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Introduction to Probability and Statistics
1 Probability
1.1 Multiple approaches
The concept of probability may be defined and interpreted in several different ways, the chief ones arising from 
the following four approaches.

1.1.1 The classical approach
A game of chance has a finite number of different possible outcomes, which by symmetry are assumed ‘equally 
likely’. The probability of any event (i.e. particular outcome of interest) is then defined as the proportion of the 
total number of possible outcomes for which that event does occur.

Evaluating probabilities in this framework involves counting methods (e.g. permutations and combinations).

1.1.2 The frequency approach
An experiment can be repeated indefinitely under essentially identical conditions, but the observed outcome is 
random (not the same every time). Empirical evidence suggests that the proportion of times any particular event 
has occurred, i.e. its relative frequency, converges to a limit as the number of repetitions increases. This limit is 
called the probability of the event.

1.1.3 The subjective approach
In this approach, an event is a statement which may or may not be true, and the (subjective) probability of the 
event is a measure of the degree of belief which the subject has in the truth of the statement. If we imagine that a 
‘prize’ is available if and only if the statement does turn out to be true, the subjective probability can be thought of 
as the proportion of the prize money which the subject is prepared to gamble in the hope of winning the prize.

1.1.4 The logical approach
Formal logic depends on relationships of the kind A  ⟶B (‘A implies B’) between propositions. The logical approach 
to probability generalizes the concept of implication to partial implication; the conditional probability of B given A 
measures the extent to which A implies B. In this approach, all probabilities are ‘conditional’; there are no 
‘absolute’ probabilities.

Some pros and cons of the four approaches:



1.2 Axiomatic probability theory
Because there is not a uniquely best way of defining probabilities, it is customary to lay down a set of rules
(axioms) which we expect probabilities to obey (whichever interpretation is put on them). A mathematical theory
can then be developed from these rules. The framework is as follows. For any probability model we require a
probability space  with

the set  of all possible outcomes, known as the sample space (for the game, experiment, etc.)
a collection  of subsets of , each subset being called an event (i.e. the event that the observed
outcome lies in that subset).
a probability measure defined as a real valued function  of the elements of  (the events) satisfying the
following axioms of probability:

A1  for all 
A2 
A3 If  are mutually exclusive events (i.e. have no elements in common), then

 [The sum may be finite or infinite].

Example 1.
In a ‘classical’ probability model,  consists of the  equally likely outcomes  say,  consists
of all subsets of , and  is defined by

It is easy to show that the  satisfies the axioms of probability. Theorems about probabilities may be proved
using the axioms. The following is a simple example.

Theorem 1.
If , (the ‘complement’ or ‘negation’ of  ), then .

Proof.
A and  are mutually exclusive with union . Therefore

1.3 Conditional probability
For any event  with , we can ‘condition’ on the occurrence of  by defining a new probability
measure,  say, which is obtained from  by reducing all probability outside  to zero and rescaling the rest
so that the axioms are still satisfied. Thus for any event  in the original sample space , we define

(Ω,F ,P )

Ω
F Ω

P F

P (A) ≥ 0 A ∈ F

P (Ω) = 1
, , …A1 A2

P ( ∪ ∪ …) = P ( ) + P ( ) + …A1 A2 A1 A2

Ω n { , , … , }a1 a2 an F

Ω P

P (A) =  for A ∈ F . 
no. of elements in A

n

P

= Ω∖AAc A P ( ) = 1 − P (A)Ac

Ac Ω

P (A) + P ( )Ac = P (Ω)
= 1

( by axiom A3)
( by axiom A2).

A P (A) > 0 A

PA P A

B Ω



 is normally written . Conditional probabilities are often easier to specify than unconditional
ones, and the above definition may be rearranged to give

which is sometimes known as the multiplication rule. This may be extended (by an easy induction argument) to a
sequence  of events

which is useful when it is easy to write down the probability of each event in the sequence conditional on all the
previous ones having occurred.

Another important relationship involving conditional probabilities is the law of total probability (sometimes known
as the elimination rule). This involves the notion of a partition of the sample space, which is a sequence

 (finite or infinite) such that

and  whenever . In other words, ’  are mutually exclusive and exhaustive’ or
alternatively ‘one and only one of  must occur’. If  is a partition and B is an arbitrary
event, then the law of total probability states that

This follows from the axioms and the definition of conditional probability, since  are
mutually exclusive with union B , and  for each i.

Example 2.
In a multiple choice test, each question has  possible answers. If a candidate knows the right answer (which
happens with probability  ) he gives it; if he thinks he knows it but is mistaken (which has probability  ) he gives
the answer he thinks is correct; and if he does not think he knows it (with probability  ) then he
chooses an answer at random. What is the probability that he answers correctly?

Let  be the event that the candidate knows the right answer,  the event that he thinks he knows it but is
mistaken, and  the event that he does not think he knows it. Let  be the event that he answers correctly.

therefore

Sometimes we wish to relate two conditional probabilities. This is easily achieved

This result is known as Bayes’ Theorem (or Bayes’ rule). It is often used in conjunction with a partition where we
wish to know the probability of one (or more) of the events of the partition having occurred conditional on the
‘secondary event’ B having been observed to occur:
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Example 3.
(Model as above). What is the probability that the candidate knew the right answer given that he answered
correctly?

Bayes’ Theorem lies at the foundation of a whole branch of statistics - Bayesian statistics. See MAS6004.

1.4 Independence
Event B is said to be independent of event A if

i.e. conditioning on A does not affect the probability of B . The relationship is more usually written equivalently as

which indicates that the relationship is symmetrical:  and  are mutually independent. This form my be
generalized to longer sequences: events  are said to be (mutually) independent if

for any finite collection of distinct subscripts .

Example 4.
For three events  to be mutually independent, all the following relationships must hold:

Fortunately, independence is usually used as an assumption in constructing probability models, and so we do not
need to check a whole collection of relationships such as the above.

1.5 Worked examples
Example 5.
Consider the roll of an ordinary six-sided die. Then the sample space  is the set of outcomes, i.e. 

.

Let  be the event that we roll an even number, and let  be the event that we roll at least 4 . As subsets of
 and .

Now look at the various set operations applied to these two events:

 : we roll an even number or we roll at least 4 . (NB inclusive “or”: both 4 and 6 are
included.)

