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As expected, universal kriging performs better
than ordinary kriging, which performs better
than the use of a single rain gauge;
The consideration of rain gauge uncertainty
further improves the universal kriging results;
Surprisingly, the consideration of rain gauge
uncertainty worsen the ordinary kriging results:
this is due to the fact that, in an already data-
scarce situation, we disregard part of the
information because of its quality;

Universal kriging is able to capture the spatial
distribution of rainfall, the shape of storms and
their precise location and intensity;
The universal kriging results are not only better
prediction, but are also more accurate, having a
lower kriging variance;
It is highly advisable to use universal kriging
products with rain gauge uncertainty
consideration, for modelling, even in small-scale
urban applications.

Study area Results
Eindhoven catchment, river Dommel
Available data:

7 KNMI rain gauges:
• High quality
• Automatic, floating device

6 Dommel Water Board and Eindhoven
Municipality rain gauges:

• Lower quality
• Tipping bucket

35 Amateur rain gauges:
• Daily
• Tipping bucket
• Used for validation

KNMI Radar composites:
• 2 single-pol radars 70 and 170 km away
• spatial resolution: 1x1 km
• temporal resolution: 5 min

Variogram 

Covariance function 

Each variogram has been fitted with the
following exponential model:

𝛾 𝑑 = 𝑐 1 − exp −
3𝑑

𝑟

Where d is the distance, c is the sill, and r
is the range.

Kriging application

The effects of measurement errors results in a
nugget effect in the variogram. Working with
a covariance function 𝐶 𝑑 rather than a
variogram 𝛾(𝑑) allows the nugget effect to
appear only for distance zero:

𝐶 𝑑 = 𝑐 − 𝛾 𝑑

𝐶 𝑑 =  

𝑐 + 𝒄𝟎 𝑓𝑜𝑟 𝑑 = 0

𝑐 − 𝑐 1 − exp −
3𝑑

𝑟
𝑓𝑜𝑟 𝑑 > 0

Where 𝑐0 is the nugget.

Rain gauge errors
The observed accuracy of KNMI gauges is less than
3% (Wauben, 2006), independently on the rainfall
rate. Considering operational use, we round it to 5%.

Using the formulation in Ciach, 2003

(𝜖𝑟𝑒𝑙 = 𝑒0 +
𝑅0

𝑅
) fitted on our data, the tipping

bucket error is estimated as a function of the rain
rate, using the KNMI gauges as a reference.

Ordinary Kriging (OK):

𝑪 =

𝐶(𝑑11) … 𝐶(𝑑1𝑁) 1
⋮ ⋱ ⋮ ⋮

𝐶(𝑑𝑁1) ⋯ 𝐶(𝑑𝑁𝑁) 1
1 ⋯ 1 0

= 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑙𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠

𝑫 =

𝐶 𝑑10
𝐶 𝑑20

⋮
𝐶(𝑑𝑁0)
1

= 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑛𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡

Universal Kriging with radar as covariate (UK):

𝑪 =

𝐶 𝑑11 … 𝐶 𝑑1𝑁 1 𝑅𝑎𝑑1
⋮ ⋱ ⋮ ⋮ ⋮

𝐶 𝑑𝑁1 ⋯ 𝐶 𝑑𝑁𝑁 1 𝑅𝑎𝑑𝑁
1

𝑅𝑎𝑑1

⋯
⋯

1
𝑅𝑎𝑑𝑁

0
0

0
0

𝑫 =

𝐶 𝑑10
𝐶 𝑑20

⋮
𝐶(𝑑𝑁0)
1

𝑅𝑎𝑑0
𝑊 = 𝐶−1 ∙ 𝐷 = Kriging weights

𝑅 𝑥0 = 𝑊𝑇 ∙ 𝑅 𝑥𝛼 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑥0, 𝑔𝑖𝑣𝑒𝑛 𝛼 = 1,2,… ,𝑁

𝜎2 𝑥0 = 𝑐 −𝑊𝑇 ∙ 𝐷 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑎𝑡 𝑥0

Figure 1: study area. The image reports the smaller area of 
interest, around the Eindhoven municipality, sharing the same 

urban drainage system and the broader area where the used rain 
gauges are located

