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Abstract: Kriging interpolation methods are often applied without considering measurement uncertainty, but rarely rain gauge 
uncertainty is negligible. The most used technique to consider measurement uncertainty in Kriging is to include a 
nugget effect in the variogram model. The nugget is a measurement of the variance that one can expect between two 
measurements at short distance. Including a nugget in the variogram model is appropriate when the uncertainty is 
stationary in space; if a time-variant variogram is not used, the uncertainty is considered stationary in time as well. 
This is not the case for rain gauge interpolation, because rain gauge uncertainty is proportional to the rainfall rate, 
which is highly variable in space and time. Kriging for Uncertain Data (KUD) is a technique proposed in literature to 
solve this problem, modifying the nugget effect for each time step and for each measurement point. Nevertheless, the 
application to rain gauge interpolation showed that the methodology is not stable in certain conditions. Several factors 
can affect the performance: the position and the number of rain gauges, their accuracy, spatial characteristics of the 
rainfall field, rainfall intensity, or the relative position of peaks compared to the rain gauge position. This work 
investigates the performance of KUD with three synthetic experiments, simulating the variation of rainfall spatial 
variability, rain gauge density, and rain gauge accuracy. The results suggest that rain gauge density in relation to the 
rainfall variability plays an important role in the performance of KUD. 
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1. INTRODUCTION  

Rain gauge measurements are probably the most used source of rainfall information for 
hydrological applications. Often rain gauge interpolations are accomplished neglecting 
measurement uncertainties (AghaKouchak et al., 2010; Ciach et al., 2007; Dai et al., 2014; 
Germann et al., 2009; Rico-Ramirez et al., 2015; Villarini and Krajewski, 2009). Rain gauge 
uncertainty is reduced when temporal accumulation is performed, when more expensive high-
accuracy devices are used and when the data is correctly managed and calibrated (Habib et al., 
2004, 2008; Molini et al., 2005; Nešpor and Sevruk, 1999; Sevruk, 1996). Ideally, accurate and 
dense rain gauge networks should be used for hydrological applications, especially at urban scale, 
when high spatial resolutions is required (Schilling, 1991). In reality, rain gauge networks, 
especially high-accuracy device networks, are rarely sufficiently dense. To improve the spatial 
resolution, rain gauge networks with different accuracy characteristics are often integrated (Peleg et 
al., 2013; Villarini et al., 2008). The integration of accurate and less accurate rain gauges networks 
is often unavoidable to reach a sufficient density and measurement uncertainty cannot be neglected. 
Additionally, rain gauge uncertainty is proportional to the rainfall rate, thus highly variable in space 
and time (Ciach, 2003; Habib et al., 2001). 

Kriging interpolation methods provide rainfall estimations with associated variance, offering a 
starting platform for uncertainty estimation. The nugget effect in the variogram model is a way to 
represent the rain gauge measurement uncertainty (Clark, 2010), but it assumes homoscedasticity, 
therefore the uncertainty is modelled uniform in space. If a time invariant variogram is used, the 
modelled uncertainty may be modelled uniform in time as well (Cressie, 1993). De Marsily (1986), 
proposes an approach named Kriging for Uncertain Data (KUD) to use a different nugget for 
different measurement points. The formulation is refined by Mazzetti and Todini (2009). However, 
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we are not aware of KUD applications to rain gauge interpolation and of its performance evaluation.  
This work studies the application of KUD to the interpolation of rain gauge measurements. The 

formulation in this work is a simplification of Mazzetti and Todini (2009). Since the application to 
real case studies does not allow to vary the factors affecting the KUD performance, here synthetic 
tests are used. The application of KUD is compared to standard ordinary kriging (OK) in three 
synthetic tests to investigate the effect of different factors on the KUD performance. 

2. METHODOLOGY 

2.1 Kriging for Uncertain Data (KUD) 

In ordinary kriging, the interpolation at each point 𝑥! is a weighted average: 

𝑅 𝑥! =  𝑤! ∙ 𝑅(𝑥!)!
!!!  (1)   

where 𝑅(𝑥!) is the interpolated rainfall in 𝑥!, 𝑅(𝑥!) are the rain gauge measurements at 
locations 𝑥!, 𝑛 is the number of rain gauges, and 𝑤! are kriging weights, estimated through the 
kriging system: 

𝑤!(𝑥!)!
!!! = 1                                                                               

𝑤! 𝑥! ∙ 𝐶 𝑥! − 𝑥! + 𝜇 = 𝐶 𝑥! − 𝑥!     𝛽 = 1,… , 𝑛!
!!!