 : we roll an even number and we roll at least 4 , i.e. we roll 4 or 6 .
 : we do not roll an even number, i.e. we roll an odd one.
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If the die is fair we can assume that the elements of  are equally likely. We can then work out probabilities of
events by simply counting the number of elements and dividing by the total number of elements in  (here 6):

, , etc.

Example 6.
A bag contains 8 balls labelled . Three balls are drawn randomly without replacement. Calculate (a)
the probability that the ball labelled 4 is drawn, (b) the probability that the three balls drawn have consecutive
numbers (e.g. 3,4,5). Are the events in (a) and (b) independent?

The number of outcomes here is the number of ways of selecting 3 from 8, i.e.  . (The order that the
balls are drawn in is not important; otherwise the number of outcomes would be .) (a) If ball 4
is drawn, there are  possibilities for the other two, so, given equally likely outcomes, the probability is

. (b) There are six outcomes here, so the probability is .

Call the events  and  respectively. Then  requires the balls to be  or ,
and hence has probability . But , so the two events are not independent.
(The conditional probability , so 
occurring increases the chance of  occurring.)

2 Random variables
2.1 Definition
Often the outcome of an experiment will have numerical values, e.g. throwing a die we can take the sample
space to be . In other more complicated experiments even though the outcomes may not
be numerical we may be interested in a numerical value which is a function of the observed outcome,
e.g. throwing three dice we may be interested in ‘the total score obtained’. In this latter example, the sample
space may be described as

but the possible values which ‘the total score obtained’ can take are given by

which is called the induced sample space. The function which takes  into  according to the rule described is
called a random variable, e.g. ‘the total score obtained’ is a random variable which we may call  say.
Associated with the sample space induced by  are: (i)  events ‘generated’ by  (e.g. ’  ’ and ’ 
is an even number’ are events); (ii)  induced probability measure, known as the distribution of , e.g. 

 or 4  assuming dice are fair.

It is often convenient to work with , rather than with , but we have to be careful if
considering more than one random variable defined on the same underlying sample space.

2.2 Types of distribution
A random variable , or its distribution, is called discrete if it only takes values in the integers or (possibly) some
other countable set of real numbers. (This will automatically be true if the underlying sample space is countable.)
In this case the distribution is entirely specified by giving its value on every singleton in the induced sample
space:

 is called the probability function of X (or of its distribution). The probability of any event  in  is then
found by summing the values of  over the singletons contained in  :
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In order to satisfy the axioms of probability, it is sufficient that the function  satisfies
 (i)  for all  (to satisfy A1)
 (ii)  (to satisfy A2)

A3 is then automatically satisfied because of (1).

Example 7.

is a probability function since  obviously and also

A random variable , or its distribution, is called (absolutely) continuous if it takes values on the whole real line
or some sub-intervals and the probability that it lies in any interval (  ] say is given by the integral over the
interval of a function, known as the probability density function (p.d.f.)  :

Note that it does not matter whether we include the endpoints of the interval or not; the probability of any
singleton is zero.

In order to satisfy the axioms of probability it is sufficient that the function  satisfies

1.  for all ;
2. .

Example 8.
For what value of c is the function

a p.d.f.? Obviously (i) is satisfied provided ; to satisfy (ii) we must have

Note. Not all distributions are either discrete or absolutely continuous; for example, a distribution may be partly
discrete and partly absolutely continuous.

The distribution function  of any distribution is defined as

If the distribution is discrete, it will be a step function:

whereas if the distribution is absolutely continuous, it will be a smooth function with derivative given by the p.d.f.:
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therefore . Because of the axioms of probability, a distribution function is always non-
decreasing, continuous from the right, and satisfies

Example 9.
For Example 7 (here  denotes ‘whole number part of ’, so  )

and for Example 8

Note. In the discrete case where  say, we can ‘recover’  from  using the fact that
 (difference of successive values).

Note. We usually drop subscripts on  and  if it is clear to which variable they refer.

2.3 Expectation and more general moments
If  is a random variable, then its expectation, expected value or mean  is the number defined by

provided that the sum or integral converges (otherwise the expectation does not exist). It is a weighted average
of the possible values which  can take, the weights being determined by the distribution. It measures where the
centre of the distribution lies.

Properties
If  always, then .
If  (constant) then .
If  and  are constants then  (linearity).

If  is a function of a random variable, then, to evaluate , it is unnecessary to know the distribution
of  because it may be shown that

Of particular importance are moments of a random variable, such as the following:
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The second moment of  about its mean is called the variance of 

and measures the extent to which the distribution is dispersed about . Its positive square root  is called the
standard deviation (s.d.).

Properties of variance
, with equality if and only if  is a constant random variable

.

The mean and variance of a distribution are commonly used measures of ‘location’ and ‘dispersion’ but there are
other possibilities, e.g. the median is defined as any value  such that  and  (  may
not be unique) and is a measure of location (the half-way point of the distribution), and the interquartile range is
defined as

where the upper and lower quartiles used here are defined as the median but with  replaced by  and 
respectively; the interquartile range is a measure of dispersion.

Examples of moments will follow in the next section.

2.4 Some standard distributions

2.4.1 The binomial distribution 
This is the discrete distribution with probability function given by

 and  are the parameters of the distribution. Here  is a positive integer and  a real number between 0 and 1
. It arises as the distribution of the number of ‘successes’ in  independent ‘Bernoulli trials’ at each of which there
is probability of ‘success’ . A combinatorial argument leads to the above formula.

If  has  distribution then we write  and find

2.4.2 The Poisson distribution .
This is the discrete distribution with probability function given by

Here  is the parameter of the distribution, and is a positive real number. It arises as the distribution of the
number of ‘occurrences’ in a time period during which in a certain sense these ‘occurrences’ are completely
random.

The Poisson distribution with parameter  has mean  and variance . (See Example 10 below.)

One way of deriving the Poisson probability function is to take the limit of  as  and  but
 remains fixed at . If we substitute  then the binomial probability function is
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For this reason, the binomial distribution  is well approximated by  when  is large - the
approximation is most useful when  is small, so that  is not large.

The distribution functions of the binomial and Poisson distribution are tabulated for various values of the
parameters (Neave tables 1.1 and 1.3(a) respectively).

