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Abstract. Real time flood forecasting can help authorities in providing reliable warnings to the public. This 

process is, however, non-deterministic such that uncertainty sources need to be accounted before issuing 

forecasts. In the FloodEvac project, we have developed a tool which takes as inputs rainfall forecasts and links 

a hydrological with a hydraulic model for producing flood forecasts. The tool is able to handle 

calibration/validation of the hydrological model (LARSIM) and produces real-time flood forecast with 

associated uncertainty of flood discharges and flood extents. In this case study, we focus on the linkage with 

the hydrological model and on the real-time discharge forecasts generated.  
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1 Introduction 

Forecasting of flood events is a non-deterministic process in which uncertainty stems from different 

sources [1]. Disregarding its non-deterministic nature leads to disregarding events with lower 

probability [2] which may already trigger warnings to specific sensitive areas. In the FloodEvac 

project, we develop a real-time flood forecasting tool which is able to forecast flood discharges and 

flood extents with the inclusion of uncertainties. The tool is developed within the FloodEvac project 

funded by the Bundesministerium für Bildung und Forschung (BMBF, FKZ 13N13196 (TUM)). 

 

 

Figure 1 FloodEvac Tool and Model chain 



 
 

 
HIC 2018 – Palermo 1-6 July 2018  2 

2 Methodologies: The FloodEvac Tool 

The FloodEvac tool allows the simulation of the rainfall-runoff process while including uncertainty 

from different sources (Fig. 1). The tool can be run in simulation or forecast modus. The former is 

suitable for reproducing specific flood events or for the simulation of long time series (e.g. yearly). 

The latter is suitable for real-time flood forecasting. The model chain includes a rainfall uncertainty 

module, an uncertainty and calibration module for the hydrological model, and a link to several 

hydraulic models. The three modules will now be shortly explained: 

 

In the rainfall module, rainfall data can be introduced in three different ways: using 1) 

observed/forecast rainfall from German Meteorological Services (Deutscher Wetterdienst, DWD), 2) 

generated rainfall based on historical data, or 3) generated rainfall based on synthetic data. 

Uncertainty can then be added to catchment rainfall based on the sequential conditional 

simulation [3]. 

LARSIM (Large Area Runoff Simulation Model) is the hydrological conceptual model used in the 

tool. It is suitable for the simulation of rainfall-runoff in large catchments. The soil module consists 

of three storages: upper, middle and lower soil storage which contribute to the discharge components 

modelled as a linear storage system (Fig. 2). It includes 34 parameters which allow modelling of 

different processes such as direct discharge, interflow and groundwater flow (please see [4] for a 

complete description of the parameters). The tool also includes a calibration module for LARSIM, 

based on the Shuffled Complex Evolution Algorithm (SCE-UA) [5], which is widely used in 

hydrology for model calibration [6]. In this module, it is possible to define the calibration and 

validation time windows, as well as the calibration parameters and ranges.   

The final hydraulic module includes the linkage to the Hydro_AS-2D, a 2D fully dynamic model with 

unstructured grid, from which the flood inundation extents are generated. Other possible linkages 

include MIKE 11, MIKE Urban and HEC-RAS 2D.  

 

In forecast modus, the FloodEvac tool generates ensembles by sampling from LARSIM parameters 

using a beta or a normal probability distribution function. The beta function can produce skewed 

shapes of the distribution function, and hence take into account asymmetric uncertainty parameter 

intervals around the calibrated parameter set when generating the ensembles.  

 

Figure 2 LARSIM water balance model 
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Figure 3 Case study: Upper-Main Catchment 

3 Case Study 

The FloodEvac tool was applied to the catchment area of the Upper.Main located in Bavaria with a 

total area of 4244 km2 (Fig. 3). In this work, we are hindcasting the flood discharge of December 

2012-January 2013 to exemplify the forecasting tool. The Hydro-AS 2D model will be implemented 

at a later stage to use the forecast discharge and predict possible inundation. For the sake of simplicity, 

the actual DWD measured rainfall is used here as a forecast data. The considered flood event had two 

peaks on 24 and 28 December respectively. The discharge was recorded at the Ködnitz gauge situated 

just upstream of the city of Kulmbach. The two peak discharges were recorded as 64.2 m3/s and 

58.4 m3/s on 24 and 28 December respectively. The uncertainty estimation in the forecast was done 

at two stages: a) rainfall (input) uncertainty and b) parameter uncertainty. 

