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Executive Summary 

The aim of this report is to provide some guidance to practitioners seeking to understand 

uncertainty in modelling investigations used in urban drainage management. Urban 

drainage management is the activity addressed in integrated catchment studies; the 

interaction of rainfall, runoff, sewers, rivers and wastewater treatment 

Model results are uncertain (more uncertain that generally perceived) and this should be 

taken into account when using models to plan improvements to urban drainage systems to 

achieve specified environmental outcomes. There are opportunities to use information 

about uncertainty to better understand trade-offs between risks and costs.  

In the main part of this report a classification of available model structures in made for four 

types of model. Examples of uncertainty quantification studies are provided in appendices. 

This good practice guidance is presented as a primer for practitioners interested in 

applying uncertainty methods to real-world engineering problems.   
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1  Introduction 

The EU’s Water Framework Directive (European Council, 2000) aims to deliver Good 

Ecological Status (or Good Ecological Potential) in all inland water bodies. In areas of 

heavy urbanization this is challenging because of wastewater treatment effluent, 

stormwater inputs and the operation of combined sewers overflows (CSOs) in wet 

weather. These inputs introduce polluting ammonium and oxygen depleting organic matter 

that are detrimental to aquatic life. Good Ecological Potential (or Status) is achieved if 

these inputs are managed to recognise river needs. Integrated Catchment Studies (ICS) 

are used to direct improvements to relevant parts of the urban drainage system using 

hydraulic and water quality models as the basis for decision making. These models are 

termed Integrated Catchment Models (ICM). Infrastructure improvements generally reduce 

the occurrence of combined sewer overflow and/or improve the quality of treated final 

effluent.  

Models are highly uncertain, which can have two consequences in ICS. They may direct 

the practitioner to make insufficient improvements leaving an unacceptable environmental 

risk of not meeting desirable water quality standards. Or, they may direct the practitioner to 

over-invest in some element of the system resulting in an efficient use of resources. Worse 

still, a combination can occur whereby extra investment is made and environmental 

outcomes are still not met.   

A simple example is illustrated in work done as part of the QUICS project alongside 

Belgian utility Aquafin (Sriwastava A., 2018). Here, modelling was used to calculate the 

storage required to contain the combined sewer overflow from a special storm in order to 

limit frequency to approximately 7 times per year. The ‘normal’ means of calculating 

storage results in a calculated storage requirement of 117 m3, but uncertainty calculations 

demonstrate that there is a 50% probability that this is insufficient. It is as likely to be 

correct as incorrect, which presents an environmental risk. The analysis shows that risk of 

non-compliance can be reduced to only 10% by constructing a further 68 m3. Uncertainty 

analysis allows trade-offs to be examined between cost and risk. In this case risk (of non 

compliance) is reduced by incurring additional costs in construction. Such trade-offs 

become more involved when water quality parameters further complicate analysis.   

Through understanding, quantifying and working knowledgeably with model uncertainty in 

ICS, the practitioner can manage the aforementioned risks. Whilst there is a growing body 

of academic work in this field, there is little to guide the professionally working practitioner 

who is always constrained by time, budget and local rules, regulations and precedent 

governing ICS. This report serves as an introduction to the topic for practitioners and 

provides examples of how uncertainty can be managed in decision making. Its ‘good 

practice guidance’ aims to summarise some of the key research findings in this area, and 

organize them in a way that will provide the practitioner with more understanding of how 

uncertainty in introduced in the model predictions, and where to start looking to better 

understand and where possible reduce such uncertainties. 

The structure of the report is composed of a main text in which the concept of Integrated 

Modelling is explained, and several types of common sub-models utilised for Integrated 
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Catchment Modelling (ICM) are presented, with their uncertainties. Finally a discussion 

about the applicability of a proper uncertainty analysis in these sub-models is made. The 

rest of the report is composed of appendices: the first one is a glossary, the next four are a 

brief presentation of each sub-model type within ICM (model structures, input data, model 

parameters, uncertainty quantification demonstrated by two examples). The final one is a 

brief presentation about linking several sub-models. The information in these appendices 

provides guidance to practitioners on the use of uncertainty analysis when applied in a 

variety of water modelling environments.  

A guide to further reading on this topic and a precis of some notable publications is 

provided in the accompanying QUICS output D4.5.  
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2  Good Practice Guidance 

2.1  Integrated Modelling 

Integrated Catchment Modelling (ICM) is defined as the simulation of the linkage between 

the several sub-models, simulating processes of the water cycle (rural and urban) starting 

from the meteorological input (rainfall) until the final recipient, such as a river, the sea or a 

lake. For each process several sub-models are used. 

The detail of each sub-model varies from a simplified empirical approach to a detailed 

numerical solver of a set of physically-based differential equations and depends on the 

process on which the modeller is focusing.  

The models included in the context of ICM can be classified in four general categories:  

1) Rainfall-Runoff (RR) models (for urban or rural catchments) 

2) Urban Drainage (UD) models  

3) Waste Water Treatment Plant (WWTP) models 

4) River (R) models 

The RR models are the hydrological models in which the water cycle is simulated, taking 

into account the several processes that occur in the spatio-temporal scale of the 

hydrological catchment (rainfall, infiltration, evaporation, snow melting, interception, 

overland flow, groundwater flow). The UD models are the hydraulic/hydrodynamic or CFD 

models with which the water flow inside the urban sewer system is simulated. They include 

scales from the flow inside the pipe network to flow into a manhole or a gully. The WWTP 

models simulate the process of contaminants removal in a WWTP. Finally, the R models 

are the hydraulic/hydrodynamic and water quality models with which the flow into the 

fluvial scale of a river is simulated.  

There are several criteria in order to classify the structures of all the above types. The 

basic criteria is the nature of the variables output and whether are physically-based or 

based on empirical equations.  

As mentioned previously, in the context of ICM, several types of sub-models are linked in 

order to simulate the propagation of the water behaviour through the water cycle. The 

most common types of links existing in practice are the following: 

1) A RR model linked with an UD model 

2) A RR model linked with a R model 

3) An UD model linked with a WWTP model 

4) An UD model linked with a R model 

5) A WWTP model linked with a R model 

6)  A RR model linked with an UD, R and WWTP model.  
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2.2  Uncertainty quantification 

Every model, since it is an abstract, simplification or interpretation of reality, cannot derive 

results with full accuracy. In order to be able to understand and quantify the uncertainty in 

model outputs, it is helpful to categorise uncertainty based on where it occurs in the model. 

Different academic definitions of uncertainty categorization exist, and some of these 

definitions are overlapping, but experience suggest that the following categorization is a 

helpful and pragmatic way for uncertainty quantification purposes: 

1) Input data 

2) Model parameters 

3) Model structure 

One additional uncertainty source in the context of ICM, is the linkage of the several sub-

models, since they are simulating phenomena in different time and space scales. 

The crucial factor for the uncertainty is to find a way in order to quantify it. For the input 

data uncertainty, it can be either measured or estimated. The uncertainty due to the 

models parameters is the most investigated source. Several methods exist, based on the 

Monte Carlo technique. In both cases, the quantification has the form of a probability 

distribution. A further extension of this technique is the Bayesian statistical inference 

method, in which a priori information of the parameters is used. 

