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Executive Summary  

The aim of this report was to: 

(1) identify and give an overview of the development of tools that can be used to propagate errors 

in integrated catchment studies across different spatial and temporal scales; 

(2) provide an overview of the software platforms used within QUICS; 

(3) present the motivation for and progress on development of the (spatial) uncertainty 

propagation analysis R package. 

A number of tools for uncertainty quantification have been presented. There exists a wide selection 

of different uncertainty quantification software platforms, each of them having unique strengths and 

weaknesses and being suitable for different kind of problems. However, only few of them contain 

comprehensive toolsets for carrying out the entire uncertainty propagation assessment process, 

have universal applicability, are extendible and easy to use by non-experts.  

Due to high popularity of programming languages R, Python and MATLAB, the uncertainty studies 

within QUICS relied exclusively on these programming platforms. The main motivation for using 

these platforms were: free software, open-source, sharable code (R, Python), widely used (R, 

Python, MATLAB), strong statistical functionality (R) and control over own code (R, Python, 

MATLAB).  

Environmental variables vary in space and time. The space variation is often displayed by a mean of 

maps created using various interpolation techniques and thus naturally encumbered with 

interpolation errors. The patterns of uncertainty in space are important because the impacts of 

correlated error may differ substantially from those associated with random error. To bring the 

spatial (and non-spatial) uncertainty propagation analysis methods to a wider audience QUICS 

partner Wageningen University is developing an R package (spup) that will provide functions for 

analysing all main aspects of spatial uncertainty propagation, namely: (i) data uncertainty 

propagation, (ii) model parameter uncertainty propagation (iii) model structure uncertainty 

propagation (iv) contributions for propagated uncertainty, and (v) summary and visualization tools. 

The tool is intended for researchers and practitioners who understand the problems of uncertainty 

in data and models, and are looking for a simple, accessible implementation of the universal 

methodology for uncertainty assessment. At the same time, it is designed to enable more 

experienced users to easily understand, customise, and possibly further develop the code. 
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1  Introduction 

1.1  Background 

According to the EU Water Framework Directive (WFD) each member country of the EU is 

required to ensure that water bodies achieve a good ecological status. In this context, it is 

important to be able to predict the impact of interventions on water quality (WQ). Man-made and 

natural processes control surface water quality. The WQ system is highly complex with a range of 

sources, transport and transformation processes. Cost estimates by EU governments indicate that 

billions of euros are being spent to implement the WFD. There is an increasing level of concern on 

the implementation cost (financial and environmental). Integrated water quality models designed to 

predict the quality of water across the linked urban and rural scales in a catchment are seen as 

tools to minimize these costs. Integrated Catchment Models (ICM) are based on linking multiple 

empirically calibrated sub-models of water quality processes. ICM are then used to evaluate 

potential measures and run scenarios. Current water quality sub-models contain significant 

uncertainties, with regard to model inputs, parameters as well as model structures. Methods have 

been developed to quantify uncertainty at the sub-model level, however little work has been 

carried out to investigate WQ uncertainty propagation between sub-models. Therefore, there is a 

need for development of a generalised catchment wide approach to uncertainty assessment that 

can be used in WFD implementation studies. This approach would address uncertainty 

propagation at the spatial and temporal scales found in catchments and develop tools to reduce 

uncertainty by optimising sampling and monitoring and the objective selection of model structure. 

The European project QUICS (Quantifying Uncertainty in Integrated Catchment Studies) collates 

12 PhD Candidates (Early Stage Researchers, ESR) and four postdocs (Experiences 

Researchers, ER) to perform quality research and collaborate with each other for developing and 

implementing uncertainty analysis tools for ICM.  

1.2  Partners Involved in Deliverable 

Wageningen University (WU) 

Justus Liebig University (JLU) 

1.3  Deliverable Objectives 

This deliverable aims to provide an overview of available software for uncertainty quantification 

(UQ), applicability in QUICS and beyond, and lie in the motivation for development of a new UQ 

tool. Therefore the objectives of this report are: 

1. Review of existing platforms for UQ. 

2. Overview of current and planned usage of UQ tools within QUICS project. 

3. Overview of the UQ tool (spup R package) developed at WU. 
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2  Obj. 1: Review of existing UQ platforms  

There exist a plethora of different UQ platforms serving similar or different kind of tasks within UQ. 

The following selection of 18 platforms (Table 1) gives an overview of their functionality and 

applicability. We summarise each of the UQ platforms below. 

 

Table 1 Existing software for uncertainty propagation analysis (based on Bastin et al. (2013)). 

Platform Full name Author Comments Language Availability Application 

 
@RISK 

  
Palisade (2011) 

 
Spreadsheet based. 

 
Excel, 
VBA 

 
commercial 

 
Industry, 
environmental 
analysis (e.g. 
ecology) 

COSSAN  COmputational 
Stochastic 
Structural 
Analysis 

Schuëller and 
Pradlwarter (2006) 

Implements finite elements 
methods for structural engineering. 

MATLAB commercial/ 
free 

Structural 
engineering 

Crystal Ball  Oracle (2011) Spreadsheet based.  commercial Finance, 
marketing, 
engineering 

DAKOTA Design Analysis 
Kit for 
Optimisation and 
Terascale 
Application 

Adams (2009) Provides a flexible and extensible 
interface between simulation 
codes and the iterative built-in 
analysis methods. 

C++ free Fluid 
mechanics, 
structural 
dynamics, 
shock physics 

DUE Data Uncertainty 
Engine 

Brown and Heuvelink 
(2007) 

Quantification of positional and 
attribute uncertainty in 
environmental data by probability 
distributions that take spatial and 
temporal correlations into account. 
Can sample from these 
distributions for Monte Carlo 
uncertainty propagation analyses. 

Java free Geography 
and 
environmental 
science 

FRAMES/ 
SUM3 

Framework for 
Risk Analysis in 
Multimedia 
Environmental 
Systems 

Gelston et al. (2008) Monte Carlo analysis and Latin 
hypercube sampling. User 
supplies parametric distributions 
for input uncertainty (currently 
uniform, log-uniform, Normal, or 
log-Normal). 

 free Environmental 
and human 
health impact 

 
OpenTURNS 

 
Open source 
initiative to Treat 
Uncertainties, 
Risks'N Statistics 

 
Andrianov et al. 
(2007) 

 
Powerful platform to perform 
uncertainty and sensitivity 
analysis. 

 
Python 

 
free 

 
Engineering, 
structural 
mechanics 

 
OSTRICH 

 
Optimisation 
Software Toolkit 
for Research 
Involving 
Computational 
Heuristics 

 
Matott (2005) 

 
A versatile tool incorporating a 
diverse set of algorithms for 
calibration, optimisation and 
computation of statistics such as 
parameter correlation/sensitivity 
and observation influence. 

  
free 

 
Calibration of 
deterministic 
models 

 
PEST 

 
Parameter 
ESTimation 

 
Doherty (2004) 

 
Model-independent parameter 
estimation software for complex 
environmental and other computer 
models. Powerful calibration, 
regularization and optimisation 
toolkit. Implements a variety of 
parameter estimation methods, 
and null-space Monte Carlo 
approaches for linear and non-
linear analysis of uncertainty 
propagation, parameter 
identifiability and error variance. 

 
Fortan 90 

 
free 

 
Calibration of 
model 
parameters 
(e.g. waste 
water plume 
movement 
model) 

       

       

http://www.civil.uwaterloo.ca/lsmatott/Ostrich/OstrichMain.html
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Table 2 Continuation.  

Platform Full name Author Comments Language Availability Application 

 
PSUADE 

 
Problem Solving 
environment for 
Uncertainty 
Analysis and 
Design 
Exploration 

 
Tong (2005) 

 
Provides an integrated design and 
analysis environment for 
performing UQ analysis of large 
complex system models. Runs 
only through command line 
languages (no GUI). 

 
C++ 

 
free 

 
Risk analysis, 
engineering 

 
SAFE 

 
Sensitivity 
Analysis For 
Everybody 

 
Pianosi et al. (2015) 

 
Application of Global Sensitivity 
Analysis. 