Table 1: sill and range calculated obtained fitting the exponential model to the data

Figure 2: Variogram and covariance function compared, with and without nugget 
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Figure 3: relative uncertainty of 2 KNMI rain gauges as function 
of rainfall rate (KNMI technical report TR-287, Wauber, 2006)

Figure 4: Error models for the tipping bucket rain gauges in the case study, derived fitting the Ciach 2003 model on the observations. The 
observation is obtained comparing the rain gauge “Eindhoven 2” and the reference “KNMI 370”  and for the amateur network comparing 
the rain gauge “Volkel” with the “KNMI 375”.

Event 1 Event 2 Event 3 Event 4 Event 5

Sill Range Sill Range Sill Range Sill Range Sill Range

Hourly 1.050 39.205 0.577 100.277 0.624 22.184 0.670 151.408 0.145 68.928

Daily 0.064 51.310 0.014 37.500 0.037 23.528 0.018 105.785 0.013 272.497

Table 2: average NSE coefficient and percentage of time the prediction with 
uncertainty band covers the observation with uncertainty band for daily predictions

Figure 5: Hourly rainfall predictions and variance with and without rain gauge measurement errors at 14:00 on 13th July 2012

Figure 6: comparison between the daily measurement (observation) and the daily kriging product (prediction) with uncertainty bands for a 
winter and a summer event, for the amateur rain gauge named “Leende”, the only one available in the smaller area of interest.
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The elements on the diagonal are the only ones 
at distance 0, therefore the only ones where 
the nugget effect appears.

We can modify the diagonal to add a different 
nugget for each observation point, according to 
the error of each rain gauge:

𝒄𝟎𝒊 = 𝒆𝒓𝒓𝒊
𝟐

𝑪 𝒅𝒊𝒊 = 𝒄 + 𝒄𝟎𝒊

Often very poor rainfall information is used operationally, and uncertainty is neglected.
Rain gauge uncertainty can increase due to poor network operation and data management.
For urban applications, the spatial variability of rainfall needs to be captured at fine scale. 
In order to reach the rain gauge density necessary for urban studies, different networks, 
even with poorer data quality, need to be used.

Proposed solution
Use of kriging interpolation methods for uncertainty estimation.
Different uncertainty for different rain gauges can be included as different nugget effects in 
the covariance function.
The use of radar rainfall estimates, merged with all the available rain gauge information 
weighted on their accuracy, is used to achieve the best rainfall estimation.

1 OK with 1 RG and no RG error 2 OK with 1 RG and with RG error

3 OK with all RG and no RG error 4 OK with all RG and with RG error

5 UK with all RG + radar and no RG error 6 UK with all RG + radar and with RG error
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2A variogram was calculated from the data for each of the 5 considered rainfall 

events, at hourly and daily accumulation. 

Can we better estimate rainfall considering rain gauge uncertainty?

𝜖𝑟𝑒𝑙 = 0.1943 +
0.0238

𝑅
𝜖𝑟𝑒𝑙 = 0 +

0.1679

𝑅
𝜖𝑟𝑒𝑙 = 0.0703 +

0.3261

𝑅

Winter Summer

Observation

Prediction

1 2 3 4 5 6

Event 1 Summer -0.196 -0.196 0.700 0.506 0.818 0.861

Event 2 Winter 0.698 0.698 0.833 0.791 0.897 0.917

Event 3 Summer -0.035 -0.035 0.625 0.633 0.829 0.903

Event 4 Summer -0.173 -0.173 0.742 0.102 0.777 0.797

Event 5 Winter 0.905 0.905 0.914 0.920 0.934 0.959

1 2 3 4 5 6

Event 1 Summer 0.668 0.710 0.745 0.721 0.767 0.848

Event 2 Winter 0.766 0.870 0.839 0.813 0.834 0.943

Event 3 Summer 0.676 0.737 0.774 0.764 0.822 0.890

Event 4 Summer 0.750 0.801 0.835 0.807 0.865 0.905

Event 5 Winter 0.831 0.914 0.831 0.851 0.857 0.914

NSE coefficient

Prediction coverage