As far as the model parameters are concerned, the additional option of the sensitivity 

analysis can be implemented. In this kind of analysis, several techniques exist (such as 

screening methods) in order to define which parameter is affecting more the final output.  

On the other hand, model structure uncertainty is the less studied and more difficulty to be 

investigated, due to its nature. Usually, implicit techniques are used to quantify model 

structure uncertainty, combining uncertainties due to the input data and the model 

parameters (Refsgaard et al. 2006). 

One important factor for selecting an uncertainty analysis method, is whether observed 

data exist. The computational power needed for each model is one more important issue 

to be addressed: due to the fact that when an integrated model is implemented to real 

world case-studies, the required computational time is usually preventing uncertainty or 

sensitivity analysis, which need thousands of runs. Therefore, the only option to cope with 

uncertainty in these cases is to use surrogate modelling methods such as those suggested 

by Asher et al., 2015. These rely on simplification methods to speed simulation time that 

preserve key model relationships allowing uncertainties to be explored more realistically. 

Successful as these approaches can be, it is worth noting that evidence of compliance and 

presentation of results might be required (by the Regulator) to be presented in a certain 

model or using a specified process. In this regard, the requirements of Regulators often fall 

behind the capability of practitioners to present uncertainty information and discuss 

sensible cost-risk trade-offs. This is a significant barrier to the more widespread adoption 

of these techniques.  
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2.3  Applicability 

In recent years, significant progress is made in the scientific field of uncertainty analysis, 

focusing on the theory, methodologies, algorithms, etc. In parallel, significant progress is 

observed in numerical modelling of the physical processes included in the context of ICM. 

Several in-house and commercial software products are available for hydrological, 

hydraulic, Computational Fluid Dynamics (CFD) and water quality simulations and they are 

widely used in practice and expected or required by Regulators. The focus of software 

development has been to include evermore complex and detailed representation of 

infrastructure.   

However, there is a gulf between acamedic advances and the real-world tool used by 

practitioners. Several limitations prevent the widespread uptake of uncertainty analysis by 

practitioners. The most significant limitations are the following: 

1) software automatisation 

2) low-level software accessibility 

3) computational cost 

4) data availability 

5) financing cost 

1) Software automatisation. The most typical uncertainty analysis is based on Monte Carlo 

tecnhique. Using this technique, thousands or millions of simulations are required. The 

magnitude of this number makes non feasible the manual implementation by the modeller. 

Therefore, an automatisation of the software used, is needed. Since the majority of the 

end-users are using commercial software instead of in-house models, the modellers 

should find ways to automatise this software (probably with a batch file). In practice, it is 

observed for several software that this version is not available. In some cases is available, 

but the developer of the software considers this as and advanced version with an 

increased cost for the end-user, and in some cases this version needs no additional cost. 

In any case in which the automatisation is feasible, the most common limitation is the low 

level or negligible documentation, which has as a consecuence than only an experienced 

and advanced modellers with good programming skills could cope with automatisation.  

2) Low-level software accessibility. It is observed that commercial software developers are 

not discussing the assumptions and the disadvantages of their product, although it is 

commonly accepted that since a numerical model is an abstract of reality, several 

approximations are made. The modeller of the end-user is assumed as a tool-user who 

just presses the 'magic button' of the model and receives the results. With this point of 

view, the way of modifying parameters used for the approximations adopted or modifying 

parameters which have to do with the numerical solution (e.g. time step, space step, 

tolerance in iteration loops) is not so clear for a common modeller, whereas sometimes, 

the user is advised by the documentation not to intrude in this level of the software. In the 

context of uncertainty analysis there might be a combination of model structure selected, 

input data and parametric values draw from a distribution, which has as a consequence of 
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the simulation (and hence the uncertainty analysis) crash. In order to cope with this 

software weakness, a more advanced access to the model parameters (as far as the 

approximations and the numerical solution is concerned) is required, and of course more 

experienced and familiar with numerical analysis modellers. 

3) Computational cost. The computational cost is one of the more significant limitations for 

implementing an uncertainty analysis in real-world applications. In practice, even a simple 

software may require some minutes for one simulation, whereas more sophisticated 

software need hours or days for one simulation. Since uncertainty analysis is based on 

Monte Carlo techniques, this analysis is usually non-feasible and in the cases which is 

feasible, is a time consuming process. A strategy to tackle with this limitation is the use of 

surrogate models which are educated with results derived by the original detailed models. 

Needless to say that just non intrusive surrogate models can be used in practice. 

However, even the use of this type of surrogate models needs experienced and advanced 

modellers with good programming skills. Additionally, the High Performance Computing 

(HPC) techniques (clusters, parallel programming, etc.) can significantly improve the 

required simulation time, but still cannot solve the problem, whereas they increase the 

cost. 

4) Data availability. It is generally accepted that there is lack of data in environmental 

engineering (especially in extreme conditions which is more important), for both quantity 

and quality variables. This lack is on one hand due to the structural weakness of 

measuring accurately natural phenomena in large scales, on the other hand due to the low 

level of investments in the field of monitoring real-world case studies. Additionally, the non-

sharing policy of the available data, which unfortunately is common case in the scientific 

community, reproduces the limitations. Although the existence of data is not obligatory for 

uncertainty quantification (e.g. forward uncertainty propagation), however, for a complete 

uncertainty analysis in which an inference is required (e.g. Bayesian inference), observed 

data is needed.            

5) Financing cost. There is a need to 'translate' all the above limitations to a common 

metric system, which in this case is rather the monetary system. The version of a software 

which supports automatisation, the development of an in-house model, the advanced level 

of experienced modellers with programming skills and able to cope with difficulties due to 

numerical analysis techniques, the computational infrastructure, the data acquisition or the 

monitoring of a case study, increase significantly the cost and require investments, which 

in the most of the cases are not efficient in the current situation. However, attention should 

be drawn, especially among the practitioners community, since a straightforward 

implementation of a software might have a consequence of over or under estimation of the 

design.     
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3  Appendix A: Glossary 

Model 

The term model refers to the mathematical description of a physical process. A model is 

based on a theoretical background and a set of equations (empirical or physically-based) 

which should be solved (numerically or analytically). For example, we classify urban water 

cycle models in four types: a) rainfall-runoff models; b) urban drainage models; c) waste 

water treatment plant models; d) river models. Every model has an input and an output.  

 

Software 

A software is an algorithm which solves the equations of a model, or combines several 

models. A software can be either commercial or in-house, open-source or closed-source, 

having Graphical User Interface (GUI) or not. The in-house software lot of times is referred 

as numerical model in the literature. An example of this term usage is: SWMM software 

combines a rainfall-runoff model and an urban drainage model. 