 
MATLAB/ 
Octave/R 

 
free 

 
Meteorology, 
hydrology, 
other 
environmental 
science 

SimLAB  https://ec.europa.eu/jr
c/en/samo/simlab#c2
907 

Focuses on uncertainty analysis 
and sensitivity analysis. Provides a 
reference implementation of many 
global sensitivity analysis 
techniques. 

 free Climate 
change, 
hydrology, 
nuclear 
science, 
engineering 

TIME The Invisible 
Modelling 
Environment 

Rahman et al. (2005) User supplies parametric 
distributions as above. Some 
visualization of uncertainty (e.g., 
confidence limits on outputs). 

Fortran/C# free Environmental 
science, 
engineering 

 
UCODE 

  
Poeter et al. (2005) 

 
Performs inverse modelling, posed 
as a parameter estimation 
problem, using non-linear 
regression approach. Like 
OSTRICH and PEST, generates 
confidence intervals and other 
statistics. 

 
Fortran 

 
free 

 
Environmental 
science (e.g. 
ground water 
studies) 

 
UNCSAM 

  
Janssen et al. (1994) 

 
Can do model emulation; does not 
cope with spatially and/or 
temporally correlated variables. 

 
Fortran 77 

 
free 

 
Biogeochemist
ry, 
environmental 
pollution 

UNCSIM  Reichert (2006) Analyses the sensitivity of model 
results to model parameters. 

C++ free Calibration of 
deterministic 
models 

UQLab Uncertainty 
Quantification in 
MATLAB 

Marelli and Sudret 
(2014) 

Designed to be extended to the 
engineering research community. 
Mainly using non-intrusive 
stochastic methods as Polynomial 
Chaos Expansion (PCE). 

MATLAB free Environmental 
and 
engineering 
science 

R package 
'propagate' 

 Spiess A.N. (2014) Propagation of uncertainty using 
higher-order Taylor expansion and 
Monte Carlo simulation. 

R free ecology 

 

2.1  @RISK 

@RISK (‘at risk’) is a spreadsheet based software for analysing risk and uncertainty in a wide 

variety of industries (Palisade, 2016). It is a commercial platform developed by Palisade 

Corporation as an add-in to Microsoft Excel (Figure 1). @RISK employs Monte Carlo (MC) 

methodology. The user defines uncertain cell values in Excel as probability distributions using 

functions (@RISK adds a set of new functions to the Excel function set, each allowing to specify a 

different distribution type for cell values). A function is provided to identify correlations between 

variables including correlation in time series. Only numerical variables are supported. Distribution 

functions are invoked during a simulation. @RISK has a capability for specifying and executing 

simulations of Excel models. Both simple random sampling (SRS) and Latin hypercube sampling 

(LHS) techniques are supported, and distributions of possible results may be generated for any 

https://ec.europa.eu/jrc/en/samo/simlab#c2907
https://ec.europa.eu/jrc/en/samo/simlab#c2907
https://ec.europa.eu/jrc/en/samo/simlab#c2907


9 

 

cell or range of cells in the spreadsheet model. Graphics are used to present the output 

distributions from the @RISK simulations including histograms, cumulative curves and summary 

graphs.  

 

Figure 1 @RISK software interface (Palisade, 2016). 

 

@RISK aims at a wide spectrum of industry as customers, however the number of users are not 

reported. Palisade (2016) proposes that, among others, the tool may be used for environmental 

analysis (e.g. case studies on endangered species preservation or pollution clean-up and 

projections). It has been used in one of DEFRA (Department for Environment, Food & Rural 

Affairs, UK) projects on pesticide fate modelling (Dubus et al., 2002). Both a free trial and a 

commercial version are available via www.palisade.com. 

 

2.2  COSSANTM 

COSSANTM (COmputational Stochastic Structural ANalysis) is a software developed at the 

Institute of Engineering Mechanics of the Leopold Franzens University, Innsbruck, Austria 

(Schuëller and Pradlwarter, 2006). COSSAN is based on interaction with third party ‘Finite 

Elements’ (FE) tools. The FE method is a numerical technique for finding approximate solutions to 

boundary value problems for partial differential equations used for example in structural 

engineering. Two set of components, i.e., the ‘Stand Alone Tool Box’ and the so called ’Third Party 

Communication Tools’, are available for providing stochastic structural analysis solutions, each 

serving particular needs and requirements. The ’Stand Alone Tool Box’ is designed as an open 

modular general purpose software. In this implementation, all computational tasks are controlled 

and solved within the software. The ’Stand Alone Tool Box’ covers a wide field of applications 

ranging from optimisation, fracture and damage analysis, random vibration, system identification, 

deterministic and stochastic FE-analysis, MC simulation to reliability assessment. Its usage 

requires significant efforts to get acquainted with the commands and possibilities of the ’Stand 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Boundary_value_problem
https://en.wikipedia.org/wiki/Partial_differential_equations
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Alone Tool Box’. Bridging the gap between deterministic and stochastic concepts is facilitated by 

applying MC simulation. To facilitate the coupling between the two concepts, the ’Third Party 

Communication Tools’ have been developed. With these, stochastic analysis solutions based on 

MC simulation can be accessed while using available deterministic ’Third Party codes’. 

 

 

Figure 2 OpenCOSSAN
TM

 software interface (http://www.cossan.co.uk/software/open-cossan-engine.php, accessed 

4
th
 May 2016). 

 

The examples of applications in structural engineering include a satellite structure under harmonic 

excitation and a multi-storey building subjected to stochastic ground acceleration (Schuëller and 

Pradlwarter, 2006). The recent new implementation of COSSAN, namely COSSAN-XTM, is coded 

in MATLAB (Valdebenito et al., 2010, Figure 2). The developers provide also a free of charge 

OpenCOSSAN version of the software (available at www.cossan.co.uk).  

 

2.3  Crystal Ball 

The Crystall Ball software by Oracle (Oracle, 2011) is another commercial spreadsheet-based 

application (Figure 3) for predictive modelling, forecasting, simulation, and optimisation. The 

uncertainty quantification is based on MC simulations. The software is aimed to be used by 

strategic planners, financial analysts, engineers, scientists, entrepreneurs, marketing managers, 

venture capitalists, consultants, and anyone else who uses spreadsheets to forecast uncertain 

results. 

http://www.cossan.co.uk/software/open-cossan-engine.php
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Figure 3 Crystal Ball software interface (http://www.oracle.com/us/products/applications/crystalball/ 

overview/index.htm, accessed 4
th
 May 2016). 

 

2.4  DAKOTA 

The Dakota (Design Analysis Kit for Optimisation and Terascale Applications) toolkit provides a 

flexible and extensible interface between simulation codes and iterative analysis methods (Adams 

et al., 2009). It has been developed in C++ by Scandia National Laboratories. Dakota contains 

algorithms for optimisation with gradient and non-gradient-based methods; uncertainty 

quantification with sampling, reliability, and stochastic expansion methods; parameter estimation 

with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments 

and parameter study methods. These capabilities may be used on their own or as components 

within advanced strategies such as surrogate-based optimisation, mixed integer nonlinear 

programming, or optimisation under uncertainty. It is a dedicated environment for design and 

performance analysis of computational models on high performance computers. Uncertainty 

quantification in DAKOTA is related to sensitivity analysis for understanding of how variations in 

parameters affect the response functions of the engineering design problem. The methodologies 

include sampling-based approaches, i.e. random sampling and LHS, local and global reliability 

methods, and stochastic expansion (polynomial chaos expansions and stochastic collocation). 

Dakota operates on most systems running Unix or Linux operating systems as well as on 

Windows, natively in a Command Prompt window, and (optionally) with the help of a Cygwin 

emulation layer. The example of an input file for uncertainty quantification analysis, to be invoked 

from a command line, is shown in Figure 4. 

http://www.oracle.com/us/products/applications/crystalball/%20overview/index.htm
http://www.oracle.com/us/products/applications/crystalball/%20overview/index.htm
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Figure 4 Dakota input file for UQ example using LHS (Adams et al., 2009). 

 

The software aims at engineering design field and scientific discovery activities for simulating 

complex physical systems in disciplines such as fluid mechanics, structural dynamics, heat 

transfer, nonlinear structural mechanics or shock physics. An example application on uncertainty 

quantification and data assimilation in a design of a nuclear reactor has been reported in (Hite et 

al., 2013). DAKOTA is free software available via https://software.sandia.gov/trac/dakota/. 

