HOW TO JUMP in ensemble based MCMC samplers
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Mxr Sampler will be His job is to distribute a
jumping randomly limited amount of soil to
through the field... fill the holes proportionaly

to their size.
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Hey,I need
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over here!

Let’s get
to work
guys!
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 We assessed the samplers by means of their convergence
speed, robustness and effective sample sizes.
« For some cases of posteriors characterized by multimodality

differential evolution has shown to be superior.

« For posteriors with strongly non-linear features as well as high
dimensional normal distributions, we found that the stretch
move outperformes the differential evolution move with respect

to all three aspects.
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