SOME DISCRETE DISTRIBUTIONS

SOME DISCRETE DISTRIBUTIONS

Name	Genesis	Notation	p.f.	$\mathbf{E}(\mathbf{X})$	V(X)	Applications	Comments
Uniform (discrete)	Set of k equally likely outcomes (usually, not necessarily, the integers)	U(1,,k) (not standard)	p(x) = 1/k $x = 1,, k$	$\frac{k+1}{2}$	$\frac{k^2 - 1}{12}$	Dice	
Bernoulli trial	Expt. with two outcomes: 'success' w.p. θ and 'failure' w.p. $1-\theta$ $X\equiv$ no. successes	$Ber(\theta)$	$p(x) = \theta^{x} (1 - \theta)^{1-x}$ $x = 0, 1$ $\theta \in [0, 1]$	θ	$\theta(1-\theta)$	Coins, constituent of more complex dis- tributions	
Binomial	$X \equiv \text{no. successes in } n \text{ ind.}$ $Ber(\theta) \text{ trials}$	$\mathrm{Bi}(n, heta)$	$p(x) = \binom{n}{x} \theta^{x} (1 - \theta)^{n-x} x = 0, 1, 2,, n \theta \in [0, 1]$	$n\theta$	$n\theta(1-\theta)$	Sampling with re- placement	$Bi(1,\theta) \equiv Ber(\theta)$
Geometric	$X \equiv$ no. failures until 1st success in sequence of ind. Ber (θ) trials	$Ge(\theta)$	$p(x) = \theta(1 - \theta)^x$ $x = 0, 1, 2, \dots$ $\theta \in [0, 1]$	$\frac{1-\theta}{\theta}$	$\frac{1-\theta}{\theta^2}$	Waiting times (for single events)	Alternative formulation in terms of $Y \equiv \text{no.}$ of trials to 1st success $(Y = X + 1)$
Negative binomial (or Pascal)	$X \equiv \text{no.}$ failures to $m\text{th}$ success in sequence of ind. Ber (θ) trials. Generalization of Geometric	Neg Bi (m, θ) (not standard)	$p(x) = \binom{m+x-1}{x} \theta^m (1-\theta)^x$ $x = 0, 1, 2, \dots$ $\theta \in [0, 1]$	$\frac{m(1-\theta)}{\theta}$	$\frac{m(1-\theta)}{\theta^2}$	Waiting times (for compound events)	$\label{eq:negligible} \begin{split} & \operatorname{Neg} \mathrm{Bi}(1,\theta) \equiv & \mathrm{Ge}(\theta) \\ & \operatorname{Remains} \mathrm{valid} \mathrm{for} \mathrm{any} \\ & k > 0 \\ & (\mathrm{not} \mathrm{necessarily} \mathrm{integer}). \\ & \operatorname{Alternative} \mathrm{formulation} \mathrm{as} \\ & \mathrm{above}. \end{split}$
Hypergeometric	$X \equiv \text{no. of defectives}$ in sample of size n taken without replacement from population of size N of which d are defective	Hypergeom (N, d, n) (not standard, esp. order of arguments)	$p(x) = \frac{\binom{d}{x} \binom{N-d}{n-x}}{\binom{N}{n}}$ $x = \max(0, n+d-N),, \min(n, d)$	$\frac{nd}{N}$	$\frac{N-n}{N-1}n\frac{d}{N}\left(1-\frac{d}{N}\right)$	Sampling without replacement	Sampling with replacement leads to the Bi $(n, \frac{d}{N})$ - a suitable approx if $\frac{n}{N} < 0.1$
Poisson	Arises empirically or via Poisson Process (PP) for counting events. For PP rate ν the no. of events in time $t \sim \text{Po}(\nu t)$. Also as an approx. to the Binomial	$\operatorname{Po}(\lambda)$	$p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$ $x = 0, 1, 2, \dots$ $\lambda > 0$	λ	λ	Counting events occurring 'at random' in space or time	$\begin{aligned} & \text{Bi}(n,\theta) \equiv & \text{Po}(n\theta) \text{ if } n \text{ large,} \\ & \theta \text{ small} \end{aligned}$