 

2.5  DUE 

The DUE (Data Uncertainty Engine) (Brown and Heuvelink, 2007) is a software tool for assessing 

uncertainties in environmental data, storing them within a database, and for generating 

realisations of data to include in MC uncertainty propagation studies. The functionality supported 

by DUE includes:  

- a conceptual framework for guiding an uncertainty assessment, which is implemented 

through a graphical user interface (Figure 5); 

- specification of a probability model for continuous numerical attributes, discrete numerical 

attributes and categorical attributes. The attributes may be constant or may vary in space 

and time; 

- parametric probability density functions (pdfs) for continuous (e.g. normal, lognormal, 

Weibull) and discrete numerical data (e.g. Poisson, binomial, uniform), with the option to 

define a non-parametric pdf for discrete numerical and categorical data; 

- the specification of correlations within a single object or attribute and cross-correlations 

between objects or attributes (only if the pdfs follow a joint normal distribution); 

- aggregation of (uncertain) attribute values to larger spatial scales, including aggregation 

from points to blocks; 

- efficient stochastic simulation from pdfs; 

https://software.sandia.gov/trac/dakota/
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- import from and export to file (with a limited range of formats), as well as a ‘DUE-enabled’ 

database; 

- use of the Java programming language, which is platform independent and may be 

executed on all operating systems that support a Java Virtual Machine. 

 

 

Figure 5 The opening window of DUE with a time-series object loaded (Brown and Heuvelink, 2007). 

 

The software is intended for researchers and practitioners who understand the problems of 

uncertainty in spatial data and models but do not have the time or background in uncertainty 

methods to design their own study with more generic tools, such as R or MATLAB. The examples 

of application include uncertainty analysis of the GeoPEARL pesticide leaching model, uncertainty 

analysis of a regionalised water quality model or handling positional uncertainty in a spatial 

planning project (Heuvelink, 2007). The software is freely available through 

http://www.harmonirib.com/download/DUE.htm. 

 

2.6  FRAMES/SUM3 

The Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) software is 

designed by Pacific Northwest National Laboratory, US, for deterministic environmental and 

human health impact models (Gelston et al., 2008). The Sensitivity/Uncertainty Multimedia 

Modelling Module (SUM3) software product was designed to allow a statistical analysis using the 

existing deterministic models available in FRAMES. SUM3 is based on MC methodology and 

implements SRS and LHS for randomly sampling input variables. The sampling output values in 

an external file are available to the user for evaluation, e.g. calculating deterministic values with 
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variable inputs and producing a statistical distribution of results. A typical application of the 

uncertainty analysis is to indicate relative conservatism of the deterministic result. The example 

interface of SUM3 is shown in Figure 6. 

Although SUM3 was originally developed as a sensitivity/uncertainty tool for use with the 

Multimedia Environmental Pollutant Assessment System (MEPAS©) (Gelston et al., 2008), it is not 

restricted to MEPAS© models. SUM3 can also be used with other deterministic environmental, 

such as the Generation II (GENII) software system, which is a Hanford environmental dosimetry 

system (Napier et al., 1988). Within FRAMES, SUM3 allows users to conduct a sensitivity and/or 

uncertainty analysis to understand the influence and importance of variability/uncertainty input 

parameters on constituent flux, concentration, and human health impacts. The sensitivity analysis 

can identify the key parameters that dominate overall uncertainty. Examples of applications 

include: parallelised use in the 3MRA pollutant fate model (Babendreier and Castleton, 2005) and 

linking FRAMES with R to calculate & visualize impacts of input uncertainty (Castleton et al., 

2006b). The software is available free of charge from 

http://mepas.pnnl.gov/FRAMESV1/download.stm. 

 

 

Figure 6 The Sensitivity/Uncertainty Multimedia Modelling Module interface (Castleton et al., 2006a). 

 

2.7  OpenTURNS 

OpenTURNS is an open-access software employing generic methodology for UQ, uncertainty 

propagation and sensitivity analysis (Baudin et al., in review). It has been developed 

collaboratively by several industrial companies and academic institutions including EDF R&D, 

Airbus Group, Phimeca Engineering and IMACS. The software is available as a scientific C++ 

library and a Python TUI, and works under Linux and Windows environments. A generic wrapper 

is also available to link OpenTURNS to any external code. OpenTURNS addresses the specific 
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industrial challenges attached to uncertainties, which are transparency, genericity, modularity and 

multi-accessibility and therefore mainly aims at engineers who want to introduce a probabilistic 

dimension to deterministic studies. The implemented UQ framework is based on quantification of 

the uncertainty sources, uncertainty propagation and ranking uncertainty sources/sensitivity 

analysis. Numerous methods are implemented for each of the steps including: empirical 

cumulative distribution function, Kernel smoothing, Maximum Likelihood and Bayesian Calibration 

for the quantification of the uncertainty sources; uniform random generator, distribution 

realizations, Taylor variance decomposition and MC simulations for uncertainty propagation; 

correlations coefficients, Sobol indices and Fourier decomposition for ranking uncertainty sources 

and sensitivity analysis. Detailed mathematical background and implementation of all methods can 

be found in the software Reference Guide (OpenTURNS, 2016b). 

The examples of use are provided in the software documentation (OpenTURNS, 2016a). These 

include estimating uncertainty in deviation of a cantilever beam and elastic truss structure plus risk 

control study during flooding events (OpenTURNS, 2016b). The software download is available at 

http://www.openturns.org/ and GitHub (https://github.com/openturns/openturns). 

 

2.8  OSTRICH 

OSTRICH (Optimisation Software Toolkit for Research Involving Computational Heuristics) 

(Matott, 2005) has been developed at the Department of Civil and Environmental Engineering, 

University of Waterloo and the Centre for Computational Research, University at Buffalo. 

OSTRICH has been created as a model-independent multi-algorithm optimisation and parameter 

estimation program that allows to automate the processes of model calibration and design 

optimisation. OSTRICH is model independent software and can be configured to operate with any 

modelling program that utilizes text-based input and output file formats. The optimisation software 

implements comprehensive collection of calibration algorithms, including uncertainty-based search 

algorithms (i.e. Generalized Likelihood Uncertainty Estimation (GLUE), Metropolis-Hastings 

Markov Chain Monte Carlo (MCMC)) as well as utilities for sensitivity and uncertainty analysis (i.e. 

regression statistics for local sensitivity analysis and user-specified model evaluations). OSTRICH 

is available for both Linux and Windows platforms and an MPI-parallel version of OSTRICH is 

available for Linux-based parallel clusters. Additionally, OSTRICH can be configured to execute 

parallel versions of the underlying model executable, if one is available. It is primarily designed to 

be run from a command line but an OSTRICH GUI module has been also developed using Visual 

Basic (Matott, 2005). 

OSTRICH is primarily designed for researches and practitioners. It has been applied for calibration 

of multiple analytic element method groundwater flow models, with particular attention to effects of 

model precision and observation location (Rabideau et al., 2005). It was further used in 

applications for simultaneous calibration of equally plausible models by adaptive weighting and 

mapping of parameters between reference and surrogate models (Matott and Rabideau, 2008). 

The software can be downloaded free of charge from 

http://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html. 

 

http://www.openturns.org/
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2.9  PEST 

PEST is an open-source, public-domain software suite that allows model-independent parameter 

estimation and parameter/predictive-uncertainty analysis developed between Watermark 

Numerical Computing, S.S. Papadopulos and Associates and Environmental Simulations Inc., 

Australia (Doherty, 2004). The platform is a model independent parameter estimation software for 

complex environmental and other computer models. It is a powerful calibration, regularization and 

optimisation toolkit. It implements a variety of parameter estimation methods, and null-space MC 

approaches for linear and non-linear analysis of uncertainty, parameter identifiability and error 

variance. It is accompanied by two supplementary open-source software suites for calibration of 

groundwater and surface-water models (Doherty, 2007, 2008). The PEST suite is comprised of 

two versions of PEST and six utility programs for building and checking PEST input files. A 

sensitivity analyser and a parameter pre-processor are also supplied with PEST. Similarly to 

Dakota (Section 2.4 these programs are command-line driven programs, i.e. they can be run from 

a command-line window by typing the name of the appropriate executable at the screen prompt 

calling appropriately formatted input files.  