3.1 Generation of rainfall uncertainty 

For the forecast, more than 50 points gauge rainfall station data were available at the catchment area, 

each having an hourly time step. The rainfall uncertainty module checks observed or forecast rainfall 

data at these stations and distribute the data within the whole catchment area considering sequential 

conditional geospatial simulation. In this method, the variable is considered as normally distributed 

and continuous. However, using geospatial simulation in case of precipitation has some challenges 

as due to zero precipitation (no rainfall) at some stations, the distribution is not normal but positively 

skewed. Moreover, the spatial distribution of rainfall is not constant but varies temporarily. To adapt 

these issues, a suitable mixed distribution is considered here using two variants. The discrete part of 

the distribution is empirically recorded via the proportion of zeros in the total sample, and the 

continuous part is mapped on the three-parametric gamma distribution as well as on the basis of a 

nonparametric nuclear density distribution considering gammaMix and kdeMix. The whole 

geostatistical simulation is implemented using two different R-packages, namely gstat [7], [8] and 

RandomFields [9]. 

 

The LARSIM model takes input from distributed rainfall data for the catchment at a spatial resolution 

of 1 km x 1 km. At this stage, 10 rainfall simulations were considered to estimate the uncertainty of 

the spatial rainfall distribution (Fig. 4).  
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Figure 4 Uncertainty quantification of rainfall distribution 

3.2 Generation of parameter uncertainty 

A sensitivity analysis was performed in LARSIM to derive the most sensitive parameters of the model 

regarding flood discharge at the upstream gages of Kulmbach (Ködnitz and Kauerndorf). Eight 

parameters were identified as most sensitive such as EQD: the index for lateral drainage to the lower 

soil storage, beta: the shape parameter of the soil-moisture – saturated-areas function, followed by 

BSF, EQB, EQI, EQD2 and Dmax [10]. In this work, only these parameters were considered for 

uncertainty analysis out of the 34 parameters available in the LARSIM model. In a next step, the 

original model [4] currently in use by the Flood Forecast Centre at Bayerisches Landesamt für 

Umwelt (Bavarian Water Authorities) - LfU Bayern was compared with the one obtained using the 

automatic calibrated model. Since similar results were obtained between the original and the 

automated calibrated model, the original model was kept unchanged. The Upper.Main catchment area 

has 81 sub-catchments. Each sub-catchment has its own set of calibrated model parameters. Different 
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sets of parameters were generated for each sub-catchments and applied accordingly for the forecast 

runs. The ensembles were generated using Monte Carlo method. The parameters and intervals were 

selected based on the sensitivity analysis of each sub-catchment. Fig. 5 shows the probability 

distribution curve for the 8 selected parameters of a sub-catchment in the model area.  

 

Figure 5 Probability distribution curve of the eight considered parameters at one sub-catchment  

3.3 Forecast of flood discharge 

Before the hindcasting process can start, a warm-up period is run. The model is run using observed 

precipitation and temperature data for one year of warm-up period until 49 hours before the forecast 

initialisation time. At this stage, the model uses the previously calibrated parameters. The model 

results are saved in an ‘initial state file’ at the end of the one-year warm-up simulation time. As such, 

we assure that the internal model states condition of the basins are as close as possible to the real 

conditions. Later, this initialization state is used to simulate each forecast ensemble run. However, in 

case of starting the simulation from an ‘initial state file’, it is recommended to start the flood 

forecasting for at least 49 hours ahead of the initial time. Therefore, each forecast ensemble simulation 

was run for 63 hours; the first 49 hours of simulation results are deleted and the last 12 hours of 

forecast data are stored. In this process, the model collects 49 hours of observed hourly rainfall 

followed by 12 hours of forecast rainfall data. These 63 hours of rainfall data are passed through the 

rainfall distribution uncertainty module and 10 different rainfall uncertainty dataset are prepared. 

Later, 50 different parameter sets are produced using parameter uncertainty module. These 

50 parameter uncertainty sets are combined with the 10 rainfall uncertainty cases linking one rainfall 

uncertainty scenario with every five parameter uncertainty sets in a sequential order, making 50 sets 

of hydrological models for the Upper.Main catchment. These 50 models are run and results of 

discharge datasets are saved. The total run time for completing this whole process was around 25 

minutes in a three core desktop in parallel mode. 

