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Introduction

A standard principle in public finance (see, e.g., Barro, 1979) is that, for risk averse
households, taxation should be designed so as to smooth out lifetime consumption, aiming
at fiscal certainty over time. Yet, tax uncertainty is recognized, usually under a negative
view, as a feature of many tax systems in and outside the group of OECD countries (see,
e.g., ’Tax Certainty’, IMF/OECD Report for the G20 Finance Ministers, 2017), even when
stemming from policy design and legislation. We study when optimal fiscal policies must
involve fiscal uncertainty, or ‘taxspots’. Taxspot equilibria are competitive equilibria where
uncertainty comes from random tax rates. Consequently, taxspots provide new insights
about the properties of optimal taxes.

We focus on Ramsey problems, where a benevolent planner chooses the income tax rates
on capital and labor that maximize household welfare, taking into account the households’
optimizing behavior, the government budget constraint, and feasibility. We show that for
many economies optimal taxes involve taxspots. From a mathematical point of view, the
reason is simple: the ‘incentive constraints’ reflecting optimal behavior of households need
not be concave, implying that the planner’s value function need not be concave. For Ramsey
problems, concavity of the incentive constraints depends on the curvature of the marginal
utility, itself a function of the third-order derivatives of utility. If the lack of concavity of the
incentive constraints is larger than the concavity of the utility function, then uncertain tax
rates can Pareto improve. From an economic point of view, if households are prudent, then
adding uncertainty to disposable income increases investment or the labor supply. With
sufficient prudence, risk averse households are more than compensated for the additional
consumption uncertainty by an increased expected consumption.

We consider the neoclassical growth model with perfectly competitive markets and
representative households. First, we study economies with complete financial markets,
where the planner can issue taxspot contingent bonds. We show that taxspots can be Pareto
improving. Since financial markets are complete, households can fully insure themselves
against taxspots, but they will not at equilibrium, because the cost of full insurance is too
high. Moreover, we show that market completeness implies that taxspots need not involve
more than two episodes of random tax rates. Consequently, there is a finite date after which
there is no more tax uncertainty.

We then study economies with no financial markets, where the planner cannot issue
bonds and the primary deficit has to be zero. Optimal taxation in these economies has
been studied by Benhabib and Rustichini (1997), Phelan and Stacchetti (2001), and Straub
and Werning (2020), among others. We show that taxspots can be Pareto improving
and recurrent, i.e., there is no finite date after which there is no more tax uncertainty.
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Recurrent taxspots break the serial correlation between government expenditures and taxes.
In contrast, a common belief is that optimal taxes smooth consumption, labor income taxes
are essentially constant over the business cycle, and capital income taxes adjust only to
innovations in exogenous shocks (see, e.g., Chari et al., 1994).

Finally, in the appendices we show how to change utility functions to ensure that
equilibria are unchanged and the sufficient conditions for existence of taxspots are satisfied.
Moreover, we provide a new turnpike theorem for the neoclassical growth model which we
use to produce examples of economies with taxspots.

Related literature: The first study to highlight that tax uncertainty can be Pareto improving
is Stiglitz (1982), where there are two dates and neither capital accumulation nor market
completeness versus incompleteness is considered. Households face the same tax rates ex-
ante but not ex-post, leading to horizontal inequality. Our taxspots make all households face
the same tax rates ex-post, and do not violate horizontal equity.

Bizer and Judd (1989) study the dynamic consequences of random taxes in a neoclassical
growth model with incomplete markets and exogenous randomness in taxes. They find that
the welfare loss associated with random taxes can be limited.

Hagedorn (2010) considers complete markets economies without capital and with money
in the utility function. Two-period cycles are found to be welfare improving in economies
with no uncertainty and constant government expenditures. Our sufficient condition for
taxspots to be Pareto improving resembles and extends their condition for cycles.

In their recursive formulation of Ramsey problems, Marcet and Marimon (2019)
acknowledge the nonconcavity of incentive constraints. In related work on recursive
formulations by Pavoni et al. (2018) as well as Cole and Kubler (2012) the technical issues
arising from the nonconcavity are addressed by convexifying incentive constraints using a
public randomization device. Yet no condition is given for Pareto improving lotteries.

Our general observation that uncertain policy can be Pareto improving naturally applies
to models with more frictions than we consider. The frictions can come from the planner’s
inability to commit, as in Benhabib and Rustichini (1997) and Phelan and Stacchetti (2001),
from political considerations as in Acemoglu et al. (2011), or from technology, as is the case
for trade being organized through bilateral matching resulting in a sequence of incentive
constraints. In fact, Phelan and Stacchetti (2001) allow for uncertainty to convexify an
equilibrium correspondence. We conjecture that taxspots arising because of prudence are a
robust feature of optimal fiscal policy even in the presence of additional constraints imposed
on the planner.