The PEST tools are heavily focused on parameter estimation, highly-parametrized inversion, and 

some uncertainty analysis: linear highly-parameterized parameter/predictive error variance 

assessment and uncertainty assessment; nonlinear, regularized, calibration-constrained 

parameter/predictive maximization/minimization; random parameter generation; MC analysis; 

predictive calibration analysis. The examples of PEST application include: integration of PEST into 

FRAMES software (Castleton and Meyer, 2009), testing of alternative hypotheses for the 

wastewater plume movement, by highly-parallelised calibration of candidate models and 

generation of a subset of ‘superparameters’ (Dausman et al., 2010) and description statistics 

(calculated using PEST) to summarise the extent to which each parameter of a model can be 

identified, and the extent to which the calibration process can improve on the estimate based on 

prior expert knowledge (Doherty and Hunt, 2009). PEST can be downloaded from 

http://www.pesthomepage.org/Downloads.php. 

 

2.10  PSUADE 

PSUADE (Problem Solving environment for Uncertainty Analysis and Design Exploration) is a 

software system that can be used to study the relationships between inputs and outputs of general 

simulation models for the purpose of performing uncertainty and sensitivity analyses on simulation 

models (PSUADE, 2016). PSUADE is targeted for simulation models that are expensive to 

evaluate, such as large scale multi-physics models. The software has enriched sets of sampling 

and analysis tools. In addition, it has several robustness features for self-verifying the analysis 

results. PSUADE has been built as a C package, primarily for Unix or Linux-based systems. 

PSUADE is a mini-computational engine for supporting various uncertainty quantification activities 

such as forward and backward uncertainty analyses, sensitivity analysis, parameter exploration, 

model calibration, numerical optimisation and risk assessment. It supports mainly non-intrusive 

(simulation model as a black box) analysis although there is some capability for intrusiveness (e.g. 

derivative-based methods). PSUADE deals with dimension reduction (when the number of 

uncertain parameters in the system is large, it may be advantageous to filter out the less dominant 
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(sensitive) parameters before further processing), response surface analysis (representations of 

the relationships between the uncertain parameters and the outputs of interest) and uncertainty 

and sensitivity analysis.  

Uncertainty analysis in PSUADE consists of generating a sample, propagating the sample through 

the models, and computing summary statistics. The software provides a rich set of sampling 

designs for such purpose. It supports a number of variance-based global sensitivity analyses: first 

order, second order, group order and total order. In addition, these analyses can be done on an 

arbitrary parameter space (after model calibration). Parameter estimation/inference Parameter 

estimation/inference uses either numerical optimisation (to obtain a single point) or Bayesian 

methods (to obtain posterior distributions) given a data set to form the objective (or likelihood) 

function. PSUADE provides a number of numerical optimisation methods. Also, PSUADE provides 

a MCMC algorithm for Bayesian inferences that use response surfaces.  

PSUADE has some capabilities for risk analysis, namely to locate the failure threshold boundaries 

and has many visualization and data manipulation tools to facilitate UQ studies (Lin et al., 2012). 

The graphics are supported primarily through MATLAB scripts. 

PSUADE has been applied in studies of sensitivity analysis of an engineering application (Hsieh, 

2007). The software is free to download from 

http://computation.llnl.gov/casc/uncertainty_quantification/.  

 

2.11  SAFE 

SAFE (Sensitivity Analysis For Everybody) is a MATLAB/Octave toolbox for the application of 

Global Sensitivity Analysis (GSA) (Pianosi et al., 2015) developed at University of Bristol, UK. It 

implements several established GSA methods and allows for easily integrating others. All methods 

implemented in SAFE support the assessment of the robustness and convergence of sensitivity 

indices. SAFE includes numerous visualisation tools for the effective investigation and 

communication of GSA results. The tool has a modular design (Figure 7) that allows plugging-in 

new code and using portions of the code only. 

 

Figure 7 The modular structure of SAFE (University of Bristol, 2016). 

http://computation.llnl.gov/casc/uncertainty_quantification/
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The toolbox is designed to make GSA accessible to non-specialist users, and to provide a fully 

commented code for more experienced users to complement their own tools. The documentation 

includes a set of workflow scripts with practical guidelines on how to apply GSA and how to use 

the toolbox (Figure 8). An R-version of the Toolbox is also available. SAFE is open source and 

freely available for academic and non-commercial purpose and can be obtained by contacting the 

authors. 

 

 

Figure 8 Documentation is embedded in the code throughout comments and a set of workflow scripts to get started 

(University of Bristol, 2016). 

 

2.12  SimLAB 

SimLab offers a free programming and development environment developed by the Econometrics 

and Applied Statistics Unit of the European Commission and aims to facilitate the integration of 

sensitivity analysis features into user’s modelling software (SimLab, 2008). It is a software 

package type: C++ shared library (i.e., a WIN32 DLL or a Shared Object for UNIX/POSIX) or 

binary distribution with Install Shield on Microsoft Windows 32-bit (Figure 9). SimLab is designed 

to be used as a black-box and it needs to be “hosted” within the user’s application. The user 

invokes SimLab via calls to DLLs (for UA/SA methods) within either one of Fortran, C/C++, or 

MATLAB environments. Supported techniques include: uncertainty analysis (min, max, mean, 

variance, histograms; skewness; kurtosis, Kolmogorov, Tchebycheff’s and T test), sensitivity 

analysis (via distributions: continuous and discrete densities, as well as constant and relation 

factors; sample generation: random, quasi-random LpTau, LHS, FAST, Morris and Sobol indices). 

It allows for output evaluation via various metrics including: scatterplots; Pearson product moment 

correlation coefficient, partial correlation coefficients, standardized regression coefficients; 

Spearman rank correlation coefficient, partial rank correlation coefficients, standardized rank 

regression coefficients; importance measures, Morris and Sobol indices.  
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Figure 9 SimLAB main panel (SimLab, 2008). 

 

The application is mainly focused on developing new methods in sensitivity analysis, for example: 

application of non-parametric methods for global sensitivity analysis of model output with 

dependent inputs (Mara et al., 2015), transformations and invariance in the sensitivity analysis of 

computer experiments (Borgonovo et al., 2014) or application of the control variate technique to 

estimation of total sensitivity indices (Kucherenko et al., 2015). The full list of references to 

SimLAB applications can be found at the software website https://ec.europa.eu/jrc/en/page-

related-publications-list/all/572/33434. SimLab can be downloaded from 

https://ec.europa.eu/jrc/en/samo/simlab. 

 

2.13  TIME 

The Invisible Modelling Environment (TIME) is a .NET based model development framework, 

supporting model developers in the creation and testing of algorithms and in the development of 

standalone modelling applications (Rahman et al., 2005). TIME underpins the modelling products 

in the Catchment Modelling Toolkit (eWater, 2016); a community developed collection of water 

quantity, water quality and related models. TIME is founded on a compact architecture with a 

series of subsystem frameworks, handling issues such as data visualisation and non-linear 

optimisation. The software supports the areas of spatial and temporal data analysis where a series 

of GIS-like tools and novel algorithms have been implemented. Additionally a series of generic, 

non-linear optimisation tools have been incorporated and used in several toolkit products. A visual 

tool for the integration of models has also been included. The underlying framework has been 

extended to include the representation and visualisation of data uncertainty. 

https://ec.europa.eu/jrc/en/page-related-publications-list/all/572/33434
https://ec.europa.eu/jrc/en/page-related-publications-list/all/572/33434
https://ec.europa.eu/jrc/en/samo/simlab
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Data uncertainty is defined as the representation of the uncertainty for each of its items (time 

series or rasters), i.e. by assigning a pdf for each data item. Data uncertainty may hence range 

from being simply described as a Gaussian pdf centred on each item value and with a standard 

deviation that is a fraction of this item value, or a complex pdf derived running a MC simulation 

and summarising the characteristics of the realisations for each data item. Visualisation of data 

uncertainty is supported for time series data principally. Spatial uncertainty visualization is not 

supported. 

The software serves as the development platform for approximately 50 model developers from a 

range of technical backgrounds, from professional software developers to PhD hydrologists 

(Searle and Penton, 2012), however the literature on the application is limited. An example of 

application is presented in Rahman et al. (2005). The Stochastic Climate Library draws on the 

framework's inbuilt capabilities for visualisation, data handling and temporal analysis to create a 

polished modelling product producing stochastic climate replicates. This library includes a 

collection of models, which already existed in various forms, and a number of approaches were 

used to bring them into TIME, including porting to newer dialects of the original language (Fortran), 

wrapping as DLLs, and porting to C#, a language with additional capabilities. The software is free 

to download via the eWater website (http://www.toolkit.net.au). 