 

As in this work, the actual measured rainfall data is used, which has a temporal resolution of one 

hour, the whole process was repeated at every one-hour interval. In the next forecast process, the 

model simulates new 50 cycles of 63 hours simulation, of which the first 48 hours are a repetition of 

previously done simulation; the 49th-hour data uses the latest available observed data and the last 

12 hours data uses the new weather forecast. At this stage, the model uses the same parameter set 

which was generated at the first stage. Fig. 6 shows the results of all the simulations for the flood 

discharge forecast at Ködnitz gauge point. 
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Figure 6 All forecast uncertainty results 

4 Uncertainty analysis in the model results 

The quality of the forecast data is assessed from each hourly lead of the forecast (Fig. 7). It can be 

seen that the inconsistency between forecast and observed data increases with increasing forecast lead 

time. It is apparent that the model is very good for forecasting flood up to 4 hours in advance. The 

difference between forecast and observed data at 5 or 6 hours lead time is comparably better than 

forecast data with lead time of 7 to 12 hours. The deviation of simulated data from the observed is 

consistent at 9 to 12 hours lead time, which indicates that after a certain lead time, the error in forecast 

becomes stable and stops increasing.  

 

Figure 7 Scatter plots of observed vs simulated data for each hourly forecast leads 
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In assessing the uncertainty of the basin response to spatial and temporal rainfall distribution, 

confidence intervals are calculated. According to the procedure described above, each temporal result 

was forecast 12 times using 50 ensembles of uncertainty runs. In this way, each temporal result is 

predicted 600 times, which are used for the statistical assessments for each time step.  

  

Figure 8 Confidence intervals in flood forecasting 

A confidence interval chart is shown for all the simulated forecast data (Fig. 8). We calculate the 

confidence intervals of the whole forecast data in two parts: considering a forecast lead time up to 6 

hours and 12 hours. Comparing with the observed flood discharge of the area, it can be seen that the 

model can forecast the rising limb of the flood peak fairly well. Both of the rising limbs of the 

observed flood discharge lie within the 50 percentile of the simulated results at both 6 hours and 

12 hours lead forecasts. The peak discharge predicted in the model simulation is slightly earlier than 

the actual flood peak time. However, the uncertainty interval of the model peak is found moderately 

high. The falling limb of the flood discharge is found within the 98 percent confidence interval of the 

simulated discharges. The uncertainty is considerably lower at 6 hours lead forecast than that of 

12 hours lead. However, all these analyses represent only one flood event. Analysing more events in 

a similar way would give a better representation of the uncertainty in the model results. 

5 Towards reducing uncertainty in the forecast 

This work was intended to check the effectiveness of the FloodEvac tool in real-time flood 

forecasting. The rainfall forecast is available at every hour. Considering this fact, it was intended to 

obtain forecast results within a considerable fraction of an hour. Due to available computational 

resources, this forecast was done using 50 uncertainty runs only; which took around 25 minutes. The 

forecast quality might have been improved if more uncertainty runs were used. In this section, we 

propose another option to produce similar uncertainty bands of forecast within a shorter time period. 

 

In this new proposed method, a pair of uncertainty ensembles is chosen within some predefined 

discharge intervals. Each possible pairs of uncertainty results are investigated to choose one pair of 

ensemble results that contains the maximum numbers of observation points within them. Later, the 

user can consider using the parameters used in preparing those two ensembles and regenerate new 

sets of normal and/or beta distribution curves and therefore predict new sets of hydrological model 
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parameters. As the model receives observed discharge data at the time of forecast initialization, the 

parameter ranges can be defined considering that discharge observed at that time. 

 

In this work, we divide the observed discharge into seven segments with an interval of 10 m3/s starting 

from 0 discharge. One pair of ensemble is chosen for each segment based on the observed discharge 

at the forecast initiation time considering that the pair bounds the maximum numbers of observed 

discharge data. The observed discharge along with the results of these seven ensemble pairs are 

plotted in Fig. 9. 

 

Figure 9 Observed discharge with updated forecasts 

In this proposed forecasting method, only one pair of uncertainty simulation run is required to predict 

the flood forecast within a given flood range. However, this method requires prior knowledge of the 

hydrological response in the catchment area before actual forecast, by running a large number of 

uncertainty based hindcast simulations. Moreover, in this work, the proposed methodology is 

analysed and applied to only a single event. It has to be compared, tested and applied to more flood 

events in order to find the best pair of parameter sets for different flood magnitudes. This will be done 

in the future works and the corresponding results will be compared. 

6 Discussion/Conclusions 

In this case study, the FloodEvac tool was able to produce real-time forecasts with uncertainty for the 

investigated flood event. It was possible to consider forecasts with a lower probability which may 

trigger warnings earlier to sensitive areas. The total number of ensembles which can be generated in 

forecasting mode is limited by the available computation time. In any case, a larger number of 

ensembles could be used depending on of available cores computation power. 
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