Example 10.
Calculate the mean and variance of a  random variable . We have

For the variance, start off by calculating

(The sum can start from  as the first two terms would be zero.) Change variables to , using
the fact that  !, giving

Then , and

2.4.3 The normal distribution 
The normal distribution with parameters  and  is the continuous distribution with p.d.f. given by

It is a symmetrical bell-shaped distribution of great importance. It has mean  and variance .

If  has  distribution then  has standard normal distribution , whose density is
given the special symbol  and likewise its distribution function . Both  and its inverse are tabulated (Neave
tables 2.1, 2.3). Any probability involving a  random variable may be obtained from these tables, e.g.
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2.4.4 The exponential distribution , and the Gamma
distribution 
Before introducing these distributions, we define the Gamma function

Integration by parts shows that

Also

Using the above two results, we can see that for a positive integer ,

For example, . Another value which is relevant in the theory of probability
distributions is .)

The exponential distribution with parameter  is the continuous distribution with p.d.f. given by

It occurs commonly as the distribution of a “waiting time” in various processes. It has mean  and variance
 (see Example 11 below). Its distribution function is given by

Example 11.
Calculate the mean and variance of a  random variable . We have

by changing variables to  and the definition of the Gamma function. As , the mean is .

For the variance, calculate

by the same change of variables. As , we get
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The Gamma distribution with parameters  and  is a generalization of the exponential distribution with p.d.f.
given by

The appearance  here ensures that the p.d.f. integrates to 1 . It has mean  and variance . The
exponential is the special case ; another special case of interest in statistics is the case

, where  is a positive integer, which is known as the  distribution with  degrees of
freedom, .

2.5 Transformations of random variables

2.5.1 New densities from old
If X is a random variable then so is  for any function g , and its distribution is related to that of X by

for , where  denotes the inverse image of B under g . In many cases such inverse images are
easy to identify, e.g. if  is a continuous increasing function and  say, then here the distribution
function of Y is given by

and if X has p.d.f.  and  is also differentiable, then  is also absolutely continuous with p.d.f.

Example 12.
If  has  distribution and  then the above conditions are satisfied (since  always) and

 for . Therefore

for .

2.5.2 Approximating moments
It is sometimes useful to approximate moments of functions of random variables in terms of moments of the
original random variables as follows: suppose the distribution of X is such that the first term Taylor expansion

where , is a good approximation over the bulk of the range of . It then should follow that
 since , and . This approximation will be useful

if  is smooth at . #### Example 13. If  has  distribution, then

Example 14.
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(B) = P (g(X) ∈ B) = ( (B))PY PX g−1

B ⊆ ΩY (B)g−1

g B = (−∞, y]

(y) = ((−∞, y]) = P (g(X) ≤ y) = P (X ≤ (y)) = ( (y))FY PY g−1 FX g−1

fX g Y

(y) = (y) = ( (y)) = ( (y)) [ (y)] .fY F ′
Y

d

dy
FX g−1 fX g−1 d

dy
g−1

X Ex(λ) Y = X
−−√ X ≥ 0

g(x) = , (y) =x−−√ g−1 y2 y ≥ 0

(y) = ( ) = λ 2y = 2λyfY fX y2 d

dy
y2 e−λy2

e−λy2

y ≥ 0

g(X) = g(μ) + (μ)(X − μ),g ′

μ = E(X) X

E(g(X)) ≈ g(μ) E(X − μ) = 0 Var g(X) ≈ VarX[ (μ)]g ′ 2

g μ X Ga(α, λ)

E(logX) ≈ log(α/λ) and  Var(logX) ≈ =( )λ

α

2
α

λ2

1
α



Suppose  has  distribution. Then  might be estimated by  and the odds  could be
estimated by . The  odds, ,
can be estimated by 

 . Now a natural question is what is the (approximate) variance of this estimator.

Here  and . Thus

Hence

and

Now, if you wanted to estimate this variance, you would have to replace  by its estimator , giving an
estimated approximate variance of

This approximation should work reasonably well provided neither  nor  is too small. Obviously it breaks
down if either of these is zero.

2.6 Independent random variables
Two random variables  and  are said to be independent of each other if

for any choice of events A and B . This clearly extends the notion of independence of events. The generalization
to more than two random variables follows:  (a finite or infinite sequence) are independent. If the
events  are independent for all  and for all .
Often we use a sequence of independent random variables as the starting point in constructing a model. It can
be shown that it is always possible to construct a probability space which can carry a sequence of independent
random variables with given distributions.

Example 15.
In a sequence of  Bernoulli trials with probability of success , let

Then  are independent (because the trials are independent) and each has the same distribution,
given by the probability function

X Bi(n, θ) θ X/n θ/(1 − θ)
(X/n)/(1 − (X/n)) = X/(n − X) log log(θ/(1 − θ)) = log θ − log(1 − θ)

log(X/n/(1 − X/n)) =

1 log(X) − log(n − X)

EX = nθ, Var(X) = nθ(1 − θ) g(x) = log(x) − log(n − x)

(x) = +g ′ 1
x

1
n − x

E[log(X) − log(n − X)] ≈ log(nθ) − log(n − nθ) = log(θ/(1 − θ))

Var[log(X) − log(n − X)] ≈ nθ(1 − θ)( + )1
nθ

1
n − nθ

2

= = +
1

nθ(1 − θ)
1
nθ

1
n(1 − θ)

θ X/n

+ = +
1

n(X/n)
1

n(1 − (X/n))
1
X

1
n − X

X n − X

X Y

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

, , …X1 X2
∈ , ∈ , … ∈X1 A1 X2 A2 Xn An n ∈ , … ∈A1 FX1

An FXn

n θ

= {Uk
1
0

 if success occurs on k th trial (1 < k < n)
otherwise

, , …U1 U2 Un

(0)PU

(1)PU

(i)PU

= 1 − θ

= θ

= 0, i ≠ 0, i ≠ 1



Note also that  and  for each k .

If we have several random variables defined on the same probability space, then we can form functions of them
and create new random variables, e.g. we can talk about the sum of them. The following results are important.  
(i) .

If  are independent then in addition: (ii)  and
(iii) .

Example 16.
(Continuing Example 15)  total no. of successes which has  distribution. Using
(i),

using (iii)

confirming these facts for .