 

2.14  UCODE 

UCODE was developed to perform inverse modelling, but also includes sensitivity analysis; data 

needs assessment; calibration; prediction; and uncertainty analysis (Poeter et al., 2014). It has 

been developed in Fortran 90/95 by the U.S. Geological Survey. Any application model or set of 

models can be used; the only requirement is that they have numerical (ASCII or text only) input 

and output files and that the numbers in these files have sufficient significant digits. Application 

models can include pre-processors and post-processors as well as models related to the 

processes of interest (physical, chemical and so on) (Poeter and Hill, 1999). The limitation in the 

software is that it uses only local, and not global, methods for sensitivity analysis. Otherwise the 

functionality includes: manipulating application model input files and read values from application 

model output files; comparing user-provided observations with equivalent simulated values derived 

from the values read from the application model output files using a weighted least-squares 

objective function; using a modified Gauss-Newton method to adjust the value of user selected 

input parameters in an iterative procedure to minimize the value of the weighted least-squares 

objective function; reporting the estimated parameter values; calculating and printing statistics for:  

 diagnosing inadequate data or identify parameters that probably cannot be estimated;  

 evaluating estimated parameter values;  

 evaluating how accurately the model represents the field processes;  

 quantifying the uncertainty of model predictions. 

Uncertainty evaluation is done using MCMC techniques. Inclusion of MCMC uncertainty measures 

results in three methods of uncertainty evaluation in UCODE_2014 that proceed from (i) linear 

uncertainty intervals that are very computationally frugal (commonly 10s to 100s of parallelizable 

model runs) and depend on the model not being too nonlinear and errors being approximately 

Gaussian, to (ii) nonlinear uncertainty intervals with moderate computational demands (commonly 
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1,000s of model runs) and depend on model smoothness and Gaussian errors, to (iii) MCMC 

uncertainty intervals that are computationally demanding (commonly 10,000s of model runs and 

more) and few restrictive assumptions (Poeter et al., 2014).  

The example of application in groundwater model calibration is presented in Lu et al. (2012). The 

software can be obtained from http://igwmc.mines.edu/freeware/ucode/.  

 

2.15  UNCSAM 

UNCSAM (Janssen et al., 1994) is a tool for automating sensitivity and uncertainty analysis 

developed at the National Institute of Public Health and Environmental Protection (RIVM) in the 

Netherlands as an alternative to @RISK and Crystal Ball (Sections 0and 2.3 UNCSAM can be 

used to analyse a broad spectrum of (simulation) models, largely independent of their form and 

implementation. Basic components comprise a collection of programs, developed for the various 

activities needed in sensitivity and uncertainty analysis (sampling and basic statistical analysis, 

confidence bounds for estimated quantities, determination of sensitivity and uncertainty 

contributions). Additional programs are available for UNCSAM-model interfacing, file manipulation 

(reading, selecting signals from data files), graphics etc. Sampling can be done from continuous 

probability distributions (i.e. (log)uniform, (log)normal, (log)triangular, exponential, logistic, Weibull, 

Beta). Sampling methods include SRS and LHS. User-specified parameter correlations are taken 

into account. Sensitivity and uncertainty contributions can be evaluated by a number of measures, 

based on linear regression and correlation analysis of the original and the rank-transformed data 

values.  

UNCSAM generates a large number of files, containing data or information needed in the various 

stages of the analysis process. The storage load is constrained and loss of accuracy is avoided by 

storing intermediate numerical results in binary files. The final results (tables and plot instructions) 

are stored in ASCII-files. UNCSAM is developed in a model independent way, irrespective of how 

the user's model is implemented. This means that the user has the flexibility to use the package 

for many application studies, but needs to establish an interface between UNCSAM and his/her 

model. The function of this interface is to pass data files (of desired format) from the package to 

the model and vice versa. To enhance ease of use, interface programs are provided for a fairly 

general class of models.  

The software is written in Fortran 77, embedded in an Ansi-C environment (for the overall 'master 

program', which calls the various FORTRAN subprograms).  

Examples of application include sensitivity analysis of a Model for Pesticide Leaching and 

Accumulation (Tiktak et al., 1994) and user subjectivity in MC modelling of pesticide exposure 

study (Beulke et al., 2006). An executable version of UNCSAM along with documentation is 

available from the RIVM.  
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2.16  UNCSIM 

UNCSIM Systems analysis toolbox has been developed at EAWAG (The Swiss Federal Institute 

of Aquatic Science and Technology) to analyse the sensitivity of model results to model 

parameters, detect causes of (potential) identifiability problems of model parameters for a given 

measurement layout, and perform model predictions that include an estimate of their uncertainty 

(Reichert, 2006). The software interacts with an arbitrary simulation programme through a simple, 

text file based interface, independent of computing platform and programming language. UNCSIM 

provides elements required for a systems analysis toolbox to be used to calibrate, analyse and 

apply a model implemented in any simulation programme that supports the interface. The software 

supports maximum likelihood parameter estimation. The model parameters uncertainty 

propagation to the model is analysed using MC methodology. Sampling from a variety of 

multivariate distributions is supported (Reichert, 2005).  

The tool is aimed at scientists working with frequentist and Bayesian inference of parameters of a 

simulation model. The examples of application include UNCSIM interfaces with process-based 

models, such as SWAT (Yang et al., 2007) and AQUASIM (Reichert, 2006). The program is 

available through http://www.uncsim.eawag.ch/program/. 

 

2.17  UQLab 

The UQLab project aims at the development of a MATLAB-based software framework for 

uncertainty quantification (Marelli and Sudret, 2014). It is designed to encourage both academic 

researchers and field engineers to use and develop advanced and innovative algorithms for 

uncertainty quantification, possibly exploiting modern distributed computing facilities. The tool 

code key features include extendibility and use of non-intrusive stochastic methods as Polynomial 

Chaos Expansion. It also includes an advanced Kriging toolbox. This modular platform comprises 

an optimized core probabilistic modelling engine and a simple programming interface that provides 

unified access to heterogeneous high performance computing resources. The tool provides a 

content-management system that allows users to easily develop additional custom modules within 

the framework.  

The uncertainty quantification is allowed by data representation and sampling from complex 

multivariate distributions. The tool includes an extensive library of marginal distributions, modelling 

dependence with Gaussian copula, advanced sampling strategies (space-filling) like LHS and 

nested LHS, support for custom defined and bounded marginals and isoprobabilistic transform 

facilities. UQLab offers access to MATLAB-based models as well as a simple interface to connect 

third party modelling software for uncertainty propagation analysis (Lataniotis et al., 2015). 

The software can be downloaded from: http://www.uqlab.com/#!download/c1kdf. 

 

 

 

 

http://www.uncsim.eawag.ch/program/
http://www.uqlab.com/#!download/c1kdf
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2.18  R package ‘propagate’ and R packages referring to uncertainty estimation 

2.18.1 ‘propagate’ 

The R package ‘propagate’ has been developed at the University of Hamburg (Spiess, 2015). The 

purpose of the package is to analyse propagation of uncertainties (“error propagation”) of inputs 

through an R expression (an object that represents an action that can be performed by R). The 

propagation function is a general function for the calculation of uncertainty propagation by first-and 

second-order Taylor expansion and MC simulation including covariances. Input data can be any 

symbolic/numeric differentiable expression and data based on replicates, summaries (mean and 

standard deviation) or sampled from a distribution. Uncertainty propagation is based on matrix 

calculus accounting for the full covariance structure. MC simulation is conducted using multivariate 

normal or t-distributions with covariance structure. The second-order Taylor approximation in 

‘propagate’ uses a second-order polynomial to account for nonlinearities, making heavy use of 

numerical or symbolical Hessian matrices. The package supplies plotting functions, e.g. graphing 

error propagation with histograms of the MC simulations and MC/Taylor-based confidence 

intervals. The MC sampling can be realized for 15 continuous distributions. 

There is no documented application of ‘propagate’ (Spiess, A., personal comm.). The package is 

available through CRAN. 

 

2.18.2 Other R packages referring to uncertainty estimation 

Many R packages available through CRAN cover some aspects of UQ within a specific scientific 

problem. There is also a number packages that deal with sensitivity analysis, optimisation, MC and 

Bayesian analysis. Examples include: 

- ‘FME’ (A Flexible Modelling Environment for Inverse Modelling, Sensitivity, Identifiability, 

MC Analysis) - provides functions to assist fitting models to data, to perform MC, sensitivity 

and identifiability analysis. It is intended to work with models that are defined through a set 

of differential equations and solved either by an integration routine from package deSolve, 

or a steady-state solver from package rootSolve. However, the methods can also be used 

with other types of functions (Soetaert and Petzoldt, 2010). 

