks on Vacancies and Unemploy-
ment

varying, consistent with the argument in Hall (2017) that unemployment does not track closely
movements of productivity in US data. The lower panel shows the impact of wage shocks. Wage
shocks are more prominent during the Great Moderation and especially in the post-2020 pandemic
period. They are less important during the Great Recession. Our evidence on the importance of
wage shocks in driving the Beveridge curve dynamics is new to the literature10.

The upper panel of Figure 3) shows the impact of demand shocks on the unemployment and
vacancy gaps. The empirical literature has largely ignored the impact of aggregate demand shocks
on Beveridge curve dynamics. The main exception to this is Michaillat and Saez (2015), who use a
comparison of theoretical and empirical moments to argue that aggregate demand shocks are more
important than productivity shocks. Our work builds on this by directly estimating the impact
of shocks, finding that the importance of aggregate demand and productivity shocks is roughly
similar. The lower panel of Figures 3) shows the impact of job destruction shocks. The impact of
this shock is more muted than for other shocks, in line with the literature that stresses the role of
these shocks in accounting for lower frequency periodic shifts in the Beveridge Curve (eg Blanchard
and Diamond (1989), Elsby et al. (2015) and Barlevy et al. (2023)).

10In this paper, we are agnostic about the origins of wage shocks. In search frictions models, wage shocks could
reflect shocks to worker wage bargaining power, to the opportunity cost of employment or to the value placed on
leisure relative to consumption. For example, the importance of wage shocks in the Covid-19 pandemic may be due
to a fall in labour force participation, due either to more generous benefits, a fear of infection or disruption of the
supply chains that raised the bargaining power of workers. In either case, the shock will increase wages.
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Figure 3: The Impact of Demand and Job Destruction Shocks on Vacancies and Un-
employment

3.2 The slope of the Beveridge Curve

Figure 4: The Slope of the Beveridge Curve Generated by Productivity, Demand and
Wage Shocks, 1965-2022
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Figure 4) shows the slopes of the Beveridge Curves generated by productivity, demand and wage
shocks, given by σj

t = ϕv,j
t

ϕu,j
t

for j ∈ {P,W,D}, where ϕu,j
t is the impulse response of unemployment,

on impact, following shock j and ϕv,j
t is the corresponding impulse response of vacancies. Four

things clearly stand out. First, the slope of the Beveridge Curve generated by productivity shocks
is more similar to that generated by demand shocks (correlation=0.924) than that generated by
wage shocks (correlation=0.635). This is consistent with the baseline search frictions model, since
productivity and demand shocks both affect the creation of a surplus from a job match, whereas
a wage shock affects the division of the surplus between worker and firm. Second, the Beveridge
Curve generated by wage shocks is flatter than that generated by productivity and demand shocks,
apart from a period in the 1990s. Broadly speaking, this is because vacancies are more responsive
to productivity and demand shocks than to wage shocks. unemployment is more responsive to
productivity and demand shocks than to wage shocks. Third, the divergence in the slopes is large
during periods of boom and shrinks drastically during slumps. Fourth, there is some evidence of a
flattening in the slope of all three Beveridge Curves in recent years. This pattern develops during
the Great Moderation, disappears during the Great Recession and then re-appears in the run-up
to the 2020 Covid-19 Pandemic.

Figure 5: The Slope of the Aggregate Beveridge Curve, 1965-2022

Figure 5) shows the slope of the Beveridge Curve generated as the weighted average of the three
Beveridge Curves in Figure 4), where the weights are the relative weights of the three shocks in
Figure 1), so Figure 5) plots σt =

∑
j∈{P,W,D} ω

j
tσ

j
t , where ωj

t = νj
t∑

k∈{P,W,D} νk
t

and νj
t is the share of

shock j in generating the forecast error variance decomposition for unemployment at time t. This
corresponds to the Beveridge Curve analysed in the existing literature. The slope of this average
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Beveridge Curve is more stable than the slopes of the underlying Beveridge Curves that constitute
it. There is evidence of a flattening of the average Beveridge Curve during the Great Moderation
and in the period before the Covid-19 Pandemic. This reflects the increasing importance of the
wage shock in generating movements in unemployment and vacancies over the past two decades
and the tendency of the individual Beveridge Curves to flatten over this period.