Often if each of a sequence of independent random variables has a standard form, then their sum has a related
standard form. The following summary gives examples, it being understood in each case that the two random
variables on the left are independent, and the notation being self-explanatory.
 (i) 
 (ii) 
 (iii) 
 (iv) 

3 Multivariate random variables and distributions
3.1 General Concepts
If  are random variables, not necessarily independent, defined on the same sample space, then
the induced sample space is (a subset of) -dimensional space, , and the induced probability measure is
called the joint distribution of . Alternatively we can think of  as a
random vector.

The joint distribution may be discrete, i.e. given by

where  is called the joint probability function of . It may also be absolutely
continuous, i.e. given by

where  is called the joint probability density function of . There are many other
possibilities, e.g. it might be discrete in the first variable and absolutely continuous in the second variable. For
simplicity of notation we shall talk mainly about two random variables (  ) say. Most of the concepts
generalize naturally.

3.1.1 Discrete case
The joint probability function

E ( ) = θUk Var( ) = θ(1 − θ)Uk

E ( + + … + ) = E ( ) + E ( ) + … + E ( )X1 X2 Xn X1 X2 Xn

, , … ,X1 X2 Xn E ( … ) = E ( )E ( ) …E ( )X1X2 Xn X1 X2 Xn

Var( + + … + ) = Var + Var + … + VarX1 X2 Xn X1 X2 Xn

+ + … + =U1 U2 Un Bi(n, θ)

E ( + + … + ) = nθ;U1 U2 Un

Var( + + … + ) = nθ(1 − θ)U1 U2 Un

Bi(n, θ)

B ( , θ) + B ( , θ) = B ( + , θ)i1 n1 i2 n2 i3 n1 n2
( ) + ( ) = ( + )Po1 μ1 Po2 μ2 Po3 μ1 μ2

( , ) + ( , ) = ( + , + )N1 μ1 σ2
1 N2 μ2 σ2

2 N3 μ1 μ2 σ2
1 σ2

2
G ( , λ) + G ( , λ) = G ( + , λ)a1 α1 a2 α2 a3 α1 α2

, , … ,X1 X2 Xk

k R
k

, , … ,X1 X2 Xk X = ( , , … , )X1 X2 Xk
′

P {( , , … , ) ∈ B} = … ( , , … , ) (B ⊆ )X1 X2 Xk ∑
( , ,…, )∈Bi1 i2 ik

p , ,…,X1 X2 Xk
i1 i2 ik R

k

p , ,…,X1 X2 Xk
, , … ,X1 X2 Xk

P {( , , … , ) ∈ B} = … ∫ ( , , … , ) d d … dX1 X2 Xk ∬
B

f , ,…,X1 X2 Xk
x1 x2 xk x1 x2 xk

f , ,…,X1 X2 Xk
, , … ,X1 X2 Xk

X, Y



must satisfy  and

The marginal probability function of  (i.e. its probability function in the usual sense) is found by summing over
 while keeping  fixed:

Similarly . If (and only if) X and Y are independent then  factorizes into the
marginals:

More generally we can define the conditional probability functions

and similarly the other way round. We then have, e.g.

by the Law of Total Probability.

3.1.2 Absolutely continuous case
All the analogous results go through, where probability functions are replaced by p.d.f.s and sums by integrals.
The definition of conditional p.d.f. as

is less obvious but nevertheless works.

3.2 Covariance and Correlation

3.2.1 Two variables
The covariance of two random variables  and  is defined as

If  and  are independent then , but the converse is not true. The covariance measures how
strongly  and  are (linearly) related to each other, but if we require a dimensionless quantity to do this we use
the correlation coefficient:

It may be shown that , with equality if and only if there is an exact linear relationship between 
and  (  say).

(i, j) = P (X = i, Y = j)pX,Y

(i, j) ≥ 0pX,Y

(i, j) = 1∑
i∈ΩX

∑
j∈ΩY

pX,Y

X

j ∈ ΩY i ∈ ΩX

(i) = (i, j)pX ∑
j∈ΩY

pX,Y

(j) = (i, j)pY ∑i∈ΩX
pX,Y pX,Y

(i, j) = (i) (j)pX,Y pX pY

(i ∣ j) = P (X = i ∣ Y = j) =pX∣Y
(i, j)pX,Y

(j)pY

(j) = (i) (j ∣ i)pY ∑
i∈ΩX

pX pY ∣X

(x ∣ y) =fX∣Y
(x, y)fX,Y

(y)fY

X Y

Cov(X, Y ) = E(X − E(X))(Y − E(Y )) = E(XY ) − E(X)E(Y ).

X Y Cov(X, Y ) = 0
X Y

ρ(X, Y ) = .
Cov(X, Y )

[(VarX)(Var Y )]− −−−−−−−−−−−−−√

|ρ(X, Y )| ≤ 1 X

Y Y = a + bX



To evaluate the covariance we use

in the discrete case and an analogous integral in the absolutely continuous case. Covariance is a symmetric
function  and is linear in each of its arguments, e.g.

It is needed when we wish to evaluate the variance of the sum of two (or more) not necessarily independent
random variables:

This is most easily seen by writing  and using the linearity in both
arguments.

3.2.2 General case
Let  be a random (column) vector with components . Then the mean vector  has its  th
component given by , so we can write  and then (to practise notation)

.

Now let

which makes  a  matrix, and write . You can check (by considering the  th entry on both
sides, that

[Notational note: it is also common to use  for .]

If  is a -vector (  ) and  is a  matrix of rank  then

and

If  is any vector (or length  ) then,  is actually a random variable. Now using the result just given with
,

but  and variances are always non-negative. Hence the matrix  must have the
property that, for every . Matrices with this property are called non-negative definite. Multiplying
out the definition  and rearrange to give that

(c.f.  ). Here note that  is a matrix with  th entry equal to . On the
other hand

E(XY ) = ij (i, j)∑
i∈ΩX

∑
j∈ΩY

pX,Y

(Cov(X, Y ) = Cov(Y ,X))

Cov(X, aY + bZ) = aCov(X, Y ) + bCov(X,Z).

Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X, Y ).