- ‘mcmcse’ (Monte Carlo Standard Errors for MCMC) - provides tools for computing MC 

standard errors (MCSE) in MCMC settings. MCSE computation for expectation and quantile 

estimators is supported as well as multivariate estimation. The package also provides 

functions for computing effective sample size and for plotting MC estimates versus sample 

size (Flegal et al., 2016). 

- ‘ArArRedux’ (Rigorous Data Reduction and Error Propagation of Ar40 / Ar39 Data) - 

processes noble gas mass spectrometer data to determine the isotopic composition of 

argon (comprised of Ar36, Ar37, Ar38, Ar39 and Ar40) released from neutron-irradiated 

potassium-bearing minerals. It then uses these compositions to calculate precise and 

accurate geochronological ages for multiple samples as well as the covariances between 

them. Error propagation is done in matrix form, which jointly treats all samples and all 

isotopes simultaneously at every step of the data reduction process (Vermeesch, 2015). 
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- ‘betaper’ (Functions to incorporate taxonomic uncertainty on multivariate analyses of 

ecological data) - Permutation method to incorporate taxonomic uncertainty and some 

functions to assess its effects on parameters of some widely used multivariate methods in 

ecology (Cayuela and de la Cruz, 2012). 

- ‘BVS’ (Bayesian Variant Selection: Bayesian Model Uncertainty Techniques for Genetic 

Association Studies) - The functions in this package focus on analysing case-control 

association studies involving a group of genetic variants. In particular, it addresses 

modelling the outcome variable as a function of a multivariate genetic profile using 

Bayesian model uncertainty and variable selection techniques (Quintana, 2012). 

- ‘decisionSupport’ (Quantitative Support of Decision Making under Uncertainty) - Supporting 

the quantitative analysis of binary welfare based decision making processes using MC 

simulations. Decision support is given on two levels: (i) The actual decision level is to 

choose between two alternatives under probabilistic uncertainty. This package calculates 

the optimal decision based on maximizing expected welfare. (ii) The meta decision level is 

to allocate resources to reduce the uncertainty in the underlying decision problem 

(Luedeling and Göhring, 2016). 

- ‘UncerIn2’ (Implements Models of Uncertainty into the Interpolation Functions) – Provides 

tools for basic (random) data, grids, six models of uncertainty, three automatic 

interpolations (idw, spline, kriging), variogram calculation and basic data visualization 

(Burian, 2015). 

- ‘usdm’ (Uncertainty Analysis for Species Distribution Models) - This is a framework that 

aims to provide methods and tools for assessing the impact of different sources of 

uncertainties (e.g. positional uncertainty) on performance of species distribution models 

(Naimi, 2015) 

- ‘sensitivity’ (Global Sensitivity Analysis of Model Outputs) - A collection of functions for 

factor screening, global sensitivity analysis and reliability sensitivity analysis. Most of the 

functions have to be applied on models with scalar output, but several functions support 

multi-dimensional outputs (Pujol et al., 2015). 
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3  Obj. 2: Overview of current and planned usage of UQ tools within QUICS 

project 

Within the QUICS project the uncertainty quantification constitutes a core of research. Each fellow 

looks at specific aspects of uncertainty quantification in integrated catchment modelling. Table 2 

gives an overview of the uncertainty aspects that are researched by each fellow and the software 

they chose to carry out their research. 

Despite numerous platforms available to deal with UQ (Chapter 2), majority of QUICS fellows, with 

exception of two, chose to develop their own code for their analysis in R, MATLAB or Python. The 

remaining two fellows plan to use the code developed by others. The high level languages like R, 

MATLAB or Python are becoming increasingly popular within scientific community. The main 

QUICS fellows motivations for choosing those included: 

 availability – open source and sharable code allow for flexibility in developing code and 

modifying existing one; 

 familiarity – especially R and MATLAB are widely used in science higher education; 

 compatibility – several projects within QUICS are based on precursory studies and involve 

software packages developed in one of these three languages; 

 learning – the choice of implementation of UQ analysis methods, rather than using available 

UQ software allows the control over analysis, ability to manipulate it and test new methods. 



 

Table 3 Overview of the software used for uncertainty quantification in the QUICS project. 

Fellow Project title Aspect of uncertainty propagation 
Chosen software/programming 
platform 

Motivation 

 
ESR1 - Carla 
Camargos 

 
Landscapes as generators of 
water resources for urban 
areas, uncertainty of 
agriculture on water quality 
and quantity 

 
SWAT model input and validation data 
uncertainty, model parameters and structure 
using DRAM (Delayed Rejection and Adaptive 
Metropolis) and Bayesian approach 

 
Planning to use R scripts (SWAT-FME 
package/spup-package) and the Python 
package Spotpy 

 
Selected packages are developed specifically 
for the SWAT model  

 
ESR2 - 
Alexandre 
Wadoux 

 
Sampling design optimisation 
for uncertainty propagation 
analysis 

 
Model parameters uncertainties propagation 
analysis (via Bayesian calibration of the SWAT 
model) 

 
R 

 
Free, widely used, ability to employ existing 
code 

 
ESR3 - Arturo 
Torres 

 
Optimal complexity of urban 
sewer system models 
accounting for spatial 
uncertainty propagation 
across different scales 

 
Analysing input uncertainty propagation 
through a simplified urban drainage model 
EmitStatR (MC approach) 

 
Developing own scripts for Monte Carlo 
simulation and input uncertainty 
propagation and analysis in R 

 
R is a well-known programming language in 
the statistical community and further 
development of packages in this domain 
contributes to the user community 

 
ESR4 - 
Mahmood 
Mahmoodian 

 
Model reduction analysis 
under uncertainty for a 
Multiple Model Predictive 
Control to dynamically 
manage water quality 

 
Quantifying the overall uncertainty imposed by 
model reduction 

 
MATLAB or Python 

 
The study case is based on model reduction 
using MATLAB. Therefore, it is more handy 
and beneficial to have the uncertainty 
propagation tool in the same platform 

 
ESR5 - Omar 
Wani 

 
Assessing influence of model 
structure deficiencies and 
input errors on the 
uncertainty of model output, 
method development 

 
Developing general UQ methodologies. 
Specifically developing the bias technique that 
incorporates input and model structure 
uncertainty, whereas model parameter 
uncertainty is captured in the posteriors of 
parameters after Bayesian inference  

 
R 

 
R is a good language for statistical analysis. It 
is free and has many packages already written 
in it (common knowledge) 

 
ESR7 - Antonio 
Manuel Moreno 
Rodenas 

 
Propagation of uncertainties 
in integrated urban drainage 
models 

 
Assessing how uncertainties behave through a 
full scale integrated catchment model for 
Dissolved Oxygen Concentration predictions in 
a river. The aim is to separate data-wise sub- 
models to be able to perform an uncertainty 
propagation from the output of one towards the 
input of the next one 

 
Python 

 
Developing suit for controlling the WEST 
software from ironpython (WEST is a 
commercial modelling software which works 
under Tornado which is a .net software 
platform), therefore choosing Python for 
compability 
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Table 2 Continuation. 

Fellow Project title Aspect of uncertainty propagation 
Chosen software/programming 
platform 

Motivation 

 
ESR8 – Ambuj 
Sriwastawa 

 
Uncertainty analysis 
frameworks linked to asset 
management decisions 

 
Input data uncertainty propagation (using 
Markov Chain Monte Carlo Approach) 

 
MATLAB, add-on tool developed at 
Aquafin, Belgium. R in the future. 

 
The Aquafin tool allows automated simulations 
on InfoWorks CS. R is freely available and 
commonly used. 