We connect the planner’s problem with taxspots to competitive equilibria with ‘extrinsic’
uncertainty, as in Shell and Wright (1993) and related literature on sunspots and lotteries in
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static economies – see Rogerson (1988) and Garratt et al. (2002), where nonconvexities
come from indivisibilities, and Kehoe et al. (2002), where they come from informational
problems. In Goenka and Prechac (2006) it is found that, for economies with two dates
and incomplete markets, in the presence of prudence sunspots can make some consumers
better off, but others worse off. We dub equilibria with uncertain fiscal policy ’taxspots’
because they depend on extrinsic uncertainty. For taxspots, how equilibria depend on the
extrinsic uncertainty is chosen by the planner. However, in one interpretation of fiscal
policies (Ljungqvist and Sargent 2018, p. 1041) they are "a description of a system of
public expectations to which the government conforms," connecting taxspots and sunspots.
Our taxspots are implementable by making fiscal policy depend on ’sentiments’ or higher-
order beliefs circulating in the market, following the interpretation given in Angeletos and
La’O (2020) and related literature.

The paper is organized as follows. Section 1 introduces the basic model. Section 2
presents the mathematical structure common to Ramsey problems and giving rise to random
improvements and optimally uncertain taxes. Sections 3 and 4 focus on the cases of
complete and totally incomplete financial markets, respectively. Appendix A contains some
of the proofs. Appendix B presents an ancillary perturbation argument, and Appendix C
details the construction of an example of economy where the Ramsey solution converges to
a steady state.

1 Optimal linear taxation

Ramsey taxation problems are usually characterized by a fixed sequence of government
expenditures that must be financed by linear taxes on the income. We examine the
simplest case of a production economy with a representative household with preferences
over consumption and leisure and a representative firm transforming capital and labor into a
consumption good. Moreover, in line with a large part of the literature, we assume that the
government can commit to a tax plan.

More precisely, a discrete time infinite horizon economy faces an uncertain and
exogenous sequence of government expenditures and productivity shocks (gt ,at)t≥0 =

(θt)t≥0 with θt ∈ Θ, where Θ is finite. A history (or date-event) is θ t = (θ0, . . . ,θt) and
πθ t ∈ [0,1] its probability. Unless stated otherwise all processes are adapted to the tree
generated by (θt)t≥0.

There is a continuum of identical households. The representative household has an initial
stock of capital k0, one unit of time at every date and preferences represented by expected
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discounted utility over consumption and leisure (ct ,xt)t≥0,

E0 ∑
t≥0

β
tu(ct ,xt),

where Et is the expectation at date t, u is the instant utility function and β ∈ (0,1) is the
discount factor. The representative firm has a constant returns to scale production function
fat (·) transforming capital and labor (kt ,1−xt) into output subject to a productivity shock.
Without loss of generality we assume that capital depreciates completely.

Utility and production functions satisfy the following assumptions:

A.1 u : R+×[0,1] → R ∪ −∞ is continuous, thrice continuously differentiable on
R++×(0,1) with uc(0,x) = ux(c,0) = ∞, Du(c,x) ∈ R2

++ and vT D2u(c,x)v < 0 for
all vectors v ̸= 0.

A.2 fa : R2
+ → R+ is continuous, twice continuously differentiable on R2

++ with
D fa(k,1−x) ∈ R2

++, and vT D2 fa(k,1−x)v < 0 for v·D fa(k,1−x) = 0 with
v ̸= 0. Moreover, fa(0,1−x) = fa(k,0) = 0 and limk→0 fak(k,1−x) > β >

limk→∞ fak(k,1−x).

Markets are perfectly competitive. We consider two polar cases regarding financial markets:
complete financial markets, and totally incomplete markets with no assets except capital.

Given initial government debt b0, the government chooses tax rates on capital and
labor τt = (τk

t ,τ
ℓ
t )t≥0 and –in case of complete financial markets– state-contingent bonds

(bt+1)t≥0. As usual in the literature, we assume that the initial capital tax rate is fixed,
at zero, to avoid the trivial front loading of government expenditures via nondistortionary
capital taxes on k0.

The price at date t = 0 for the good at date t is pt , and in the good at date t the return
on capital is rt and the wage is wt . In case of complete markets, the price of bonds is
qt+1 = πθtθt+1 pt+1/pt in the absence of arbitrage.

Feasibility states that consumption, investment and government expenditures must be
less than output

ct + kt+1 +gt ≤ fat (kt ,1−xt).

The sequential household budget constraint at date t is

ct + kt+1 +Et
pt+1

pt
bt+1 ≤ (1−τ

k
t )rtkt +(1−τ

ℓ
t )wt(1−xt)+bt .