SOME CONTINUOUS DISTRIBUTIONS

SOME CONTINUOUS DISTRIBUTIONS

Name	Notation	p.d.f.	$\mathbf{E}(\mathbf{X})$	V(X)	Applications	Comments
Uniform (continuous) (or Rectangular)	$\operatorname{Un}(\alpha,\beta)$	$f(x) = \frac{1}{\beta - \alpha}$ $x \in [\alpha, \beta]$ $\alpha < \beta$	$\frac{\alpha+\beta}{2}$	$\frac{(\beta - \alpha)^2}{12}$	Rounding errors $Un(-\frac{1}{2},\frac{1}{2})$. Simulating other distributions from $Un(0,1)$.	
Exponential	$\operatorname{Ex}(\lambda)$	$f(x) = \lambda e^{-\lambda x}$ $x > 0$ $\lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	Inter-event times for Pois- son Process. Models life- times of non-ageing items.	Alternative parameterization in terms of $1/\lambda$ $Ga(1,\lambda) \equiv Ex(\lambda)$
Gamma	$Ga(\alpha, \beta)$	$f(x) = \frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)}$ $x \ge 0$ $\alpha, \beta > 0$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	Times between k events for Poisson Process. Lifetimes of ageing items.	Alternative parameterization in terms of $1/\beta$ $\operatorname{Ga}(1,\lambda) \equiv \operatorname{Ex}(\lambda)$, $\operatorname{Ga}(\nu/2,1/2) \equiv X_{\nu}^{2}$,
Beta	$\mathrm{Be}(\alpha,\beta)$	$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}$ $x \in [0, 1]$ $\alpha, \beta > 0$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$	Useful model for variables with finite range. Also as a Bayesian conjugate prior.	$\begin{aligned} & \operatorname{Be}(1,1) \equiv & \operatorname{Un}(0,1) \\ & \operatorname{Be}(\alpha,\beta) \text{ is reflection about} \\ & \frac{1}{2} \text{ of } \operatorname{Be}(\beta,\alpha). \\ & \operatorname{Can transform Be}(\alpha,\beta) \text{ on } [0,1] \\ & \operatorname{to any finite range } [a,b] \text{ by} \\ & Y = (b-a)X + a \end{aligned}$
Normal	$N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$ $x \in (-\infty, \infty)$	μ	σ^2	Empirically and theoreti- cally (via CLT etc.) a good model in many situations. Often easy to handle math- ematically.	$\begin{array}{l} X \sim \!\! N(\mu,\sigma^2) \Longrightarrow \\ aX + b \sim \!\! N(a\mu + b,a^2\sigma^2) \\ \Longrightarrow Z = \frac{X - \mu}{\sigma} \sim \!\! N(0,1) \\ So \\ P[X \in (u,v)] = P[Z \in \left(\frac{u - \mu}{\sigma},\frac{v - \mu}{\sigma}\right)] \\ N(0,1) \text{ special case has p.d.f.} \\ \text{denoted } \phi, \text{c.d.f. } \Phi \text{ (tabulated)}. \\ \text{Note } \Phi(-z) = 1 - \Phi(z). \end{array}$
Chi-square	$\chi^2_{ u}$	$f(x) = 2^{-\nu/2} \Gamma(\alpha)^{-1} x^{\nu/2 - 1} e^{-x/2}$ $x > 0$ $\nu > 0$	ν	2ν	Sum of squares of ν standard normals	$ \begin{split} X_{\nu}^2 \equiv & \operatorname{Ga}(\nu/2, 1/2) \\ \text{If } X_1, X_2, \dots, X_n \sim & \operatorname{N}(0, 1) \\ \text{independent, then} \\ \sum_{i=1}^n X_i^2 \sim \chi_n^2 \end{split} $
Student t	$\mathbf{t}_{ u}$	$ f(x) = \frac{\nu^{-1/2} B\left(\frac{1}{2}, \frac{\nu}{2}\right)^{-1} \left(1 + x^2/\nu\right)^{-(\nu+1)/2} }{x \in (-\infty, \infty)} $ $ \nu > 0 $	$(\text{if } \nu > 1)$	$\frac{\nu}{\nu-2}$ (if $\nu>2$)	Useful alternative to Normal for variables with heavy tails.	If $X \sim N(0, 1)$ and $Y \sim \chi^2_{\nu}$ independent then $\frac{X}{\sqrt{Y/\nu}} \sim t_{\nu}.$ $t_1 \equiv \text{Cauchy.} t^2_{\nu} \equiv F_{1,\nu}.$
F	$F_{\nu,\delta}$	$\begin{split} f(x) &= \frac{\nu^{\nu/2} \delta^{\delta/2} x^{\nu/2 - 1}}{B(\nu/2, \delta/2)(\nu x + \delta)^{(\nu + \delta)/2}} \\ x &> 0 \\ \nu, \delta &> 0 \end{split}$	$\frac{\delta}{\delta - 2}$ (if $\delta > 2$)	$\frac{\frac{2\delta^2(\nu+\delta-2)}{\nu(\delta-2)^2(\delta-4)}}{\text{(if } \delta>4)}$	Scaled ratio of chi-squares. Used in tests to compare variances	If $X \sim \chi_{\nu}^2$ and $Y \sim \chi_{\delta}^2$ independent then $\frac{X/\nu}{Y/\delta} \sim F_{\nu,\delta}.$ If $T \sim t_{\nu}$ then $T^2 \sim F_{1,\nu}$. If $Z \sim \text{Be}(\alpha,\beta)$ then $\frac{\beta Z}{\alpha(1-Z)} \sim F_{2\alpha,2\beta}.$