 
ESR9 - Vivian 
Camacho 

 
Quantification of 
uncertainties associated with 
fluvial pollutant transport 

 
Model structural uncertainty (by comparing 
several models (advection dispersion in 1D, 2D 
and 3D) to observed data from a specific river. 
Comparison of models to lab measurements, 
parameter uncertainty (MC analysis on the 
dispersion coefficients obtained from empirical 
equations for the case study and for the lab 
experiment), input uncertainty (MC and 
Bayesian analysis) 

 
Developing own scripts in Python 

 
Familiarity, developing own scripts is suitable 
to learn about the uncertainty analysis methods 
and also gives more flexibility about applying 
them 

ESR10 - 
Francesca 
Cecinati 

Propagation of rainfall radar 
uncertainties linked with 
water quality models 

Looking at uncertainty estimation and 
propagation for radar data and models 
requiring rainfall as input data 

Developing own software in MATLAB and 
R. Plan to use a toolbox for MATLAB 
developed in Bristol for uncertainty and 
sensitivity analysis (SAFE toolbox) 

Developing own software allows for being 
aware of each passage, being able to 
manipulate it, modify it and come up with new 
methods. The SAFE toolbox is developed by 
colleagues here in Bristol, and it is worth to 
evaluate how it performs with given data 

ESR11 - Mano 
Muthusamy 

Effect of climate change and 
rainfall variability on urban 
sediment behaviour 

Looking at input uncertainty propagation due to 
spatial upscaling of point rainfall data in urban 
sediment transport models (Lump catchment 
models)  

R Familiarity, free to use 

ESR12 - Nazmul 
Beg 

Uncertainty analysis of 
hydraulic structures 
behaviour, 2D & 3D to 1D 

Looking at model input uncertainties (using 
turbulence models and Bayes approach) 

R scripts developed by ESR5 R is a good language for statistical analysis. It 
is free and has many packages already written 
in it (common knowledge) 

ER1 - Kasia 
Sawicka 

Propagation Analysis Tools Input data and model parameter uncertainty 
propagation to the model output 

R Free, includes advanced statistical and graphic 
capabilities, widespread in science and 
education 

ER2 - Mathieu 
Lepot 

Produce methods for data 
management under 
uncertainty 

Looking at input uncertainties, model 
parameters and residuals. Developing a 
general methodology where Law of 
Propagation of Uncertainty and MC simulation 
are applied 

Developing own code with MATLAB Familiarity, widely used, code can be compiled 
as self-standing application for wider use 



4  Obj. 3: Overview of the UQ tool (spup R package) developed at WU 

4.1  Motivation 

Advances in uncertainty propagation and assessment have been paralleled by a growing 

number of software tools for uncertainty analysis (Chapter 2 ). Nevertheless, none has gained 

recognition for a universal applicability, including case studies with spatial models and spatial 

model inputs. Due to the growing popularity and applicability of the open source R programming 

language WU has undertaken a project to develop an R package that facilitates uncertainty 

propagation analysis in spatial environmental modelling. The tool is intended for researchers and 

practitioners who understand the problems of uncertainty in data and models, and are looking for a 

simple, accessible implementation of the universal methodology for uncertainty assessment. At 

the same time, it is designed to enable more experienced users to easily understand, customise, 

and possibly further develop the code. 

A number of computational tools are readily available to tackle the uncertainty quantification 

problem to different degrees (Chapter 2 ). To the best of our knowledge, however, none of the 

existing software has been widely acquired by the environmental science community for 

uncertainty propagation analysis. The use of powerful but complex languages like C++ (e.g. 

Dakota), Python (e.g. OpenTURNS) or Java (e.g. DUE) often discourages relevant portions of the 

non-highly-IT trained scientific community from the adoption of otherwise powerful tools. 

The R programming language has become an important language for the development of 

numerical and statistical analysis tools. R has advantages through its advanced statistical 

capabilities and high-quality graphical output (Ripley, 2001), and is gaining widespread use in 

science and education. Furthermore, through the use of R packages, the software can be used for a 

variety of geoscience analyses and visualisations. It has grown tremendously over the last 20 years, 

with over 8000 packages at the time of preparation of this report. There is a number of R packages 

referring to the uncertainty analysis through sensitivity analysis or use of a Bayesian framework for 

model calibration. We have found only one package named ‘propagate’ (Section 2.18.1) that deals 

with uncertainty propagation explicitly, using similar approaches as described in the following of this 

report. The package ‘propagate’, however, does not provide functionality for spatial models and 

variables.  

 

4.2  Employed (spatial) uncertainty propagation analysis approach 

Uncertainty propagation aims to analyse how uncertainties in data (e.g. from measurement 

error, sampling, interpolation), combined with model uncertainties (e.g. in the model parameters and 

structure) propagate through the model (Heuvelink et al., 2007). Many environmental phenomena of 

interest are spatial, temporal or spatio-temporal in nature and often have strong correlations 

imposed by the physics and dynamics of the natural systems, making uncertainty evaluation difficult. 

The most frequently used approach represents uncertainty with pdfs. The pdf describes the 

likelihood of a random variable to obtain a given value, and typically it is viewed as the shape of the 

distribution, for example normal, uniform, lognormal or exponential. It is common for the pdf to be 

parameterized, i.e. to be characterized by distribution parameters. For example, the normal 

distribution is parametrized in terms of the mean and the variance, while the uniform distribution is 

parameterized by minimum and maximum values. For situations in which pdfs can be estimated 
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reliably, they have a number of advantages over non-probabilistic techniques. They include methods 

for describing cross- and auto- correlation between uncertainties, methods for propagating 

uncertainties through simple algebras or more complex environmental models, and methods for 

tracing the sources of uncertainty in environmental data and models (Heuvelink, 1998). 

A frequently used method for the analysis of uncertainty propagation is the MC method 

(Hammersley and Handscomb, 1979, Lewis and Orav, 1989). It is very flexible and can reach an 

arbitrary level of accuracy, and therefore it is generally preferred over analytical methods such as 

the Taylor series method (Heuvelink, 1998). The idea of the MC method is to compute the output of 

the model repeatedly, with input values that are randomly sampled from their marginal or joint pdf. 

The set of model outputs forms a random sample from the output pdf, so that the parameters of the 

distribution, such as the mean, variance and quantiles, can be estimated from the sample. The 

method thus consists of the following steps: 

1. Characterise uncertain model inputs with pdfs. 

2. Repeatedly sample from (spatial) pdfs of uncertain inputs. 

3. Run model with sampled inputs and store model outputs. 

4. Compute summary statistics of model outputs. 

Note that the above ignores uncertainty in model parameters and model structure, but these can 

easily be included if available as pdfs (such as obtained through Bayesian calibration). A random 

sample from the model inputs can be obtained using an appropriate pseudo-random number 

generator (Lewis and Orav, 1989). Note that a conditioning step will have to be included when the 

model inputs are correlated. Application of the MC method to uncertainty propagation with 

operations that involve spatial interactions requires the simultaneous generation of realisations from 

the spatially distributed inputs, implying that spatial correlation will have to be accounted for 

(Heuvelink et al., 1989). For uncertain spatially distributed continuous variables, such as elevation, 

rainfall and soil organic carbon content, we assume the following geostatistical model: 

 𝑍(𝑥) =  𝜇(𝑥) +  𝜎(𝑥) ∙ 𝜀(𝑥) (1) 

where 𝜇 is the (deterministic) mean of the variable of interest 𝑍, 𝜎 is a spatially variable standard 

deviation associated with the prediction 𝜇 (spatial variability of 𝜎 reflects that in some parts of study 

area the uncertainty is greater than in other parts), and 𝜀 is a standardized, zero-mean, spatially 

auto-correlated residual modelled with a semivariogram or a correlogram (Diggle and Ribeiro, 2007, 

Webster and Oliver, 2007, Plant, 2012). The random sample is drawn from the pdf of 𝜀 to further 

calculate the realizations of 𝑍.  

The drawback of the MC method is that the accuracy of the uncertainty assessment is inversely 

related to the square root of the number of runs 𝑁. This means that to double the accuracy, four 

times as many runs are needed. In complex, multi-variable systems high accuracies are obtained 

only when the number of runs is very large (i.e. 𝑁 ≥ 1,000), which may cause the method to become 

extremely time consuming. The improvement on MC efficiency can be made by employing efficient 

sampling techniques (e.g. LHS) and parallel computing. 
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4.3  ‘spup’ (spatial uncertainty propagation) package design 

The adopted approach for uncertainty propagation analysis dictates the general package 

design. The ‘spup’ package provides functions for examining the uncertainty propagation starting 

from input data and model parameters, via the environmental model onto model outputs (Figure 10). 

The functions include uncertainty model specification, stochastic simulation and propagation of 

uncertainty using MC techniques, as well as several uncertainty visualization functions. 

 

Figure 10 . The ‘spup’ package design. ‘spup’ comprises of functions for defining the uncertainty 

model (I), quantifying uncertainty propagation (II) and storing output in a format of data or images. 