4 Concluding Remarks

In this paper, we examine the empirical relevance of different shocks in driving the Beveridge curve
dynamics, as proposed in theoretical literature. We argue that the Beveridge Curve represents
the impact of multiple shocks: in addition to the productivity and job destruction shocks that are
typically analysed in the literature, we show the wage and demand shocks are also important. We
further show that the importance of these shocks has varied over time, with the productivity shock
being dominant in the first half of the sample, but with the wage shock becoming as important
during the latter part of the sample. Since different shocks generate different relationships between
unemployment and vacancies, the aggregate Beveridge Curve reflects the differing impacts of these
shocks. In particular, the slope of the Beveridge Curve generated by wage shocks is smaller than
the curves generated by productivity and demand shocks: the increasing importance of this shocks
therefore implies a flattening of the aggregate Beveridge Curve.

Our work suggests possible directions for future research. Our current definition of wage shocks
is quite broad. To gain a more nuanced understanding, future research could investigate the role of
worker preferences, the generosity of benefits packages and disruptions to supply chains in driving
Beveridge Curve dynamics, as these factors could potentially strengthen worker bargaining power,
leading to positive co-movement between wages and unemployment. Our work shows some evidence
of a flattening in the slope of the Beveridge Curves in recent years. More work needs to be done
to study whether this is a long-term trend and whether structural changes might also play a role.
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Evolving Beveridge Curve Dynamics
Online Appendix
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1 Online Appendix

1.1 Data

Figure 1 shows the unemployment and vacancy gaps for 1975 to 2022, used in our analysis.

Figure 1: The Unemployment and Vacancy Gaps, 1975 to 2022
Notes: Grey bars indicate NBER recession dates. All variables have been filtered using the Hamilton (2018)
filter.

1.2 Econometric Methodology

Our prior specification involves estimating a Bayesian fixed coefficient VAR (BVAR) model over the
training sample. The priors imposed on this BVAR model combine the traditional Minnesota prior
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of Doan et al. (1984) and Litterman (1986) on the coefficient matrices with an inverse-Wishart prior
on the BVAR’s covariance matrix. In our specification, the prior mean on the coefficient matrix
sets all elements equal zero, except those corresponding to the own first lag of each dependent
variable which are set to 0.9. This imposes the prior belief that our variables exhibit persistence
whilst simultaneously ensuring shrinkage of the other VAR coefficients to zero. The prior variance
of the coefficient matrix is set similar to Litterman (1986). Our prior for the BVAR’s covariance
matrix follows an inverse-Wishart distribution with the prior scale matrix and degrees of freedom
set to an N-dimensional identity matrix and 1+N respectively.

We estimate the BVAR using a standard Gibbs sampler. For the sake of brevity, we do not
explicitly outline our algorithm since it is well documented; see e.g. Koop and Korobilis (2010).
Our alternative prior specification essentially replaces the conventional Cogley and Sargent (2005)
prior with the posterior means from the draws of an estimated BVAR over the training sample

θ̄BVAR = 1
M

M∑
i=1

θi, (1)

V(θ)BVAR = 1
M

M∑
i=1

V(θi), (2)

Σ̄BVAR = 1
M

M∑
i=1

Σi (3)

respectively. Here M denotes the number of saved draws from the estimated BVAR which we
set to 20,000. θi and V(θi) denote the ith draw of the coefficient matrix and the variance of the
coefficient matrix respectively. Σi denotes the ith draw of the BVAR’s covariance matrix. From
these estimates, the initial conditions of the time-varying coefficient models, θ0, a0, h0 are Normal
and independent of one another, and the distributions of the hyperparameters. We set

θ0 ∽ N
[
θ̄BVAR, 4 · V(θ)BVAR

]
(4)

for α0, h0, let Σ̄BVAR be the estimated covariance matrix of the residuals from the time–invariant
BVAR. Let C be the lower–triangular Choleski factor such that CC ′ = Σ̄BVAR. The prior for the
stochastic volatilities are

ln h0 ∽ N(lnµ0, 10 × I5) (5)

where µ0 collects the logarithms of the squared elements along the diagonal of C. Each column of
C is divided by the corresponding element on the diagonal; call this matrix C̃. The prior for the
contemporaneous relations is

α0 ∽ N
[
α̃0, Ṽ (α̃0)

]
(6)

with α̃0 ≡ [α̃0,11, α̃0,21, . . . , α̃0,51]′ which is a vector collecting all the elements below the diagonal of
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C̃−1. Ṽ (α̃0) is diagonal with each element equal to 10 times the absolute value of the corresponding
element of α̃0. This is an arbitrary prior but correctly scales the variance of each element of α0 to
account for their respective magnitudes.