Var(X + Y ) = Cov(X + Y ,X + Y )

X , , … ,X1 X2 Xk μ i

EXi EX = μ

= (E(X) = E ( ) = E ( )μi )i Xi Xi

= Cov( , ),Σij Xi Xj

Σ k × k Cov(X) = Σ ij

E(X − μ)(X − μ = Σ.)T

Var(X) Cov(X)

a q q ≤ k B q × k q

E[a + BX] = a + Bμ

Cov[a + BX] = BΣBT (2)

y k XyT

B = yT

Cov[ X] = ΣyyT yT

Var( X) = Cov[ X]yT yT Σ

y, Σy ≥ 0yT

Cov(X) = E(X − μ)(X − μ)T

E (X )XT = Cov(X) + μμT

= Var(X) + μ  (see notational note on previous page) μT

E ( ) = Cov(X) + (EXX2 )2 XXT ij XiXj



The trace of a square matrix  is the sum of its diagonal entries, and so the previous equation can be
rewritten as

Also, if  is a  matrix then  is just a number and so is equal to its trace. Thus (using the
properties of the trace - see Basic Mathematics material)

and so

3.3 Worked examples
Example 17.
Take the following joint probability function  for two random variables  and  :

The marginal distribution of  then has probability function given by

and that for  has probability function given by

We can see that  and  are not independent, as . Using the formula

+E ( X) = E (∑ ) = ∑Var( ) + = Cov(X))XT X2
i Xi (E )Xi

2 ∑
i ii

∑
i

μiμi

Z, tr(Z)

E ( X) = tr(Cov(X)) + μXT μT (3)

B k × k BXXT

BX = tr( BX) = tr(BX ),XT XT XT

E ( BX)XT = E (tr(BX ))XT

= tr(BE (X ))XT

= tr(B (Cov(X) + μ ))μT

= tr(B Cov(X)) + tr(Bμ )μT

= tr(B Cov(X)) + tr( Bμ)μT

= tr(B Cov(X)) + Bμ.μT

(x, y)pX,Y X Y

X

(1) = 0 + 0.2 + 0.1 = 0.3pX
(2) = 0.1 + 0.1 + 0.2 = 0.4pX

(3) = 0.2 + 0 + 0.1 = 0.3pX

Y

(1) = 0 + 0.1 + 0.2 = 0.3pY
(2) = 0.2 + 0.1 + 0 = 0.3pY

(3) = 0.1 + 0.2 + 0.1 = 0.4.pY

X Y (x, y) ≠ (x) (y)pX,Y pX pY



we can calculate the table of the conditional distribution of  given  :

Note that the columns, which each give a conditional distribution function of , add to 1.

Example 18.
Work out the covariance and correlation of the random variables  and  in Example 17.

We calculate
. So the

covariance is -0.2 . For the correlation, we need to calculate  and
, giving

3.4 Conditional expectation
If X and Y are two random variables, the expected value of  given  is simply the mean of the conditional
distribution. It is denoted by .

Since this depends upon , we can write it as

The corresponding function of the random variable , is known as the conditional expectation of  given
, denoted by . Note that it is a random variable which is a function of  but not of  (  has been

‘eliminated’ by summation or integration). We can similarly talk about . The following properties of
conditional expectation are useful:

 (Any function of  may be ‘factorized out’.)
.

3.5 Transformations of multivariate variables

3.5.1 Densities
The ideas of Section 2.5 generalize naturally. We assume an invertible transformation

with inverse

(x ∣ y) = ,pX∣Y
(x, y)pXY

(y)pY

X Y

X

X Y

E(X) = 2,E(Y ) = 2.1,E(XY ) = 0.3 × 2 + 0.3 × 3 + 0.1 × 4 + 0.2 × 6 + 0.1 × 9 = 4
Var(X) = 4.6 − 4 = 0.6

Var(Y ) = 5.1 − 4.41 = 0.69

ρ(X, Y ) = = −0.31.
−0.2

0.414− −−−√

Y X = x

E(Y ∣ X = x)

x

g(x) = E(Y ∣ X = x).

X, g(X) Y

X E(Y ∣ X) X Y Y

Var(Y ∣ X)

E(E(Y ∣ X)) = E(Y )
E(h(X)Y ∣ X) = h(X)E(Y ∣ X) X

Var(Y ) = Var(E(Y ∣ X)) + E(Var(Y ∣ X))

Y1

⋮
Yn

= (X)g1

⋮
= (X)gn



and Jacobian (generalization of derivative)

where  for invertibility. It can be shown that

Frequently, unwanted  s must then be integrated out to obtain the marginal distribution of the  of interest
(again, take care over the ranges of integration). A particular case in common use is the convolution integral for
obtaining the distribution of the sum of two variables. Using the transformation ,

3.5.2 Approximate means and covariances
Now suppose that the random vector  has length , mean  and covariance matrix , see . Consider

, a -vector, obtained from  by application of the function . Thus  or, more explicitly,

Note that, unlike in  may be smaller than . The idea is to get an approximation for the mean vector and
covariance matrix of . The approach show in 2.5 .2 works here too, but needs the multivariable version of
Taylor’s theorem:

where  is the  matrix

Then, taking expectations,  and applying (2),

which does indeed give a  matrix, as it should. This may seem rather abstract, but it is a powerful result
when you have an estimated covariance matrix for a set of quantities (coming out of your statistical analysis) and
you want to say something about the covariances of some function of them.

= (Y )X1 G1

⋮

⋮
= (Y )Xn Gn
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⎛
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⋮
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$3.5.1, k n

Y

Y = g(X) ≈ g(μ) + (μ)(X − μ)g ′

(x)g′ k × n
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⎝
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∂g1
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⋮
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⋯

∂g1
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3.6 Standard multivariate distributions

3.6.1 The multinomial
If in each of a sequence of  independent trials, one of  different outcomes  may occur, with
probabilities  respectively (  ) and we define

then the joint distribution of  is called the multinomial with parameters . A
combinatorial argument gives its joint probability function as

The marginal distribution of  is  and the distribution of  is , which leads to
the following results:

The likelihood function (see $4.5) is given by

(assuming  ) and the maximum likelihood estimators are  for
 which are unbiased .