 

Model parameters 

The mathematical description of a model includes several parameters, which can be 

classified in three forms: a) black-box parameters; b) grey-box parameters; c) white-box 

parameters. The term black-box parameter means that the specific parameter has no 

physical meaning and should be calibrated, or derived from the literature or expert 

judgment. This type of parameters can be ad hoc parameters (local use) or global 

parameters (widely used). The term white-box parameter means that the specific 

parameter can be determined either with measurement or in a physically-based way. A 

grey-box parameter is in between black and white-box parameter. It should be noted that 

for most models, the required parameters are in the form of black or grey-box 

 

Uncertainty 

Since all models are abstractions of reality, several approximations and simplifications are 

made, which among others depend on the scale in which a phenomenon is examined. In 

modelling, there are three sources of uncertainty: input data, model parameters and model 

structure uncertainty. The input data (either in the form of measurements or in the form of 

output of another model) are characterised by uncertainties. Besides, since the majority of 

the required parameters for implementing a model are grey or black-box parameters, they 

are characterised by uncertainties as well. Finally, the level of simplification adopted, is the 

so called model structure uncertainty.  
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Monte Carlo technique 

Monte Carlo technique is a numerical technique used for performing an uncertainty 

propagation analysis. The idea of Monte Carlo methodology is that we run thousands or 

millions model simulations, each time with inputs and parameters drawn from probability 

distributions that characterise their uncertainty. 

 

Uncertainty propagation 

Uncertainty propagation is the phenomenon that three sources of uncertainty (input data, 

model parameters and model structure) propagate to the model output.     

 

Uncertainty quantification 

Uncertainty quantification is the process in which the statistical characteristics of the 

uncertainty band of the derived results by a model (output), are calculated, such as the 

mean, the distribution and the confidence intervals.    

 

Sensitivity analysis 

In sensitivity analysis, the influence of model parameters in the derived results through a 

model structure (output), is investigated. In a complete sensitivity analysis, model 

parameters are ranked as far as the level of influence in the derived results is concerned.  

 

Surrogate models 

Surrogate models (or meta-models) are computationally cheap models which can be used 

after their training with results derived by the original detailed models, instead of more 

computationally expensive models. Surrogate models can be used in cases in which 

simulation time should be very small, such as: during the designing phase (optimising the 

dimensions of a structure or comparing several scenarios), in Real Time Control (RTC) 

schemes, uncertainty or sensitivity analysis, Decision Making schemes. There are three 

types of surrogate models: a) simplification or conceptualisation of the process; b) data-

driven models using machine learning techniques (also known as emulators); c) intrusive 

model reduction, in which the modeller should intrude in the equations describe the 

phenomenon.  
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4  Appendix B: Rainfall-Runoff models 

4.1  Model structures 

The RR models are the hydrological models in which the water cycle is simulated, taking 

into account the several processes occur in the scale of the hydrological catchment 

(rainfall, infiltration, evaporation, snow melting, interception, ponding, wetting surface, 

overland flow, groundwater flow). Through this simulation, the meteorological variable 

which is the rainfall, is transformed to a hydraulic variable, such as the water flow. They 

can be characterised as generation models, in contrast with the two other types of models, 

which can be characterised as propagation models. There are several criteria in order to 

classify the structure of a hydrological model. The basic criterion is the nature of the 

variables output. According to this criterion, the models can be distinguished as: 

1) Quantity models, in which the hydrological processes occur in the catchment are 

 described mathematically through equations and output results are usually the 

 water  flow. 

2) Quality models, in which the outputs are water quality parameters, either refer to 

 soluble or solid parameters. Water quality parameters may be conservative, or 

 subject to physical, chemical or biological transformations. 

One more important criterion is the way with which the hydrological processes are 

simulated in the context of each model. According to this general criterion, the rainfall-

runoff models can be classified as follows: 

1) Data-driven models, in which all the physical processes are described by a set of 

 mathematical transformation derived by input and output data, measured in each 

 case study (ad hoc models). 

2) Conceptual models, in which the physical processes are described by representing 

 the catchment as a reservoir or a set of reservoirs. In this type of models, the 

 majority of the processes are included in the context of the simulation, through 

 empirical, semi-empirical or physically-based equations and using several 

 parameters either obtained by the literature or black-box, ad hoc parameters. 

3) Physically-based models, in which the physical processes are described by 

 physically-based equations, usually integrated forms of more complex set of 

 equations (Navier-Stokes equations, Richards equations, Transport equation, etc.). 

The first category of the data-driven models can be sub-divided in the following categories: 

1) Statistical models, in which the parameters used are derived by a statistical process 

 of the input and output data. 

2) Stochastic models, which are similar with the statistical models, however they 

 incorporated stochastic terms. 
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3)  Machine-learning models, such as the Gaussian Process or the Neural Networks 

 models. This type of models is also mentioned as black-box models. 

It should be noted that the boundaries between each category are fuzzy, whereas hybrid 

forms of models exist. Therefore, several similar classifications exist in the literature. 

One other criterion is the way with which the spatial variability of the input data and the 

several required parameters spatial variability is taken into account. According to this 

criterion, the basic types are: 

1) Lumped models  

2) Distributed models  

There are several hybrid forms in between these two approaches. According to how close 

to each type is the model, it can be classified as follows:     

1) Semi-lumped models  

2) Semi-distributed models 

One other criterion is the time scale of the phenomenon simulated. Based on this criterion, 

the RR models can be classified as: 

1) Continuous models, mostly used in water resources management and water quality 

 assessments 

2) Event-based models, mostly used in the design of hydraulic structures 

Finally, one last criterion is the catchment's type. According to this criterion, the following 

types of rainfall-runoff models exist: 

1) Rural scale models, in which the catchment characteristics are mainly rural  

2) Urban scale models, in which the catchment characteristics are mainly urban 

The quality models can be distinguished according to the nature of the output parameters 

as: 

1) Soluble  

2) Solid  

One more criterion for the classification of the quality models is whether they incorporate 

chemical reactions or not. Therefore they can be distinguished as: 

1) Physical quality models  

2) Biochemical quality models  

 

4.2  Input data 

For both quantity and quality models, essential input data is the geometry representation 

of the catchment. 
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For the lumped models, each catchment is considered as one unit with specific topography 

characteristics. 

For the distributed models, the required geometric data consist of a Digital Elevation Model 

(DEM) or a Digital Terrain Model (DTM). 

 In the semi-lumped or the semi-distributed models, the computational domain is divided in 

hydrological response units or sub-catchments. The level of the division indicates whether 

a model is semi-lumped or semi-distributed. 

 Except of the topography, the input is the rainfall, whereas boundary and initial conditions 

is required to be defined as inputs.  

 

4.3  Model parameters 

It is generally accepted that the rainfall-runoff models are considered as the more complex 

and present the larger variability, in comparison with the other types of models, due to the 

fact that they include in their context the greater amount of processes to be simulated. 

