Some relations between standard distributions

Notation from distributions handout. Some relations are recorded there too.

Relations to the normal

- 1. If Z is $\mathrm{N}(0,1)$, then Z^2 is χ_1^2 .
- 2. If $Z \sim \mathrm{N}(0,1)$ is independent of $W \sim \chi^2_{
 u}$, then

$$T=rac{Z}{\sqrt{W/
u}}\sim {
m t}_
u$$

i.e. has a t -distribution with ν degrees of freedom.

3. If Z_1, Z_2, \ldots, Z_n are independent $\mathrm{N}(0,1)$ r.v's, then

$$Z_1^2 + Z_2^2 + \ldots + Z_n^2 \sim \chi_n^2$$

4. If X_1,X_2,\ldots,X_n are independent $\mathrm{N}\left(\mu,\sigma^2
ight)$ and $ar{X}=rac{1}{n}\sum_1^n X_i$ then

$$ar{X} \sim \ \mathrm{N}\left(\mu, rac{\sigma^2}{n}
ight)$$

5. If X_1, X_2, \ldots, X_n are independent $\mathrm{N}\left(\mu, \sigma^2\right)$ then

$$rac{\left(X_1-ar{X}
ight)^2+\left(X_2-ar{X}
ight)^2+\ldots+\left(X_n-ar{X}
ight)^2}{\sigma^2}\sim\chi_{n-1}^2$$

and it is independent of $ar{X}$.

6. If X_1, X_2, \ldots, X_n are independent $\mathrm{N}\left(\mu, \sigma^2\right)$,

$$ar{X} = rac{1}{n} \sum_{1}^{n} X_i ext{ and } S^2 = rac{1}{n-1} \sum_{1}^{n} \left(X_i - ar{X}
ight)^2$$

then, combining 2, 4 and 5,

$$T = rac{ar{X} - \mu}{\sqrt{S^2/n}} \sim \mathrm{t}_{n-1}$$

7. If $W_1 \sim \chi^2_{
u_1}$ and $W_2 \sim \chi^2_{
u_2}$ with W_1, W_2 independent, then

$$F = rac{W_1/
u_1}{W_2/
u_2} \sim \; \mathrm{F}_{
u_1,
u_2}$$

i.e. has F -distribution with ν_1, ν_2 degrees of freedom.

8. From 1, 2 and 7 above, if $T \sim \mathrm{t}_{
u}$, then $T^2 \sim \mathrm{\,F_{1,
u}}$.

Other relations

- 1. If $X\sim \mathrm{Ga}(a,b)$ then $\lambda X\sim \mathrm{Ga}(a,b/\lambda)$. In particular (with a=1) if $X\sim \mathrm{Ex}(b)$ then $\lambda X\sim \mathrm{Ex}(b/\lambda)$.
- 2. If $X_i \sim \operatorname{Ga}(a_i,b)$ and are independent, then

$$\sum X_i \sim \mathrm{Ga}\left(\sum a_i, b
ight).$$

In particular $(a_i=
u(i)/2,b=1/2)$, $X_1\sim\chi^2_{
u(1)}$, if $X_2\sim\chi^2_{
u(2)},\dots,X_n\sim\chi^2_{
u(n)}$ and are independent, then

$$X_1+X_2+\ldots+X_n\sim \chi^2_{
u(1)+
u(2)+\ldots+
u(n)}.$$

3. If $Y_i \sim \mathrm{Po}(\mu_i)$, independent then

$$\sum Y_i \sim ext{Po} \Big(\sum \mu_i \Big)$$

4. If $Y \sim \operatorname{Po}(\mu)$ and μ is large than $Y \sim \operatorname{N}(\mu,\mu)$ approximately.