3.6.2 The multivariate normal distribution
If  is a -vector and  is a symmetric positive-definite  matrix, then random vector  has multivariate
normal distribution with mean  and covariance matrix , denoted by , if the joint p.d.f. is given by

As the terminology suggests,  for each  and  (the  element of  ).

Despite the forbidding form of the joint p.d.f., the multivariate normal distribution has many nice properties and is
the natural analogue of the normal.

Properties
i. If  is a -vector (  ) and  is a  matrix of rank  then

ii. If  are i.i.d. , then

n k , , … ,A1 A2 Ak

, , … ,θ1 θ2 θk + + … + = 1θ1 θ2 θk

=  no. of times   occurs X1 A1

=  no. of times   occurs X2 A2

 etc. 

, , … ,X1 X2 Xk (n; , , … , )θ1 θ2 θk
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⎩
⎨
⎪⎪

⎪⎪

…n!
! !… !i1 i2 ik

θ
i1
1 θ

i2
2 θ

ik
k

0
0

 if  , , … , ≥ 0i1 i2 ik

+ + … + = ni1 i2 ik

 otherwise 

Xr Bi(n, )θr +Xr Xs Bi(n, + θs)θr

E(X)r
Var( )Xr

Cov( , )Xr Xs

= nθr
= n (1 − )θr θr

= −n  if r ≠ s.θrθs

L(θ; X) = …
n!

! ! … !X1 X2 Xk

θ
X1
1 θ

X2
2 θ

Xk

k

+ + … + = nX1 X2 Xk =θ̂ r
Xr

n

r = 1, 2, … , k 2

μ k Σ k × k X

μ Σ N(μ, Σ)

f(x) = exp{− (x − μ (x − μ)}.
1

(2π |Σ)k/2 |1/2

1
2

)TΣ−1

E(X =)r μr r Cov( , ) =Xr Xs σrs (r, s) Σ

a q q ≤ k B q × k q

Y = a + BX ∼ N (a + Bμ, BΣ )BT

, , … ,x(1) x(2) x(n) N(μ, Σ)



3.7 Example
Here is an extended example that aims to show why being able to do calculations on covariances is important.

Suppose  are from a multinomial on  trials with probabilities (  ). Imagine that
these are the counts from a two-way contingency table  with the  s being the probabilities of the cells:

Now the odds of  against not , when  is true is  and the corresponding odds when  is not true is
. The odds ratio is the ratio of these two odds, that is  and the log odds ratio is the

logarithm of this, given by

Notice that the when the two odds are the same it is because the way A is distributed is the same whether B
holds of not. Thus the odds ratio being one (and hence the log odds ratio being zero) corresponds to
independence of the two characteristics.

All of this is a lead in to wanting to estimate the log odds ratio and approximate its variance. The obvious
estimate of  is . So the estimate of  is

Let . The results in Section 3.5.2
show that  has approximate mean , but what about getting an approximation to its
variance? Here  is the  matrix

From Section 3.6.1 the covariance matrix of the  ’s is

Hence the approximate variance is

Multiplying the first two components out produces extensive simplification to give

= ∼ N (μ, Σ) .X
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As in Example 14, it would be usual to want to estimate this variance, by replacing the  ’s by their estimates,
giving an estimated approximate variance of

which is a nice memorable form. With a little bit more work we could show that the same result is true if our
original table had been , instead of  and we had the intersections of any picked any two rows and
columns to identify the  ’s we were interested in.

4 Introduction to inference and likelihood
4.1 Introduction
In probability theory we use the axioms of probability and their consequences as ‘rules of the game’ for deducing
what is likely to happen when an ‘experiment’ is performed. In statistical inference we observe the outcome of an
‘experiment’ - which we call the data - and use this as evidence to infer by what mechanism the observation has
been generated. Because of the apparent random variation in the data we assume that this mechanism is a
probability model; the data help us to reach some decision about the nature of this model. Often in order to make
the problem of inference tractable, we make some broad assumptions about the form of the underlying
probability model; the data then help to narrow our choices within these assumptions.

As a common example, a collection of data of the same type,  say, may be regarded as an
observation on a sequence of independent identically distributed (i.i.d.) random variables,  say,
whose common distribution is of some standard form, e.g. normal or Poisson, but whose parameters are
unknown. Such data constitute a random sample. The data then give us information about the likely values of the
parameters.

These notes concentrate on classical (or frequentist) inference in which we assume that the values of our
underlying parameters are unknown, but fixed. An alternative approach is Bayesian inference (see MAS6004) in
which we express our initial uncertainty about the true values of parameters by assigning them probability
distributions. The data then combine with these prior ideas to offer an updated distributional assessment of the
parameter values.

4.2 Types of (classical) inference
Three common types of inference are as follows

Point estimation A single number (which is a function of the observed data) is given as an estimate of some
parameter. The formula specifying the function is called an estimator.

Interval estimation Instead of a single number, we specify a range (usually an interval) of values in which the
parameter is thought to lie on the basis of the observed data.

Testing hypotheses A hypothesis about a parameter value, or more generally about the underlying probability
model, is to be accepted or rejected on the basis of the observed data.

Many other types of action are possible, e.g. ‘collect more data’.
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4.3 Sampling distributions
Inference about a population is usually conducted in terms of a statistic  which is a
function of the observed data. Regarded as a function of the corresponding random variables,

, this statistic is itself a random variable. Its distribution is known as the sampling
distribution of the statistic. In principle this distribution can be derived from the distribution of the data; in practice
this may or may not be possible. The sampling distribution is important because it enables us to construct good
inferential procedures and to quantify their effectiveness.

Example 19.
If  is a random sample from the normal distribution  then two important statistics are
the sample mean

and the sample variance

which are used to estimate  and  respectively. It may be shown that

and that  and  are independent. The first result above, for instance, tells us how precise  is as an
estimator of  : it has ‘mean square error’

which decreases as the sample size n increases.

4.4 Normal approximations for large samples
In the preceding example, we note that if the probability model is correct (i.e. if ,  are i.i.d.
random variables each with  distribution) then the sampling distribution of  is known exactly. But the
central limit theorem tells us that even if the distribution of the  is not normal in form, the sampling distribution
of  is approximately normal in form if the sample size  is large. We say that the sampling distribution of  is
asymptotically normal.

The important consequence of this result is that we can conduct inference using the sampling distribution of 
without being too concerned what the underlying distribution of the  is.