Therefore it is impossible to provide an entire list of the parameters incorporated in this 

type of models. However, for the quantity models, the parameters can be clustered in the 

following types:  

1) Parameters which are related to the runoff of the rural or the urban catchment 

2)  Parameters which are related with the infiltration of the rural or the urban catchment 

3) Parameters which are related with the interception of the of the urban catchment 

4) Parameters which are related with the depression storage due to ponding, wetting 

 surface and interception of the of the urban catchment 

5) Parameters which are related with the evaporation of the of the rural or the urban 

 catchment 

6) Parameters which are related with the snow melting of the of the rural catchment 

7) Parameters which are related with overland flow of the of the rural catchment 

8) Parameters which are related with groundwater flow of the of the rural catchment 
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4.4  Uncertainty 

4.4.1 Example B.1 

Uncertainty source investigated: Model parameters 

Method used:   GLUE 

Model(s) used:   Quantity model, Physically-based, Semi-distributed 

     Quality model, Physically-based, Semi-distributed, solid 

Case study:    Three Gorges Reservoir Region (China) 

The material of this example is based on Shen et al. (2012). The case study is selected 

from an actual application; the Three Gorges Reservoir Region in China. The source of 

uncertainty which is examined is the uncertainty due to model parameters. The method 

used for the uncertainty analysis is the Generalized Likelihood Uncertainty Estimation 

(GLUE) method. In order to simulate the runoff process, the runoff curve number method 

was used, whereas for the infiltration phenomenon, the Green-Ampt method was 

implemented. For the sediment yield estimation, the Modified Universal Soil Loss Equation 

was used. The software used was the SWAT software, for 10,000 simulations. 20 

parameters were chosen for the uncertainty analysis after a sensitivity analysis performed 

in the first step based on Morris screening method. The parameters which are investigated 

for the uncertainty to the output results are: the SCS runoff curve number for moisture 

condition II (ranges from −0.25 to 0.15), the base flow alpha factor (ranges from 0 to 1), 

the groundwater delay time (ranges from 1 to 45), the Manning's n value for overland flow 

(ranges from 0 to 0.5), the effective hydraulic conductivity in main channel alluvium 

(ranges from 0 to 150), the base flow alpha factor for bank storage (ranges from 0 to 1), 

the available water capacity factor (ranges from 0 to 1), the saturated hydraulic 

conductivity (ranges from -0.2 to 300), the soil bulk density (ranges from 0.1 to 0.6), the 

snowfall temperature (ranges from -5 to 5), the maximum amount of water that can be 

trapped in the canopy when it is fully developed (ranges from 0 to 100), the soil 

evaporation compensation factor (ranges from 0.01 to 1), the threshold water level in 

shallow aquifer for baseflow (ranges from 0 to 5000), the threshold water level in shallow 

aquifer (ranges from 0 to 500), the Universal Soil Loss Equation support practice factor 

(ranges from 0.1 to 1), the channel cover factor (ranges from 0 to 1), the channel erodibility 

factor ranges from 0 to 1), the channel sediment routing parameter (ranges from 0 to 

0.05), the exponent parameter for calculating sediment re-entrained in channel (ranges 

from 1 to 1.5), the average slope length (ranges from -0.1 to 0.1). The input data consists 

of a real rainfall time series for the period 2004-2007. For the GLUE method, the likelihood 

function is the Nash-Sutcliffe coefficient, whereas for the sampling phase of the 

parameters, the Latin Hypercube Sampling was used. The likelihood function threshold 

which distinguishes the behavioral and non-behavioral set of parameters was set 0.5. The 

output results consist of a quantity variable (water flow) and a quality variable (sediment 

yield).In the following Figure B1, the 95% confidence interval is presented for each of the 

output variable, compared with observed and calibrated values. It seems that during the 
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drier periods, the uncertainty band is relatively small (about 30 m3/s), whereas in the peak 

periods the uncertainty band reaches more than 150 m3/s. As far as the sediment yield is 

concerned, the uncertainty range is larger: during the dry periods the uncertainty band is 

about 50 x 104 tones, whereas in peak periods can reach about 600 x 104 tones of 

sediments. 

 

 

Figure B1. 95% confidence interval for the simulated flow and sediment yield using the 

GLUE method   

 

Notes: It is observed that several model parameters combinations are equifinal as far as 

the likelihood function value is concerned. 
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4.4.2 Example B.2 

Uncertainty source investigated: Model parameters 

Method used:   GLUE 

Model(s) used:   Quantity model, Physically-based, Semi-distributed 

Case study:    Canadian Shield catchment (Canada) 

The material of this example is based on Fu et al. (2015). The case study is selected from 

an actual application: the Canadian Shield catchment in Canada. The sources of 

uncertainty which are examined is the uncertainty due to model parameters. The method 

used for the uncertainty analysis is the GLUE method. The software used was the SWAT 

software, whereas two model structures were tested: SWAT and SWAT-CS ( a version for 

Canadian catchments). For the uncertainty analysis, 12000 combinations of 22 parameters 

sampled by uniform distribution were implemented. The parameters are required to 

describe: a) interception; b) snowmelt; c) evapotranspiration; d) overland flow; e) river 

routing; f) infiltration; g) interflow; h) bedrock percolation; i) groundwater flow j) reservoir. 

The model first calibrated and validated against observed data. The input data consists of 

a real rainfall time series for the period 1978-1982. The output of the model is the Snow 

Water Equivalent and the Streamflow (quantity variables), in the sub-catchment HP4. For 

the GLUE method, the likelihood function is the Nash-Sutcliffe coefficient. The likelihood 

function threshold which distinguishes the behavioral and non-behavioral set of 

parameters was set at 0.45 for the Snow Water equivalent and 0.30 for the Streamflow. In 

the following Figure B2 and B3, the 95% confidence interval is presented for each of the 

output variable, compared with observed and calibrated values. 

 

 

Figure B2. 95% confidence interval for simulated and observed Snow Water Equivalent 

using the GLUE method, for SWAT and SWAT-CS model structures.  
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Figure B3. 95% confidence interval for simulated and observed Streamflow using the 

GLUE method, for SWAT and SWAT-CS model structures.  
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5  Appendix C: Urban drainage models 

5.1  Model structures 

The UD models are models in which the flow, and sometimes the pollution, inside the 

urban sewer system is simulated. Several criteria exist for the classification of urban 

drainage models. One criterion is whether their desired output is flow quantity or water 

quality parameters: 

1) Quantity models, in which the dynamics of the water flow is described 

 mathematically through equations and output results are the water depth, the 

 water velocity and the water volumetric flow rate.  

2) Quality models, in which the outputs are water quality parameters, either refer to 

 soluble or solid parameters. Water quality parameters may be conservative, or 

 subject to physical, chemical or biological transformations. 

The flow quantity models can be distinguished according to the level of detail in which the 

flow dynamics is described. Therefore, they can be classified as: 

1) Simplified models (conceptual or empirical), in which the flow dynamics into the 

 sewer  system is described by approximations, often created by temporal or spatial 

 averaging. The most common form of this type of models are the storage models. 

 The kinematic wave approach or the diffusion wave approach for the flow  inside 

 the sewer can also  be classified in this category.  

2) Hydrodynamic models, in which the flow dynamics into the sewer system is 

 simulated in  more detail, using Partial Differential Equations (PDEs) based on the 

 one-dimensional  (1D) form of the Shallow Water Equations (1D-SWE), known 

 also as 1D Saint-Venant equations, and which are the continuity plus the 

 momentum equation. Only approximate  numerical methods can be implemented 

 for the solution of these PDE. The flow can be characterised either as under 

 pressure or free surface flow. 

3) Computational Fluid Dynamics (CFD) models, in which the flow dynamics into  

 hydraulic structures such as manholes, gutters, gullies, weirs etc., is simulated. 