For the time-varying coefficient model assuming Qt = Q, we set Q to follow an inverse Wishart
distribution.

Q ∽ IW (Q−1,T0) (7)

where Q = (1 + dim(θt)) · V(θ̄BVAR) · 3.4 × 10−4. The prior degrees of freedom, (1 + dim(θt)), are
the minimum allowed for the prior to be proper. Our choice of scaling parameter of 3.4 × 10−4

is consistent with Cogley and Sargent (2005). We have also estimated our models using different
priors, we allowed for a more restrictive scaling parameter of 1.0×10−4 and have also set the degrees
of freedom to be the length of the training sample; in our case this is 80. The scaling parameter
essentially sets the amount of drift within the θ matrices.

With regards to the hyperparameters under the assumption Qt = Qt, the diagonal elements of
Qt follow a geometric random walk, let CV(θ̄BVAR) be the lower-triangular Choleski factor such that

CV(θ̄BVAR)C
′

V(θ̄BVAR)
= 3.4 × 10−4V(θ̄BVAR). We then set

ln q0 ∽ N
[
lnµq0,0, 10 × Idim(θt)

]
(8)

with lnµq0,0 collecting the logarithmic squared diagonal elements of 3.4×10−4θ̄BVAR). The variances
of these stochastic volatility innovations follow an inverse-Gamma distribution for the elements of
Zq,

Zq,i,i ∽ IG(10−4

2 ,
1
2) (9)

The blocks of S are also assumed to follow inverse–Wishart distributions with prior degrees of
freedom equal to the minimum allowed (i.e. 1 + dim(Si)).

S1 ∽ IW (S−1
1 , 2) (10)

S2 ∽ IW (S−1
2 , 3) (11)

S3 ∽ IW (S−1
3 , 4) (12)

S4 ∽ IW (S−1
4 , 5) (13)

we set S1, S2, S3 in accordance with α̃0 such that S1 = 10−3×|α̃0,21|, S2 = 10−3×diag([|α̃0,31|, |α̃0,32|]′), S3 =
10−3× diag([|α̃0,41|, |α̃0,42|, |α̃0,43|]′), S4 = 10−3× diag([|α̃0,51|, |α̃0,52|, |α̃0,53|, |α̃0,54|]′). This cal-
ibration is consistent with setting S1, S2, S3, S4 to 10−4 times the corresponding diagonal block
of Ṽ (α̃0). The variances for the stochastic volatility innovations, as in Cogley and Sargent (2005),
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follow an inverse–Gamma distribution for the elements of W ,

Wi,i ∽ IG(10−4

2 ,
1
2) (14)

In order to simulate the posterior distribution of the hyperparameters and states, conditional
on the data, we implement the following MCMC that combines elements from Primiceri (2005) and
Cogley and Sargent (2005).

1) Draw elements of θt Conditional on Y T , αT and HT , the observation equation (1) is linear
with Gaussian innovations with a known covariance matrix. Factoring the density of θt, p(θt)
in the following manner

p(θT |yT , AT , HT , V ) = p(θT |Y T , AT , HT , V )
T −1∏
t=1

p(θt|θt+1, Y
t, AT , HT , V ) (15)

the Kalman filter recursions pin down the first element on the right hand side of the above
in the following manner: p(θT |Y T , AT , HT , V ) ∽ N(θT , PT ), PT is the precision matrix of
θT from the Kalman filter. The remaining elements in the factorisation are obtained via
backward recursions as in Cogley and Sargent (2005). Since θt is conditionally Normal

θt|t+1 = Pt|tP
−1
t+1|t(θt+1 − θt) (16)

Pt|t+1 = Pt|t − Pt|tP
−1
t+1|tPt|t (17)

which yields, for every t from T − 1 to 1, the remaining elements in the observation equa-
tion (1). More precisely, the backward recursion begins with a draw, θ̃T from N(θT , PT ).
Conditional on θ̃T , the above produces θT −1|T and PT −1|T . This permits drawing θ̃T −1 from
N(θT −1|T , PT −1|T ) until t=1.