 

Uncertain environmental variables are represented in the package as objects whose attribute 

values may be uncertain and described by probability distributions. Uncertainty may also be ignored 

for some inputs, in which case, during the model run the user works with µ (Eq. 1) as the model 

input that best represent the reality. Both numerical (e.g. air humidity) and categorical data (e.g. land 

cover) types are handled. Spatial auto-correlation within an attribute and cross-correlation between 

attributes is also accommodated for. The attributes may be independent in space, for which a 

marginal probability density function (mpdf) is defined at each point in space, or may co-vary in 

space, for which a joint probability density function (jpdf) is defined. Different shapes of marginal 

pdfs are supported, whereas joint pdfs may be defined for groups of attributes characterized with the 

normal distribution only. The specification of correlations between errors in space and cross-

correlations between objects or attributes is made under the assumption that the correlations 

depend only on the distance between locations.  

For spatially correlated variables the package relies on unconditional Gaussian simulation 

implemented in the ‘gstat’ package (Pebesma, 2004). For drawing realizations of uncertain variables 

without assumed correlations the package has implemented the MC approach with efficient 

sampling algorithms, i.e. stratified random sampling and Latin hypercube sampling. The design 

includes facilitation of parallel computing to speed up MC computation. The MC realizations for 

uncertainty propagation quantification may be used as an input to the environmental models called 

from R, or externally.  
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Selected static (adjacent maps and glyphs) and interactive visualization methods that are 

understandable by non-experts with limited background in statistics can be used to summarize 

and visualize uncertainty about the measured input, model parameters and output of the 

uncertainty propagation. Currently, the implementation of visualization functions consist of 

adjacent maps, glyphs and interactive application. The adjacent maps and glyphs are used for 

continuous variables. Both allow for displaying maps with information about the ensemble mean 

and standard deviation. Adjacent maps were also used for categorical data, displaying maps of the 

most probable class, as well as its associated probability. The interactive applications include a 

graphical user interface, which in addition to displaying the previously mentioned variables also 

allowed for comparison of joint uncertainties at multiple locations. The implementation of the 

visualisations was done via calls to the ‘ggplot2’ package. The interactive methods are 

implemented using the ‘shiny’ package allowing users to activate the visualisation of statistical 

descriptions of uncertainty through interaction with a plotted map. 

 

4.4  ‘spup’ application example – mapping soil moisture content for the Allier 

catchment  

To maximise package accessibility and usability for the user, ‘spup’ will include vignettes 

containing tutorials and application examples. This section presents one such example. 

As part of a research study in quantitative land evaluation, the World Food Studies (WOFOST) 

crop simulation model (van Diepen et al., 1989) was used to calculate potential crop yields for 

floodplain soils of the Allier river in the Limagne rift valley, central France. The moisture content at 

wilting point (Θwp) is an important input attribute for the WOFOST model. Because Θwp varies 

considerably over the area in a way that is not linked directly with soil type, it was necessary to 

map its variation separately to see how moisture limitations affect the calculated crop yield.  

Unfortunately, because Θwp must be measured on samples in the laboratory, it is expensive 

and time-consuming to determine it for a sufficiently large number of data points for creating the 

prediction map by kriging. An alternative and cheaper way is to calculate Θwp from other indicators 

which are cheaper to measure. Because the moisture content at wilting point is often strongly 

correlated with the moisture content at field capacity (Θfc) and the soil porosity (Φ), both of which 

can be measured more easily, it was decided to investigate how errors in measuring and mapping 

these would work through to a map of calculated Θwp. Calculation of Θwp can be done using a 

pedo-transfer function, which in this case takes the form of multiple linear regression: 

 𝛩𝑤𝑝
′ = 𝛽0 + 𝛽1 ∙ 𝛩𝑓𝑐 + 𝛽2 ∙ 𝛷 + 𝛿 (2) 

 

where Θ′𝑤p denotes measured moisture content at wilting point, β0 , β1, and β2 are the regression 

coefficients and δ denote residuals attributed to lack of model fit and measurement error. The 

regression coefficients were estimated using standard ordinary least squares regression, ignoring 

spatial correlation between the observations at the locations. The maps of Θfc and Φ were derived 

using co-kriging and accounted for spatial cross-correlation between Θfc and Φ. Each component 

on the right hand side of Eq. 2 is subject to uncertainty, which will propagate to uncertainty about 
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Θwp. Following the adopted MC approach, for each variable and parameter the uncertainty model 

was defined and 1000 MC samples were drawn. For the spatial variables a linear model of co-

regionalization (Wackernagel, 2003) was fitted with the use of the ‘gstat’ package and possible 

realities were simulated. The joint pdf of the model parameters and structural error 𝛿 was 

estimated using Bayesian calibration (Van Oijen et al., 2005) (note, this is not included in the 

‘spup’ package) and a random sample was drawn from their joint posterior distribution. 1000 

realizations of Θwp were then calculated using Eq. 2 and summary statistics such as mean of 

prediction and standard deviation were derived. 

If uncertainty analysis with WOFOST shows that the errors in Θwp cause errors in the output of 

WOFOST that are unacceptably large, then the accuracy of the map of Θwp would have to be 

improved. In order to decide how to proceed in such a situation, the contribution of each individual 

error source to the overall uncertainty in Θwp was determined as well. Figure 11 presents the 

results and these show that both Θfc and Φ, rather than model parameters and model structural 

error, form the main source of uncertainty. Thus, the main source of error in Θwp is the one 

associated with the kriging errors of Θfc and Φ. 

 

Figure 11 Results of uncertainty propagation for soil moisture prediction in the Allier catchment. 
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4.5  Further work on the ‘spup’ R package  

As one of the contributions to the QUICS project and wider community it is aimed to develop a 

universal tool for uncertainty propagation assessment based on the uncertainty quantification 

framework described in e.g. Heuvelink et al. (2007). As the theoretical framework and 

implementation of the package progress, its application to real cases will be necessary, to test the 

algorithms and usability of the tool, demonstrate the importance of assessing uncertainty in 

environmental data, and provide tutorials for the users. As part of the collaborative work within 

QUICS, the potential case studies for the ‘spup’ application include uncertainty propagation analysis 

with the LandscapeDNDC model (Haas et al., 2012) and German Schwingbach catchment data, 

and Metaldehyde Prediction model developed currently for the Severn Tent Water, water provider in 

the Midlands, UK. Finally, ’spup’ will be introduced to the wider scientific community through CRAN 

(The Comprehensive R Archive Network), where many more challenges will be faced, including the 

time and resources required to implement an uncertainty assessment and the need to make 

uncertainty analyses understandable to non-statisticians. The current progress has been presented 

at the EGU 2016 conference and is going to be presented at the Spatial Accuracy 2016 conference. 

The package is aimed to be published on CRAN in December 2016. 
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5  Conclusions  

In this report a total of 18 software tools were identified to deal with uncertainty analysis, parameter 

estimation or sensitivity analysis. All of the identified tools are model-independent and can, in 

principle, be applied to evaluating any environmental model or modelling system. However, tool 

interoperability and comparison is complicated by the use of different coding languages, input-output 

formats, and approaches to execution management.  

The assembled list of tools contains a considerable amount of overlapping functionality. This 

redundancy confounds practitioners tasked with selecting the best tool for the job. Unfortunately, 

recommending specific tools from the list is beyond the scope of this work, since they were not 

tested or exercised. In this context, it may be more useful to prioritize the underlying methodologies, 

as opposed to actual technology implementations. Ideally, uncertainty propagation analysis activities 

performed for decision support should include (1) data uncertainty propagation, (2) model parameter 

uncertainty propagation (3) model structure uncertainty propagation (4) contributions for propagated 

uncertainty, and (5) summary and visualization tools to identify areas that may be improved. The 

selection of software may depend on the researched aspect of this framework, however considering 

any single source of uncertainty (i.e. structural, parameter, and data errors) may lead to 

misleading uncertainty predictions in the model output: it is therefore important to consider all 

types of errors in a comprehensive, explicit and cohesive way to reduce bias and uncertainty in the 

final prediction. 

Looking to the future of integrated environmental modelling, it is worth noting that high level 

languages (e.g., R, Python and MATLAB ) are becoming increasingly popular delivery mechanisms 

for uncertainty quantification tools and environmental models. Frameworks that can easily 

accommodate such languages will have an edge over those that only support lower-level languages 

(e.g., FORTRAN, C/C++, and Java). 
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