 These models are based on the full form (3D) of the Navier-Stokes (NS) 

 equations (PDE). Only approximate numerical methods can be implemented for 

 the solution of these PDE. 

The quality models can be distinguished according to the nature of the output parameters 

as: 

1) Soluble  

2) Solid  

One more criterion for the classification of the quality models is whether they incorporate 

chemical reactions or not. Therefore the can be distinguished as: 



23 

 

1) Physical quality models  

2) Biochemical quality models  

Moreover, the physical quality models which refer to soluble parameters, can be classified 

according to the equation(s) solved: 

1) River mixing 

2) Transport 

On the other hand, the physical quality models which refer to solid parameters, can be 

classified according to the equation(s) solved as well: 

1) Sediment erosion 

2) Transport 

3) Deposition 

Adopting the same criteria, the biochemical quality models which refer to soluble 

parameters can be classified: 

1) Oxygen uptake 

2) Degradation 

As far as the SWE (moreover the Transport equation and all the PDEs) is concerned, 

there is no analytical solution and therefore they can be solved only using approximate 

numerical methods. The common numerical methods are: 

1) The Finite Difference Method (FDM), which is based on Taylor series 

2) The Finite Element Method (FEM), which is based on Galerkin method of weighted 

 residuals 

3) The Finite Volume Method (FVM), which is based on Divergence theorem 

 

5.2  Input data 

For quantity models, essential input data is the geometry representation of the case study. 

The geometry input for the simplified models consists of the representation of the urban 

drainage with a conceptual way. 

For the hydrodynamic models consist of the representation of the sewer system (pipe 

characteristic length, junctions, etc.) with all the hydraulic constructions included in this 

system (manholes, weirs, etc.). 

For the CFD models consist of the hydraulic structure under study, with a fine detail level. 

For the simplified models, as input data is considered the precipitation height of the 

catchment and the dry weather flow. 

For the hydrodynamic models, as input data is considered the output of the rainfall-runoff 

model of the urban catchment and the dry weather flow as well. 
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For the CFD models and as far as the flow input (boundary condition), the input usually 

consists of the inflow into the structure, which is usually determined by a simplified or a 

hydrodynamic model, or less often by field measurements. 

Apart from the geometry and inflow, initial conditions are required to be defined as inputs, 

usually with the form of the initial values of the variables calculated. Except of the above, 

the quality models use the output (hydrodynamic variables calculated) of the quantity 

models as an input as well. 

 

5.3  Model parameters 

Due to the combined use of several 'sub-models' into a model (for example the conceptual 

hydrological model for the surface runoff into a hydrodynamic model or the turbulence 

model used in the context of a CFD model, etc.), there are many model parameters 

incorporated in urban drainage models. Many are ad hoc parameters used for specific 

models and processes. In the context of this Appendix, only the parameters which are 

regularly used will be quoted. For the quantity models, these are the following parameters: 

1) The friction coefficient, according to the selected friction model (for example 

 Manning coefficient, Chezy coefficient, roughness height for the Darcy-

 Weisbach coefficient determination etc.).   

2) Parameters which are related with the leak of the pipes. 

3) Coefficients which are related with the several hydraulic structures of the case 

 study.  

As far as the physical quality models which refer to soluble parameters is concerned, the 

basic global parameter is: 

1) The longitudinal dispersion coefficient.  

As far as the physical quality models which refer to solid parameters is concerned, the 

basic global parameter is: 

1) The parameters which characterise the sediments, such as the particle size 

 distribution, the density, the fall velocity. 

For the biochemical models which refer to soluble parameters correspondingly: 

1) The Biological Oxygen Demand (BOD) or the Chemical Oxygen Demand (COD) as 

a  proxy for BOD, due to the fact that the COD can be measured easier. 

2) The Ammonium. 

3) The Total Kjeldahl Nitrate. 

4) The Phosphate. 

 



25 

 

5.4  Uncertainty 

5.4.1 Example C.1 

Uncertainty source investigated: Input data, Model parameters 

Method used:   Monte Carlo 

Model(s) used:   Quantity model, hydrodynamic model  

Case study:    Small catchment in Herent (Belgium)  

The material of this example is based on Sriwastava A. (2018). The case study is selected 

from an actual application: a small urban catchment located in Herent (Belgium). The 

source of uncertainty which is examined is the input data and the model parameters, using 

the Monte Carlo technique. The model structure used is the InfoWorks-CS model. The 

input data which is examined is the weir crest level, whereas the parameters which are 

examined is the roughness height used in the Colebrook-White friction equation. For the 

Monte Carlo simulations, 1000 runs of the model were implemented. The weir crest level 

values randomly draw from a normal distribution, whereas the roughness height from a 

Log-logistic distribution and the fixed runoff coefficient from a truncated normal distribution 

correspondingly. The output variable is the Combined Sewer Overflow (CSO) discharge 

volume in one location of the catchment. In the Figure C1, it is shown the probability 

density of the CSO range as derived by the Monte Carlo analysis. It seems that the CSO 

volume ranges about 130 m3 of water for the 90% confidence interval. 

 

 

Figure C1. CSO volume probability density (left) and exceedance probability (right) 

derived by Monte Carlo analysis 

Notes: -  
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5.4.2 Example C.2 

Uncertainty source investigated: Model parameters 

Method used:   GLUE, SCEM-UA, AMALGAM, MICA 

Model(s) used:   Quantity, Quality, Simplified 

Case study:    Catchment in Melbourne (Australia)  

The material of this example is based on Dotto et al. (2012). The case study is selected 

from an actual application: an urban catchment located in Melbourne (Australia). The 

source of uncertainty which is examined is the model parameters, using four uncertainty 

analysis techniques: the Generalized Likelihood Uncertainty Estimation (GLUE), The 

Shuffled Complex Evolution Metropolis algorithm (SCEM-UA), the multialgorithm, 

genetically adaptive multi-objective method (AMALGAM) and the classical Bayesian 

approach based on a Markov Chain Monte Carlo method and the Metropolise Hastings 

sampler (MICA). The model structure used is the simplified model SIMPLE KAREN. As far 

as the quantity part of the study, four parameters are examined: the Effective Impervious 

Factor, the time of concentration, the initial loss (li) and the evapotranspiration. As far as 

the water quality part of the study, two parameters are examined: the water quality scale 

coefficient (W) and the water quality shape coefficient (b). In Figure C2, the flow range 

derived with the four uncertainty techniques, is shown, compared with observed data. In 

Figure C3, the Total Suspended Solids concentration range derived with the four 

uncertainty techniques, is shown, compared with observed data, as well. It seems that 

during the more dry periods, the uncertainty interval is relatively small (about 0.1-0.2 m3/s 

for all the uncertainty analysis methods), whereas in the peak periods the uncertainty band 

reaches about 0.7-1.0 m3/s. As far as the Total Suspended Solids concentration range is 

concerned, the uncertainty band ranges from 20 to 100 mg/L for all the uncertainty 

analysis methods. 