2) Drawing elements of αt Conditional on Y T , θT and HT we follow Primiceri (2005) and note
that (1) can be written as

AtỸt ≡ At(Yt −X
′
tθt) = Atϵt ≡ ψt (18)

V ar(ψt) = Ht (19)

with Ỹt ≡ [Ỹ1,t, Ỹ2,t, Ỹ3,t, Ỹ4,t]
′ and

Ỹ1,t = ψ1,t (20)

Ỹ2,t = −α21,tỸ1,t + ψ2,t (21)

Ỹ3,t = −α31,tỸ1,t − α32,tỸ2,t + ψ3,t (22)

Ỹ4,t = −α41,tỸ1,t − α42,tỸ2,t − α43,tỸ3,t + ψ4,t (23)

These observation equations and the state equation permit drawing the elements of αt equa-
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tion by equation using the same algorithm as above; assuming S is block diagonal.

3) Drawing elements of Ht Conditional on Y T , θT and αT , the orthogonal innovations ut,
V ar(ψt) = Ht are observable. Following Jacquier et al. (2002) the stochastic volatilities,
hi,t’s, are sampled element by element; Cogley and Sargent (2005) provide details in Ap-
pendix B.2.5 of their paper.

4) Drawing the hyperparameters Conditional on Y T , θT , Ht and αT , the innovations in θt, αt

and hi,t’s are observable, which allows one to draw the elements of Qt = Q, S1, S2, S3 and
the Wi,i.

Note that for the model allowing for stochastic volatility in the innovation variances of the time-
varying coefficients, Qt being a diagonal matrix, we add an extra block into the MCMC algorithm.

3a) Drawing the elements of Qt Conditional on θt, the innovations κt = θt − θt−1, with Var(κt) =
Qt are observable. Therefore we sample the diagonal elements of Qt applying the Jacquier
et al. (2002) algorithm element by element. Following this, we can then sample the Zq,i,i from
the inverse-Gamma distribution in step 4 of the above algorithm.

1.3 Strategy for Identification of Structural Shocks

In this section we outline our identification strategy, which follows Canova and Paustian (2011)
and Mumtaz and Zanetti (2015). We simulate a theoretical model using a range of alternative
calibrations, based on randomly sampling parameter values within a specified range, constructing
a distribution of impulse responses of our endogenous variables to a variety of shocks. We identify
structural shocks for which the sign of the impulse responses on impact is unambiguous across
this distribution. In this way, we ensure that our identifying sign restrictions are credible, robust
to alternative calibrations of the structural parameters. Our identifying restrictions are based on
a standard New Keynesian DSGE model without capital but with search frictions in the labour
market, similar to Mumtaz and Zanetti (2012) and others.

We summarise the model and structural parameters in the upper panel of Table 1. Equations
(T.1)–(T.6) outline the structure of the labour market. Equation T.1 defines the sum of employment
(N) and unemployment (u) as the labour force, which is normalised to 1. Equation T.2 outlines
employment dynamics and relates employment to hires (h). Equation T.3 defines labour market
tightness (θ) as the ratio of vacancies (v) to unemployment. T.4 contains a standard constant
returns matching function, while T.5 and T.6 define the vacancy filling rate (q) and the job finding
rate (f) respectively. Equation T.7 contains the production function. T.8 defines the marginal cost
of hiring labour. Equation T.9 gives the wage, where we have assumed simple Nash bargaining.
Equation T.10 defines marginal cost, while T.11 relates price to marginal cost. Equation T.12 is
the Euler equation; a summary of these values are in the lower panel of Table 1.