 (2) 

where 𝑥! and 𝑥! are generic rain gauge locations and 𝜇 is the Lagrange parameter (Cressie, 1993). 
𝐶(𝑑) is the covariance function that describe the covariance between measurements at two different 
locations, as function of their distance 𝑑.  

Equation 2 can be written in matricial form: 

𝑾 = 𝑪!! ∙ 𝑫 =

𝑤!
𝑤!
⋮
𝑤!
𝜇

=  

𝐶!! 𝐶!" … 𝐶!! 1
𝐶!" 𝐶!! … 𝐶!! 1
⋮ ⋮ ⋱ ⋮ ⋮
𝐶!! 𝐶!! … 𝐶!! 1
1 1 … 1 0

!!

∙

𝐶!"
𝐶!"
⋮
𝐶!!
1

 (3) 

where 𝑾 is a vector containing the kriging weights and the Lagrange parameter, 𝑪 is the covariance 
matrix, where elements 𝐶!" are the short notation for 𝐶(𝑥! − 𝑥!), and 𝑫 is a vector containing the 
elements 𝐶!! , i.e. the covariance function applied to the distances between each measurement point 
𝑥! and the prediction point 𝑥!.  

The covariance function used in this work has an exponential form: 

𝐶 𝑑 =  
𝑐 + 𝑐!                                 𝑓𝑜𝑟 𝑑 = 0

𝑐 − 𝑐 1 − 𝑒𝑥𝑝 − !!
!

 𝑓𝑜𝑟 𝑑 > 0
 (4) 

where 𝑐 is the sill, 𝑟 is the effective range, and 𝑐! is the nugget. The nugget effect can be interpreted 
as measurement uncertainty (Clark, 2010) and using this formulation it appears only at distance 
d=0. 

The conventional modelling of measurement uncertainty is done assuming a spatially and often 
temporally invariant nugget effect in the definition of the covariance function, which is then applied 
to all the elements of Equation 3. The KUD approach instead assumes 𝑐! = 0 in the covariance 
function definition; then it modifies the diagonal of the covariance matrix 𝑪 at each time step, so 
that each element 𝐶!! is substituted with: 
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𝐶!! =  𝑐 + 𝑐!! (5) 

where 𝑐!! is the nugget corresponding to the uncertainty associated to the ith rain gauge, i.e. the 
estimated measurement variance. Applying the operation at each time step, the measurement 
uncertainty is modelled variant in space and in time. 

2.2 Synthetic tests 

The performance of KUD is expected to be affected by many factors. In particular the 
performance is evaluated considering three factors: 1) the spatial variability of the precipitation 
field, represented by the range of the covariance function; 2) the density of measuring points; 3) the 
accuracy of measurement points. To investigate the impact of these factors on the KUD 
performance three synthetic experiments are carried out. The experiments are designed to reproduce 
a possible case study in which a certain number of accurate rain gauges are complemented with a 
certain number of less accurate rain gauges. 

2.2.1 Setup for all the experiments 

Synthetic Gaussian fields θ, are generated with given mean m = 1 and variogram sill s = 0.1 
using unconditional Gaussian simulations on a 106 by 106 pixels grid. Although the experiment is 
unitless, pixels can be representative of a square kilometre, and the field values to rainfall intensity 
in [mm/h]. Each realisation of 𝜃 is sampled by more or less accurate rain gauge simulators that 
sample the field 𝜃 obtaining measurement values that contain errors. The measurement value is 
drawn from a Gaussian distribution with mean equal to the true 𝜃 value; accurate simulators use a 
standard deviation equal to 5% of the true 𝜃 value, while less accurate simulators use a standard 
deviation equal to 20% of the true 𝜃 value. For KUD, the nugget 𝑐!, which is a measurement of 
variance, is the square of the error standard deviation. This model is realistic for different rain 
gauges types and reproduce the proportionality of the errors to the rainfall intensity, as observed in 
real rain gauges (Ciach, 2003; Habib et al., 2001). The rain gauge position changes randomly for 
every realisation of 𝜃. 

Once the fields are measured by the rain gauge simulators, both KUD and standard OK are 
performed and compared, as explained in section 2.3.  