 

Figure C2. Flow range derived by GLUE (top left), SCEM-UA (top right), AMALGAM 

(bottom left) and MICA (bottom right) during a rainfall event and compared with observed 

data 
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Figure C3. Total Suspended Solids concentration derived by GLUE (top left), SCEM-UA 

(top right), AMALGAM (bottom left) and MICA (bottom right) during a rainfall event and 

compared with observed data 
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6  Appendix D: Waste Water Treatment Plant models 

6.1  Model structures 

The WWTP models simulate the process of contaminants removal in a WWTP. Due to 

their nature, they are classified as coupled quantity/quality models. 

In general, we can classify the WWTPs in two categories: 

1) Municipal facilities  

2) Industrial facilities  

The industrial WWTPs are installed in big industries in order to treat their waste. Usually, 

municipal WWTPs have an extra influent from industrial WWTPs. This Appendix mainly 

focuses on municipal WWTPs, since they have great impact in ICM and besides, industrial 

WWTPs are highly specialised facilities, which would required a taylored study beyon the 

scope of this document. 

In the context of the WWTPs, several biological, physical and chemical processes are 

occurring simultaneously. The linkage of these processes with several sub-models consist 

of a WWTP model. The complexity of this type of models justifies the reason which WWTP 

models should be considered as a separate category than UD models, although they are 

installed in a sewer system and hence they are linked only with UD models. The sub-

models which can be linked in a WWTP model are the following: 

1) Influent sub-model  

2) Bio-chemical sub-model 

3) Hydraulic sub-model  

4) Process units sub-models  

5) Control sub-models  

The term process units refers to aeration, clarifiers, membranes, sludge treatment, 

Sequencing Batch Reactors, filters, etc. Finally, the sub-models included in a WWTP 

model can be classified as: 

1) Empirical models 

2) Physically-based models (e.g. kinetics-based models) 

 

6.2  Input data 

There are several input data required for a WWTP model. In general, the input data can 

be: 

1) Inflow (influent) of the plant which has a quantity component (discharge) and quality 

 component (pollutants concentration) 
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2) Temperature 

3) Control operations 

 

6.3  Model parameters 

As long as the WWTP models are of great complexity and incorporate several sub-models, 

there is a great amount of parameters included in this type of models. These parameters 

can be classified in three big groups: 

1) Operation and design parameters, which are mainly parameters related to the 

 operation and the geometry of the plant 

2) Water line parameters, which are parameters associated to the processes occuring 

 in primary and secondary treatment 

3) Sludge line parameters 
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6.4  Uncertainty 

6.4.1 Example D.1 

Uncertainty source investigated: Model parameters 

Method used:   Monte Carlo 

Model(s) used:   physically-based 

Case study:    Benchmark Simulation Model 2 

The material of this example is based on Benedetti et al. (2012). The case study selected 

is the Benchmark Simulation Model 2, which is a protocol for evaluating the control 

strategy of WWTP model. The sources of uncertainty examined are the model parameters, 

using the Monte Carlo technique. The model structure used is the WEST software. The 

output of the model is the three evaluation criteria as determined in the Benchmark 

Simulation Model 2: a) Effluent Quality Index; b) Operation Cost Index; c) the period of 

time in which the effluent exceeds the limit of 4 mg NH4-N/L, expressed as a percentage 

of the whole evaluation period. First, a Global Sensitivity Analysis is performed in order to 

rank the parameters according to the influence on the output. In the following Figure D1, 

the Whisker box-plots for the three outputs, derived from the Monte Carlo simulations are 

presented.    

 

Figure D1. Whisker box-plots of the three evaluation criteria of BSM2 examining 

parametric uncertainty using a reduced number of parameters 

 

Notes: - 
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6.4.2 Example D.2 

Uncertainty source investigated: Model parameters 

Method used:   Monte Carlo 

Model(s) used:   physically-based 

Case study:    Eindhoven WWTP upgrade 

The material of this example is based on Benedetti et al. (2013). The case study selected 

is the WWTP upgrade in Eindhoven. The sources of uncertainty which are examined are 

the model parameters, using the Monte Carlo technique. Specifically the parameters 

examined are: removal efficiency, certainty factor, peak factor. For the removal efficiency, 

the sample drawn by a uniform distribution, whereas for the certainty and peak factors 

from normal distribution. The model structure used is the WEST software. The output of 

the model is the NH4 effluent. Before the uncertainty analysis, a sensitivity analysis is 

performed in order to select which parameters affect more the results. With this procedure, 

the parameters mentioned before, were selected for a further uncertainty analysis. In the 

following Figure D2, the uncertainty band of the simulated NH4 effluent is presented 

against observed data. 

 

 

Figure D2. Observed cumulative curves of NH4 effluent (solid line) and simulated 

uncertainty band (5%, 50% and 95%) using Monte Carlo technique 
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7  Appendix E: River models 

7.1  Model structures 

The R models are models in which the flow, and sometimes the pollution, in a river is 

simulated. Several criteria exist for the classification of river models. One criterion is 

whether their desired output is flow quantity or water quality parameters: 

1) Quantity models, in which the dynamics of the water flow is described 

 mathematically through equations and the output results are the water depth, 

 the water velocity and the water volumetric flow rate. 

2) Quality models, in which the outputs are water quality parameters. Models which 

 simulate the dynamics of the pollutants in the water, the sediment dynamics or the 

 morphodynamic changes in response to flows models are included in this category. 

 Water quality parameters may be conservative, or subject to physical, chemical or 

 biological transformations.  

The flow quantity models can be distinguished according to the level of detail in which the 

flow dynamics is described. Therefore, they can be classified as: 

1) Simplified models, in which the flow dynamics is described by approximations, often 

 created by temporal or spatial averaging. Models such as those using Muskingum 

 methods, kinematic and diffusion wave models, Manning equation, empirical water 

 elevation - discharge relationships can be included in this category. Models based 

 on integrated form of continuity and energy conservation are included in this 

 category as  well. Usually these models have analytical solutions.  

2) Hydrodynamic models, in which the flow dynamics is simulated in more detail, using 

 PDE based on the full form of the Navier-Stokes equations, which are the continuity 

 plus the momentum equations. Only approximate numerical  methods can be 

 implemented for the solution of these PDE.  

In fact, these simplified PDE are integrated forms of the Navier-Stokes equations in one or 

two dimensions, known also as the Shallow Water Equations (SWE) or the Saint-Venant 

Equations: 

1) 1D models which are based on the 1D-SWE. These PDE are derived by 

 integrating the Navier-Stokes equations in respect to the vertical and the transverse 

 direction of the flow. 

2) 1D+ models, in which the main river channel flow is simulated by solving the 1D-

 SWE, whereas the floodplains flow is simulated using empirical storage equations. 

 These models are also known as pseudo or quasi-2D 

3) 2D models which are based on the 2D-SWE. These PDEs are derived by 

 integrating the Navier-Stokes equations in respect to the vertical direction of the 

 flow. 
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4) 2D- models which are based on the 2D-SWE, but neglecting some terms.  