We analyse the impact of four structural shocks. We identify a productivity shock, assuming
At = eϵP

t . We include a demand shock, ϵDt . We also include a shock to worker relative bargaining
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Table 1: Contemporaneous Impact of Short-run Shocks on Labour Market Variables
Notes: Panel a) of this table shows the theoretical model that we simulate. Panel b) shows the range of
parameter values from which we sample in our simulations

a) Model Summary

Nt + ut = 1 (T.1)

Nt = (1 − τt)Nt−1 + ht−1 (T.2)

θt = vt

ut
(T.3)

ht = muα
t v

(1−α)
t (T.4)

qt = mθ−α
t (T.5)

ft = qtθt (T.6)

Yt = AtNt (T.7)

λt = κ

qt
− βEt

κ(1 − τt+1)
qt+1

(T.8)

wt = (1 − zt)b+ zt(At + κθt) (T.9)

mct = wt + λt

At
(T.10)

P ∗
t

Pt
= η

1 − η
(1 − βω)Et

∞∑
k=0

(βω)kmct+k (T.11)

Y −η
t = βeϵD

t EtY
−η

t+1
(1 + it)
1 + πt+1

(T.12)

(1 + it) = (1 + πt)ρπ (T.13)

b) Credible Calibration Ranges
Parameter Interpretation Range

β Discount Factor 0.996
α Elasticity of Matching wrt Unemployment 0.3 − 0.7
m Efficiency of Job Matching 0.3 − 1.5
b Opportunity Cost of Employment 0.4 − 0.8
τ Rate of Job Destruction 0.087 − 0.104
z Worker Relative Bargaining Power 0.1 − 0.8
θp Probability Prices Are Fixed 0.− 0.9
ρπ Monetary Policy Response to Inflation 1.35 − 2.0
η Intertemporal Elasticity of Substitution 1
κ Cost of Vacancy Posting 0.2
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power, assuming zt = zeϵz
t , where ϵzt is a bargaining power shock. And there is a shock to the

rate of job destruction, assuming τt = τeϵτ
t , where ϵτt is a job separations shock. We use impulse

response functions to these shocks to impose impact sign restrictions on our structural model.
We specify ranges of values for parameter calibrations and assume that parameters are uni-

formally distributed within this range. We assume that values of α are uniformally distributed
between 0.3−0.7; this is somewhat wider than the range of credible values suggested by Petrongolo
and Pissarides (2001). We also consider a wide range of values for matching efficiency, assuming
that values of m are uniformally distributed between 0.3−1.5. For the rate of job destruction, Hall
and Milgrom (2008) use τ = 0.03, while Pissarides (2009) uses τ = 0.036. These calibrations are
designed for monthly data, whereas we use a quarterly frequency, consistent with our data. We
therefore consider values between 0.087 − 0.104. The value of the opportunity cost of employment
is also contentious; Shimer (2005) assumes b = 0.4, Hall and Milgrom (2008) assume b = 0.71. We
assume that b is uniformally distributed between 0.4 and 0.8. For the bargaining power of workers,
we consider values between z = 0.1, so workers have little power to z = 0.8, where workers are able
to extract most of the surplus from a job match in the form of higher wages. We consider a wide
range of values for the probability that prices are fixed, considering values in the range θπ = 0 to
θπ = 0.9, encompassing the cases where there is little nominal rigidity and where prices are highly
sticky. For the monetary policy response to inflation, we consider values between ρπ = 1.35 and
ρπ = 2.0, encompassing the different estimated values for this parameter in the post-1979 period.
We use η = 1 and set κ = 0.2. We simulate our model by randomly selecting a set of calibra-
tion values from the distributions we outline above. We calculate the steady-state solution for our
model implied by this calibration and construct impulse responses from a log linear expansion of
the model around this steady-state. We repeat this process 1000 times, building a distribution of
impulse responses. We use this to construct the sign restrictions documented in Table 1) of the
main paper.

1.4 Scatterplots of the Impact of Shocks on the Unemployment and Vacancy
Gaps

Figures 2) and 3) are scatter plots that show the impact of productivity and wage shocks and
demand and job destruction shocks, respectively, on the unemployment and vacancy gaps.
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Figure 2: Scatterplot of Vacancy and Unemployment Gaps, Showing Contribution of
Productivity and Wage Shocks, 1965-2022

Figure 3: Scatterplot of Vacancy and Unemployment Gaps, Showing Contribution of
Demand and Job Destruction Shocks, 1965-2022
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