The three synthetic experiments are designed as follow:  

2.2.2 First synthetic experiment: field spatial variability 

The first experiment aims at assessing what is the impact of the rainfall spatial variability on the 
KUD performance. The range parameter is varied, using values of 10, 30, 50, 80 and 100 pixels. 
For each value, 500 realisations of 𝜃 are made and sampled. 10 accurate sampling points and 10 
less accurate ones are used and their position is randomly sampled from a uniform distribution in 
the domain for each realisation.  

2.2.3 Second synthetic experiment: rain gauge density 

The second experiment assesses the impact of rain gauge density, for a given spatial variability 
of rainfall. The test compares the use of 4, 10, 20, 40, and 80 rain gauges in the domain, divided 
evenly between highly accurate measuring points and less accurate ones. 500 realisations are made 
for each of the values, changing the position of the measuring points randomly at each realisation.  
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2.2.4 Third synthetic experiment: sampling point accuracy 

The third experiment looks at the impact of the relative number of accurate and less accurate rain 
gauges. 30 sampling points are used for all realisations, divided unevenly between accurate and less 
accurate ones. In particular the accurate/less accurate combinations are (5/25, 10/20, 15/15, 20/10, 
25/5).  

 
Table 1. Overview of the three experimental setups 

 Experiment 1 Experiment 2 Experiment 3 

Tested variable Range Total number of rain gauges (RG) Ratio between accurate and less 
accurate rain gauges 

Tested values Range = (10, 30, 50, 80, 
100) 

Number of RG = (4, 10, 20, 40, 80) Ratio = (5/25, 10/20, 15/15, 20/10, 
25/5) 

Number of 
realisation 

500 for each range value 500 for each tested number of rain 
gauges 

500 for each tested rain gauge ratio 

Number of accurate 
rain gauges 

10 2, 5, 10, 20, 40 5, 10, 15, 20, 25 

Number of less 
accurate rain gauges 

10 2, 5, 10, 20, 40 25, 20, 15, 10, 5 

Range value [pixels] 10, 30, 50, 80, 100 50 50 

Sill [ - ] 0.1 0.1 0.1 

Mean [ - ] 1 1 1 

2.3 KUD performance evaluation 

In all the experiments, the performance of KUD is compared in the same way. Each time a 
realisation is done and sampled, the synthetic measurements are interpolated both with KUD and 
with standard OK, obtaining the fields 𝜃!"# and 𝜃!" respectively. An evaluation score 𝛽 is then 
calculated as follow: 

𝛽 = 𝐸 𝜃 − 𝜃!"  !  −  𝐸 𝜃 − 𝜃!"#$  !   (5) 

where the spatial mean 𝐸{ } is calculated throughout the pixels. 𝛽 is designed to be positive when 
KUD performs better than OK and negative when OK performs better than KUD. A 𝛽 value is 
calculated for each realisation, therefore 500 𝛽 values are calculated for each tested parameter. 

Rainfall is not Gaussian in reality and the use of Gaussian fields may improve kriging 
performances. Nevertheless, both KUD and OK are affected in the same way and the use of a 
differential indicator assures that this assumption does not alter the results. 

3. RESULTS 

For each experiment, the average 𝛽, together with the 10% and 90% quantiles obtained out of the 
500 realisations are presented. Additionally, the number of realisations with positive or negative 𝛽, 
indicating the number of times KUD outperforms or underperforms OK, are reported. 

The results are summarised in Figure 1. 

4. DISCUSSION 

The results reported in Figure 1 show some interesting outcomes. The first thing to notice is that 
in none of the analysed configurations KUD performs consistently better or consistently worse than 
OK throughout the 500 realisations. This suggests that each combination of rain gauges 
configuration, error sampling, and rainfall field behaves in a different way. The reason for this is 
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that KUD tends to smooth the field, giving less weight to the less accurate measurements. This has 
a positive effect if indeed the introduced error overestimates a peak or underestimate a low. Instead, 
the effect is counterproductive when it results in smoothing peaks and lows that were correctly 
estimated. When a sufficient number of measuring point is available, in relation to the field spatial 
variability, KUD is able to better estimate the direction of the errors and correct them, thanks to the 
comparison to adjacent measuring points; if instead the rain gauges are too sparse, in relation to the 
spatial variability of the field, KUD may result in a loss of spatial information. 