The quality models can be distinguished according to the nature of the output parameters 

as: 

1) Soluble  

2) Solid  

One more criterion for the classification of the quality models is whether they incorporate 

chemical reactions or not. Therefore the can be distinguished as: 

1) Physical quality models  

2) Biochemical quality models  

Moreover, the physical quality models which refer to soluble parameters, can be classified 

according to the equation(s) solved: 

1) River mixing 

2) Transport 

On the other hand, the physical quality models which refer to solid parameters, can be 

classified according to the equation(s) solved as well: 

1) Sediment erosion 

2) Transport 

3) Deposition 

Adopting the same criteria, the biochemical quality models which refer to soluble 

parameters can be classified: 

1) Oxygen uptake 

2) Degradation 

As far as the SWE (moreover the Transport equation and all the PDE) is concerned, there 

is no analytical solution and therefore they can be solved only using approximate 

numerical methods. The common numerical methods are: 

1) The Finite Difference Method (FDM), which is based on Taylor series 

2) The Finite Element Method (FEM), which is based on Galerkin method of weighted 

 residuals 

3) The Finite Volume Method (FVM), which is based on Divergence theorem 

Finally, there are several sub-models included in the river models, which characterise the 

structure of each model. Some of the most common sub-models are: 

1) Turbulence models which are included as terms in the momentum equations.  

2) Wet/dry models, with which the dry cells/elements are distinguished from the 

 corresponding wet. 
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3) Urban environment models (the way with which the several obstacles exist in an 

urban  environment, such as the buildings, are represented). 

4) Infiltration models. 

 

7.2  Input data 

For quantity models, essential input data is the geometry representation of the river. In 

general, the geometry input for the 1D models consists of 'parallel' cross-sections, 

whereas for 2D models geometric data from a Digital Elevation Model (DEM) or a Digital 

Terrain Model (DTM) is used. Apart from the geometry, boundary and initial conditions is 

required to be defined as inputs. 

For the quantity models the most common form of the upstream boundary conditions is the 

constant flow or flow time series (hydrograph) as input, which consists of output from a 

rural RR model, as well as potentially additional output from UD models. It should be noted 

that there are cases (such as when the final recipient is the sea) in which the input takes 

the form of the water level in respect to time should be defined as downstream boundary 

conditions. Apart from the boundary conditions, the initial condition of the river flow should 

also be defined, usually with the form of the initial values of the variables calculated. 

As far as the water quality models is concerned,  the input of the upstream boundary 

conditions has usually the form of the constant pollutant load or pollutant concentration in 

respect to time. Apart from this, the quality models use the output (hydrodynamic variables 

calculated) of the quantity models as an input as well. In the morphodynamic models, the 

granulometry of the river bottom is an input data as well. 

 

7.3  Model parameters 

Due to the complexity of the simulated phenomena there are many model parameters 

incorporated in river models. Many are ad hoc parameters used for specific models and 

processes. In the context of this Appendix, only the parameters which are regularly used 

will be quoted. For the quantity models, these are the following parameters: 

1) The friction coefficient, according to the selected friction model (for example 

 Manning coefficient, Chezy coefficient, roughness height for the Darcy-

 Weisbach coefficient determination etc.).   

2) The grid/mesh resolution. It is noted that the grid is referred when the computational 

 domain is represented by square shape cells (implementable with all the numerical 

 methods) and mesh where the computational domain is represented by different 

 than square shape cells, such as triangles or quadrilaterals (implementable just for 

 the FEM and the FVM).  
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3) The energy slope required in the cases in which the normal depth boundary 

 condition is set as an upstream boundary. It is noted that this slope is not equal to 

 the surface slope.  

Except the above, there are several common parameters which can be incorporated 

depending on the type of quantity model: 

1) Parameters which are required in order to preserve the numerical stability. 

2) Parameters which are used for the wet/dry modelling. 

3) Parameters which are used in order to represent obstacles, such as buildings. 

4) Parameters which are used in order to simulate the infiltration phenomenon. 

As far as the physical quality models is concerned, the basic global parameters are: 

1) The longitudinal dispersion coefficient for river mixing models (vertical and across 

 the stream are much less common, mainly for 2D and 3D approaches, mostly 

 interesting for lakes or very large rivers/estuaries) 

2) The bed shear stress (e.g. the threshold of erosion models) 

3) The shear velocity, as a measure of turbulence for both mixing and sediment 

 transport models 

4) The parameters which characterise the sediments, such as the particle size 

 distribution, the density, the fall velocity. 

For the biochemical models correspondingly: 

1) The Biological Oxygen Demand (BOD) or the Chemical Oxygen Demand (COD) as 

 a proxy for BOD, due to the fact that the COD can be measured easier 

2) The Ammonium. 

3) The Total Kjeldahl Nitrate. 

4) The Phosphate. 
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7.4  Uncertainty 

7.4.1 Example E.1 

Uncertainty source investigated: Input data, model parameters 

Method used:   Monte Carlo 

Model(s) used:   Quantity models, Hydrodynamic, 1D; 2D-; 2D, FDM 

Case study:    Rafina stream (Greece) 

The material of this example is based on Dimitriadis et al. (2016). The case study is 

selected from an actual application: Rafina stream, which is located north-east of Athens 

(Greece). The sources of uncertainty which are examined are the input data and the model 

parameters, using the Monte Carlo technique. The model structures used are the HEC-

RAS software (1D model), the LISFLOOD software (2D-) and the FLO-2D software (2D) 

for 300 simulations each. The input data consists of a steady flow, for which the Monte 

Carlo simulations randomly draw from a uniform distribution with range 250 m3/s to 

1000 m3/s. The examined parameter is the Manning's roughness coefficient, for which the 

Monte Carlo simulations randomly draw from a uniform distribution with range 0.01 s/m1/3 

to 0.1 s/m1/3. The output variables are the water depths in the upstream and the 

downstream cross-sections correspondingly. In the following Figure E1, the empirical 

probability functions derived from the Monte Carlo simulations are presented. It is found 

that the distributions of the water depths approximate a normal distribution. It seems that 

the water depths range about 4 m using the HEC-RAS model, about 8-12 m using the 

LISFLOOD-FP model and about 2 m using the FLO-2D model, for the 95% confidence 

interval.    

 

Figure E1. Simulated water depths (wu, upstream and wd, downstream cross-section) 

derived from several model structures: a) probability functions and b) box plot 

 

Notes: It is noted that due to the computational burden for the 2D- and the 2D model (the 

magnitude for each simulation is hours), the total number of simulations is relatively low for 

a typical Monte Carlo based uncertainty analysis. It is also noted that the 2D- and the 2D 

model did not have the same grid resolution. (5 x 5 m for the 2D- model and 50 x 50 m for 

the 2D model). 
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7.4.2 Example E.2 

Uncertainty source investigated: Input data, model parameters 

Method used:   Monte Carlo, GLUE 

Model(s) used:   Quantity, simplified, 1D 

Case study:    Tallahala Creek (USA) 

The material of this example is based on Brandimarte and Woldeyes (2013). The case 

study is selected from an actual application: Tallahala Creek, near Waldrup, Mississippi, 