There are many other statistical models in which the sampling distribution of a statistic is asymptotically normal;
in other cases it may be e.g. asymptotically  (which typically has behind it a result about some multivariate
statistic being multivariate normal by the central limit theorem). The beauty of these results is that what might be
an intractable distributional problem is made tractable by an approximation using a standard distribution. Such
methods are known as large sample methods.
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4.5 Likelihood
A key tool in many classical and Bayesian approaches to inference is the likelihood function. We often have
some reason (for example a probabilistic model for the process producing the data) to assume a particular form
for the joint p.d.f. of , usually involving some standard distribution. However, the parameters of the standard
distribution will usually be unknown, and our aim in analysing the data will be to obtain information about the
values of these unknown parameters.

General parameters are usually denoted by ; we represent  as a vector, although in any particular case the set
of parameters can be a scalar (a single number), a matrix or some other structure.

If we have a statistical model with parameter values  then  is a p.d.f. (in the continuous case) and as
such it defines the distribution of , given values of . (If we have discrete random variables, then we would
have a probability function instead of a p.d.f. The theory in this case is very similar, so it is common to use the
same notation in both cases.)

Once we have observed data values  (a realisation of  ) we can consider  as a function of . Note
that, considered this way, it is no longer a p.d.f.; in particular there is no requirement for it to integrate to 1 .

Definition:
When we regard  as a function of , for the fixed (observed) data , it is called the likelihood function
(or just the likelihood). We will denote it by  and we say that  is the likelihood of  based on data

.

The likelihood is a function of the parameter . Thus, to describe completely the likelihood, it is important, when
we calculate , to identify the set of the possible parameter values , that is the domain of . We will
denote the set of possible parameter values by .

In a situation in which  are not a random sample (so they are not i.i.d.), the likelihood is still just the
joint p.d.f. or probability function of the variables, but this will no longer be a simple product of terms of identical
form.

This function provides the basic link between the data and unknown parameters so it is not surprising that it is
used throughout classical inference in determining (theoretically or graphically) estimates, test statistics,
confidence intervals and their properties and underpins the entire Bayesian approach. In many situations it is
more natural to consider the natural logarithm (but we usually use log for this rather than ln) of the likelihood
function

This is often denoted simply .

4.6 Maximum likelihood estimation
If we approach inference from a likelihood-based perspective, then a natural choice of point estimator for  is the
maximum likelihood estimator  where  is such that

This is the value which gives the observed data the highest likelihood (i.e., in the discrete case, the highest
probability of having occurred).

Example 20.
Let  be a random sample from .
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It is easier to maximize

Differentiating,

Therefore  is the maximum likelihood estimator of . You can check that the
second derivative is negative to confirm that this is indeed a maximum.

Example 21.
Let  be the values of independent observations of exponential random variables with unknown
parameter  (mean  ). Then the likelihood function is

and the log likelihood . To find the maximum likelihood estimate, differentiate
 with respect to  :

So at a maximum we will have

which implies that at a maximum . To check that this really is a maximum, look at the
second derivative:

which is negative, indicating that we have indeed found a maximum. So the maximum likelihood estimate is
. (Note that we write  to distinguish this from the true value of the parameter , which was what we

were trying to estimate, but the actual value of which remains unknown.)

Notes: 1) It is equivalent and often easier to maximize the natural logarithm of the likelihood rather than  itself.
2) Writing the process in terms of the observed likelihood  leads to the maximum likelihood estimate
rather than the maximum likelihood estimator. (The first is a function of the actual values, , the second of the
random variables .) This may tempt you into notational inaccuracy when considering properties of m.l.e.s, etc.
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4.7 Properties of estimators

4.7.1 Unbiasedness
If  is some function of a parameter  and  is some function of , then  is an
unbiased estimator of  if

for all values of . [  denotes expected value with respect to the sampling distribution of  when  is the true
value of the parameter]. In other words, ‘on average’  gives the right answer.

Example 22.
If  is a random sample from any distribution with mean  and

then  as we have seen earlier. Hence  is an unbiased estimator of . Unbiasedness is a desirable
property in general, but not always, as the following example shows.

Example 23.
Let  be an observation from , and suppose we wish to estimate . If we define

then

and so  is an unbiased estimator of . But is is an absurd estimator, because e.g.   cannot take the
value -1 .

4.7.2 Mean square error and efficiency
If  is an estimator of , then its mean square error (m.s.e.) is given by

In particular, if  is unbiased for , then the above is the same as the variance of . It is a measure
of the likely accuracy of  as an estimator of  : the larger it is, the less accurate the estimator.

If  and  are two different estimators of , the relative efficiency of  is given by the ratio

This appears to depend on , but in many cases it does not. #### Example 24. Let  be a
random sample (of odd size) from , let  be the sample mean, and let  be the sample median,

i.e. the  data value in ascending order.  and  are both unbiased estimators of ; we know that
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and it may be shown that

for large . Hence the (asymptotic) relative efficiency of  with respect to  as an estimator of  is

 is less efficient than  by this factor.

5 Interval estimation and hypothesis testing
5.1 Interval estimation
In point estimation we aim to produce a single ‘best guess’ at a parameter value . Here, in contrast, we provide
a region (usually an interval) in which  ‘probably lies’.

Construction is via inversion of a probability statement concerning the data, so if  is a statistic derived from the
data we find, by examining the sampling distribution of , a region  such that

for some suitable small , and invert this to identify the region  which then satisfies

In other words, the ‘random region’  ‘covers’ the true parameter value  with probability . In simple
situations  is an interval, called a confidence interval for . The confidence level is usually expressed as a
percentage:  (e.g.   gives a  confidence interval).

Example 25.

 a random sample from  with  unknown,  known.  with

Thus

where  solves  (from tables). Thus

so

Inverting (7)
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i.e.

Note: we have chosen the  in (6) symmetrically; we could have chosen any  values giving overall
probability level .

In general if an estimator  is asymptotically normally distributed with mean equal to the true value of the
parameter , then an approximate  confidence interval is given by

where , the standard deviation of the sampling distribution of , is called the standard error. This may itself
have to be estimated from the data.