 

Figure 1. For each experiment, two plots are reported; the ones on the left show the mean, and the 10% and 90% 
quantiles of the 𝛽 values. The plots on the right show how many times KUD outperforms OK (positive 𝛽) and how many 

times instead OK outperforms KUD (negative 𝛽). In the bottom panels, where the results of the third experiment are 
reported, the “x” axis reports only the number of accurate rain gauges, and it must be kept in mind that a 

corresponding number of less accurate rain gauges is present, such that they sum up to 30. 

The results of the first experiment, reported in the top plots of Figure 1, show that KUD performs 
better when a high range value is used. In such a situation the fields 𝜃 are smoother and a lower 
number of rain gauges is sufficient. This experiment suggests that KUD could perform better in 
interpolating rain gauges when the studied rainfall event is stratiform, and worse when the field is 
convective. 

The results of the second experiment, reported in the central panels of Figure 1, show that KUD 
performs better with a higher rain gauge density. The reason for this behaviour is again that a higher 
number of rain gauges allows us to have a correct spatial sampling of the field, identify highs and 
lows more precisely and balancing out the measurement errors. Another interesting feature that can 
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be observed in the second experiment is that the variability of outcomes, represented by the 
difference between the 10% and 90% quantile, becomes lower for higher rain gauge densities. This 
means that the KUD and OK results tend to converge to a better estimation of the field. 

Finally, the third experiment suggests that KUD performs better than OK when the rain gauges 
have a more variable accuracy, when the difference between the number of accurate and less 
accurate rain gauges is lower. The KUD method is able to give a higher weight to the good 
measurements, and a lower weight to the less accurate ones. When the sampling points have a more 
uniform accuracy, this advantage is less important, and the two methods perform more similarly, 
i.e. the 𝛽 mean is closer to zero. Again the distribution is narrower for a higher number of accurate 
rain gauges indicates that more accurate measurements result in a convergence of KUD and OK 
results. 

5. CONCLUSIONS 

The work presented in this paper investigates the applicability of Kriging for Uncertain Data 
(KUD) to rain gauge interpolation, in order to take into account the measurement errors and their 
variability in space and time. The investigation is conducted by means of three synthetic 
experiments, in which random Gaussian fields correlated in spaces are generated to represent 
rainfall, and are sampled with rain gauge simulators, able to reproduce a realistic error structure in 
the measurements. The interpolation performed with KUD is compared to the interpolation done 
with the standard Ordinary Kriging (OK) algorithm. The comparison is done for multiple 
realisations of the Gaussian field, and for multiple rain gauge positions, varying factors that 
influence the KUD performance. In particular, the spatial variability of the field is studied in the 
first experiment, the rain gauge network density in the second, and the relative accuracy of the rain 
gauges in the third. 

The presented work is not a complete and comprehensive overview of all the possible factors 
that can influence the KUD performance in rain gauge interpolation, the use of Gaussian fields is an 
approximation, and temporal correlation is not considered. However, the experiment results give 
some insight in the KUD properties, its strengths and its weaknesses. The following conclusions are 
drawn: 

1. The use of KUD is advisable only if a sufficient rain gauge density is available, in relation to 
the rainfall field spatial variability. If the rain gauge network is too sparse, or the rainfall field 
decorrelation distance too short, the KUD performance drops. 

2. KUD is particularly recommended when the used rain gauges have a variable accuracy, 
because it is able to give a higher weight to more accurate rain gauges. 

3. The more accurate and dense the measurements are, the more KUD and OK estimates tend to 
converge, and KUD seems to outperform OK. 

4. The strength and the limitation of KUD is the fact that it tends to smooth the field, in 
particular in the surroundings of less accurate measurements. If a sufficient sampling is 
performed, the smoothing primarily targets the deviation due to errors; if instead the spatial 
information is too sparse, the smoothing may affect real rainfall field features, like peaks and 
lows, and the quality of the estimation drops. 

 
Given the above mentioned conclusions, the use of KUD is in general recommended, because it 

tends to outperform the standard OK algorithm in most of the situations, but there are conditions in 
which it is counterproductive. In particular, it is not advisable for sparse rain gauge networks, 
coupled with convective rainfall events. 

Although the experiment is tailored to rain gauge rainfall interpolation, the conclusions can be 
interesting for the application of KUD to other fields as well. 
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