USA. The sources of uncertainty which are examined are the input data and the model 

parameters, using the Monte Carlo technique and the GLUE method. The combined 

uncertainty due to these two sources is also quantified as well. The model structures used 

is the 1D HEC-RAS software, using the steady flow mode. The input data consists of a 

steady flow, for which the 100 Monte Carlo simulations randomly draw from a normal 

distribution with a mean value equal to the flood peak with a return period T=100 years, 

estimated applying the Extreme Value distribution type I and a standard deviation equal to 

the standard error of estimate for the Extreme Value distribution type I distribution, 

evaluated using the Kite formula (Chow, 1988). The range of the water surface elevation 

due to the input data uncertainty in 12 stations is shown in the Figure E.2. The examined 

parameter is the Manning's roughness coefficient for the main channel and for the 

floodplains, using the GLUE method: 48 behavioral models were selected, using as a 

criterion that the Mean Absolute Error compared with the corresponding observed data 

should be less than 0.5 m. The range of the water surface elevation due to the model 

parameters uncertainty in 12 stations is shown in the Figure E.3. Finally, each of the 48 

behavioral scenarios was run using as an input the 100 runs derived previously, in order to 

quantify the combined uncertainty due to the input data and the model parameters. The 

range of the water surface elevation due to the combined effect of input data and model 

parameters uncertainty in 12 stations is shown in the Figure E.4. It seems that the water 

surface elevation ranges from about 0.5 m in the worst case, to 0.2 m in the best case, for 

the 95% confidence interval, investigating the input data uncertainty. Investigating the 

parameters data uncertainty, these intervals are ranging from about 1.0 m to 0.3 m, 

whereas investigating both input data and parameter uncertainty, these intervals are 

ranging from about 1.5 m to 1.0 m correspondingly. 
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Figure E2. Range of water surface elevation (Box plots with minimum and maximum 

values, first, second and third quartiles), due to the input data uncertainty 

 

Figure E3. Range of water surface elevation (Box plots with minimum and maximum 

values, first, second and third quartiles), due to the model parameters uncertainty 

 

 

Figure E4. Range of water surface elevation (Box plots with minimum and maximum 

values, first, second and third quartiles), due to the combined effect of input data and 

model parameters uncertainty 

Notes: - 
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8  Appendix F: Linkage 

8.1  Linking sub-models 

In the context of ICM, several sub-models which describe different processes of the water  

cycle (urban or rural) are linked in a way that the output of one model is the input for the 

other. The potential linkages included in the ICM are six: 

1) RR ~ UD. A RR model has as an output quantity or quality variables in respect to 

 time (e.g. flow hydrograph or pollutant concentration). These time series can be the 

 input for UD models which simulate quantity and quality variables in respect to time, 

 in the sewer system of an urban configuration.     

2) RR ~ R. A RR model has as an output quantity or quality variables in respect to 

 time (e.g. flow hydrograph or pollutant concentration). These time series can be the 

 input for R models which simulate quantity and quality variables in respect to time, 

 in the fluvial scale of a river located in urban or rural environments. 

3) UD ~ WWTP. A UD model has as an output quantity or quality variables in respect 

 to time (e.g. flow hydrograph or pollutant concentration). These time series can be 

 the input (influent) for WWTP models which simulate quantity and quality variables 

 in respect to time.  

4) WWTP ~ UD. A WWTP model has as an output quantity or quality variables 

 (effluent) in respect to time. These time series can be the input for UD models 

 which simulate quantity and quality variables in respect to time.  

5) UD ~ R. A UD model has as an output quantity or quality variables in respect to 

 time (e.g. flow hydrograph or pollutant concentration). These time series can be the 

 input for R models which simulate quantity and quality variables in respect to time, 

 in the fluvial scale of a river located in urban environments. 

6) WWTP ~ R. A WWTP model has as an output quantity or quality variables (effluent) 

 in respect to time. These time series can be the input for R models which simulate 

 quantity and quality variables in respect to time, in the case of an advanced waste 

 water treatment level. 

 

8.2  Uncertainty 

The processes included in the internal structure of two linked sub-models usually are 

characterised by different spatial and temporal scales. This has as a consequence that 

several techniques should be followed for downscaling (disaggregation) or upscaling 

(aggregation) in space or time or both of them, for linking the several sub-models. 

Although in practice the downscaling or upscaling is made heuristically (with simple 

interpolation or extrapolation techniques), a consistent modelling approach requires more 

advanced techniques, such as statistical methods (e.g. Kriging methods). Especially for 
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the spatial downscaling, the methods are also known as geostatistical methods. However, 

these  methods are adding uncertainties to the output of the models.  

The most common links in ICM which require downscaling and upscaling processes are 

the following:   

1) Input data - RR. Rainfall records (input data) are in a larger temporal and spatial scale 

when they are obtained by radars (spatial scale of km2 and temporal scale of min), than 

the scale of the common RR models. Therefore downscaling process should be followed. 

2) Input data - RR. Rainfall records (input data) are in a smaller temporal and spatial scale 

when they are obtained by a network of gauges and then should be upscaled in order to 

be used by RR models. 

3) RR - UD or R. The RR models are in different scale (catchment) than the UD or R 

models, whereas the output of RR models is in a larger temporal and spatial scale than a 

common UD or R model (spatial scale in m and temporal scale in s).    

4) UD - R. Although the phenomena included in the water cycle in the urban configuration 

are more intense and rapid than the corresponding in rural configuration, the scales are 

the same (spatial scale in m and temporal scale in s). However, uncertainty due to 

downscaling should be considered in the cases in which a more rough, empirical UD 

model is linked with a more detailed R model. 

 

8.2.1 Example F.1 

Uncertainty source investigated: Input data 

Method used:   Monte Carlo 

Model(s) used:   - 

Case study:    Bradford (UK) 

The material of this example is based on Muthusamy et al. (2017). The case study is 

selected from an actual application: a catchment located at Bradford, West Yorkshire, UK. 

Rainfall data collected from a cluster in an urban catchment are used in combination with 

spatial stochastic simulation to obtain optimal predictions of the spatially averaged rainfall 

intensity at any point in time within the urban catchment. The uncertainty in the prediction 

of catchment average rainfall intensity is obtained for multiple combinations of intensity 

ranges and temporal averaging intervals. Scarcity of measurement points is dealt with by 

pooling sample variograms of repeated rainfall measurements with similar characteristics. 

Normality of rainfall data is achieved through the use of normal score transformation. 

Geostatistical models in the form of variograms are derived for transformed rainfall 

intensity. Next, spatial stochastic simulation is applied to produce realisations of rainfall 

fields. These realisations in transformed space are first back-transformed and next 

spatially aggregated to derive a random sample of the spatially averaged rainfall intensity. 

Results show that the prediction uncertainty comes mainly from two sources: spatial 

variability of rainfall and measurement error. At smaller temporal averaging intervals both 
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these effects are high, resulting in a relatively high uncertainty in prediction. With longer 

temporal averaging intervals the uncertainty becomes lower due to stronger spatial 

correlation of rainfall data and relatively smaller measurement error. Results also show 

that the measurement error increases with decreasing rainfall intensity resulting in a higher 

uncertainty at lower intensities. In Figure F1, the rainfall intensity with 95% uncertainty 

band is shown for a rainfall event. 

 

 

Figure F1. Predictions of Areal Average Rainfall Intensity with 95% prediction intervals for 

a rainfall event, for different averaging intervals. 

 

Notes: - 
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