5.2 Introduction to testing hypotheses
A hypothesis is a statement about the underlying probability model which may or may not be true. We do not
know which. We can, however, obtain some information by looking at the data. A test is a decision rule which
attaches a verdict (‘do not reject’ or ‘reject’) to each possible set of observed data. Ideally we would like to make
the right decision most of the time.

If the model is specified up to an unknown (vector) parameter  say, then a hypothesis  is a statement
restricting  to some subset  of the parameter space . If  specifies completely the distribution of the data,
it is called a simple hypothesis (usually this means  is a singleton); otherwise it is composite. A null hypothesis
(typically denoted  ) is one of particular interest - typically the default/status quo/no effect hypothesis.

5.3 Pure significance tests (for simple  )
In addition to our null hypothesis  we need some idea of the type of departures from  which are of interest.

Example 26.
Data  i.i.d.
Possible departures of interest:
  (a) increase in mean,
  (b) increase in variance,
  (c) correlation between successive individuals.

To formulate a pure significance test we need to find a statistic  such that
  (i) the values of  increase with departure from  in the direction of interest;
  (ii) the distribution of  is known when  is assumed true.

For the departures from  in Example 26 we might use the following test statistics:
  (a) Use  on  (note terminology).
  (b) Use  on .
  (c) Use  distribution known on 

We evaluate , the observed value of , and find  true  - the -value or
observed (or exact) significance level of . This is the probability, under , of getting a value of  at least as
extreme as the one observed.
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In specifying the result of the test we would either quote the -value directly, or, if  for some small
preassigned value , say ‘the data depart significantly (at level  ) from  (in the direction of interest)’.

5.4 Hypothesis tests
Here we specify formally both our null hypothesis  and an alternative hypothesis 
(often  ) representing our ‘departures of interest’.

Any test divides the set of possible data sets  say, into an non-rejection region  and a critical region  such
that if the observed  lies in  we reject  and otherwise we do not reject it.

In principle we can evaluate, for each , the probability that  lies in ; the function

is called the power function of the test and summarises its properties. Ideally we wish to choose  so that 
is small (close to 0 ) for  and large (close to 1 ) when . The number

is called the size of the test, this is the maximum probability of rejecting  if it is true. Often, instead , we
work in terms of a statistic , say, known as the test statistic; it is then convenient to define the non-
rejection and critical regions in terms of  rather than .

5.5 Constructing tests

5.5.1 Intuition
Often the form of a test (i.e. the form of the critical region) will be suggested by intuition. For example, if  is a
good estimator of a parameter  and the hypotheses take the ‘one-sided’ form

for some fixed given , then we would expect that the larger the value of , the greater the evidence in favour
of ; and so a sensible critical region will be of the form  for some constant . Then

To choose  : as  increases,  decreases for all values of ; for  this is a good thing, whereas for
 it is a bad thing. So we must choose  so as to strike a balance. Often this is done by prescribing the

value of  (e.g. 0.05). This is sufficient to determine c. Often tables of critical values of the test statistic for
specified  are produced.

Example 27.
 a sample from .

Use  as test statistic; critical region will be of the form .

This has its maximum value in  when ; so if  is prescribed we must choose  such that
. This is easily solved for  (using tables).
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If  Neave table 2.3(b) gives

. So the test is ‘reject  at the  level if ’

5.5.2 Neyman-Pearson approach
This form is most easily introduced in the (not very practically useful) case of choosing between two simple
hypotheses  versus  (it can be extended to composite hypotheses).

We consider the probabilities of making the two types of error that can occur in any test

Again, ideally we would like both  and  small, but simultaneous reduction is usually impossible so we
compromise by fixing  at an acceptably low level and then minimising  (for this fixed  ).

The Neyman-Pearson lemma tells us that the test with

where  is such that  will minimize , i.e. it is the most powerful
test of level .

Typically the form of the test simplifies and we can work with a particular test statistic  and determine
probabilities from its sampling distribution.

Example 28.
 a sample from ,  known.

Intuition suggests a test with critical region  and this is indeed the most powerful test:

So the N-P lemma says the best test has critical region given by  ’s for which

i.e.   (take care over direction of inequality) i.e.   say recalling
. Now  is determined by the requirement

The sampling distribution of  is  when  holds. Therefore

i.e.   evaluated using Neave 2.3(b).
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5.5.3 The likelihood ratio procedure
This is a method of suggesting a form of test which in principle always works. It gives the same result as the
Neyman-Pearson test in the simple versus simple case (despite the difference in the denominator) and extends
easily to more general situations. There is also a useful asymptotic result about it (see later). The test is defined
by considering the ratio

This ratio is always  since the supremum in the denominator is over a larger set. The further  is from 1, the
greater the evidence against . Hence a form of critical region which suggests itself is .

Example 29.
 a sample from  with both  and  unknown.

Here  and . The likelihood is

This is maximized in  by putting  and  (check by differentiating!), giving

It is maximized in  by putting  and , giving

Hence the critical region takes the form (from the ratio of the previous two expressions)
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is called the one-sample  statistic. Its sampling distribution if  does not depend upon , and is known
as the  distribution with  degrees of freedom. So a test of given size may be constructed using tables of
critical values for this distribution (Neave 3.1).

The form of test suggested by the likelihood ratio procedure often simplifies, as above, but the sampling
distribution of the simplified test statistic must be derived by ‘ad hoc’ methods - and this is not always possible. It
is, therefore, useful to have a general asymptotic result which works under reasonable regularity conditions as
the sample size ; this is that if  is true  is asymptotically  where , the number of
degrees of freedom, is the difference in dimensionality between  and .

Example 30.
 are samples from , 

respectively where  are all unknown, and we wish to test . Then
the unrestricted parameter space  is -dimensional whereas  is (  )-dimensional, since  imposes
(  ) linear constraints. Hence

5.6 Duality between interval estimation and hypothesis testing
There is a duality between interval estimation and hypothesis testing in that possible parameter values which
would not be rejected in a size  test are those which constitute the  confidence interval. This
gives us a direct means of establishing  in (4).

Let  denote the acceptance region for a standard test of size  of  (simple) against
 using a test statistic . Then we have

Defining  as in (5), this may be written

So  is a confidence interval for .

1. Estimation is developed more fully later, in Section 4↩︎

2. See $4.7.1↩︎

3. There is more on contingency tables in Block B.↩︎
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