In addition, the household has to satisfy the transversality conditions on capital, and on
bonds –in case of complete financial markets. The sequential government budget constraint
at date t is

gt +bt ≤ τ
k
t rtkt + τ

ℓ
t wt(1−xt)+Et

pt+1

pt
bt+1.
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An equilibrium at (Θ,π) and b0,k0 is prices (pt ,rt ,wt)t≥0, consumption, leisure, capital
and bonds (ct ,xt ,kt+1,bt+1)t≥0, and taxes (τt)t≥0 such that: markets clear; households
maximize expected utility subject to its budget constraints and transversality conditions;
firms maximize profits; and, the government satisfies its budget constraints. Initial capital
k0 and initial debt b0, and expenditures (gt)t≥0 are assumed compatible with equilibrium
existence. An equilibrium is interior provided (ct ,xt ,kt+1) ∈ R++×(0,1)×R++ for every
t ≥ 0.

The first-order conditions and the transversality conditions for the household are

ux(ct ,xt) = uc(ct ,xt)(1−τℓt )wt

Etuc(ct+1,xt+1)(1−τk
t+1)rt+1 = uc(ct ,xt)

lim
t→∞

E0 β
tuc(ct ,xt)kt+1 = 0

lim
t→∞

E0 β
tuc(ct+1,xt+1)bt+1 = 0.

The first-order conditions for the firm are{
rt = fatk(kt ,1−xt)

wt = fatℓ(kt ,1−xt).

A Ramsey Problem consists in finding taxes and bonds that maximize the households’
expected utility over all possible taxes and bonds for which equilibria exist.

2 Pareto improving lotteries: A general framework

To study the emergence of taxspots, we offer an abstract formulation of the Ramsey Problem
which will highlight its common mathematical structure across financial markets variations
and beyond, and its main properties.

Random improvements

A Ramsey Problem can be represented as an optimization problem of the form:

max
z∈Z

U(z)

s.t.

{
Φi(z) ≥ 0 for every i ∈ I

Ψj(z) ≥ 0 for every j ∈ J.

(P)

where Z is an open subset of a Banach space and U,(Φi)i∈I,(Ψj)j∈J ∈C 2(Z,R), where I and
J are countable index sets and U is concave. In our applications, U is equal to the expected
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discounted utility of consumption and leisure, the Φi’s include the feasibility functions and
the Ψ j’s represent (some of) the incentive constraints (e.g., budgets or first order conditions).

A random improvement over z is (△z1,△z2,µ) such that z+△zh ∈ Z for h ∈ {1,2},
µ ∈ (0,1), and

µU(z+△z1)+(1−µ)U(z+△z2) > U(z)

Φi(z+△zh) ≥ 0 for every i and both h

µΨj(z+△z1)+(1−µ)Ψj(z+△z2) ≥ 0 for every j.

We assume that a solution to problem (P) exists, and focus on sufficient conditions for
existence of random improvements over a solution to (P). The main idea to obtain a random
improvement is twofold: construct a ’policy change’ △z ∈ Z which is ’U-improving’, ’Φ-
feasible’ and ’Ψ-unfeasible’; and, ensure that a curvature condition ensuring the policy
change is more likely than opposite policy change. Hereafter, we write △z(2) = (△z,△z)
for any △z ∈ Z. 1 Let

Z =

{
△z ∈ Z | DU(z∗)△z > 0, DΦi(z∗)△z = 0 for every i and sup

j∈J
DΨj(z∗)△z < 0

}
be the set of ’U-improving’, ’Φ-feasible’ and ’Ψ-unfeasible’ policy changes.

Lemma 1 Suppose z∗ is a solution to problem (P) and assume that there is △z ∈ Z such
that:

• (DΦi(z∗))i∈I\H is onto for H = { i ∈ I | ∀γ ∈ [−1,1] : Φi(z∗+γ△z) = Φi(z∗)}.

• inf
j∈J

−
D2Ψj(z∗)△z(2)

DΨj(z∗)△z
> −D2U(z∗)△z(2)

DU(z∗)△z
. (C)

Then a random improvement (△z1,△z2,µ) over z∗ exists with (△z1,△z2) and (△z,−△z)
approximately collinear and µ > 1/2.

1For a twice continuously differentiable function Γ : Z →R and for △z∈ Z and △z(2) = (△z,△z), we write
DΓ(z) for the (Fréchet) derivative of Γ at z (the continuous linear functional), D2Γ(z) for the derivative of DΓ

at z (the bilinear continuous map), and DΓ(z)△z is the value of the continuous linear functional when applied
to △z, and similarly D2Γ(z)△z(2) is the value of D2Γ(z) applied to △z(2). When the gradient or Hessian exists,
we write DΓ(z) ·△z and △z ·D2Γ(z) ·△z, respectively, where · is the inner product in the respective space.
Further,

Γ(z+△z) = Γ(z)+DΓ(z)△z+
1
2

D2
Γ(z)△z(2)+o(∥△z(2)∥),

via Taylor approximation, so

µΓ(z+△z)+(1−µ)Γ(z−△z)−Γ(z) = (2π−1)DΓ(z)△z+
1
2

D2
Γ(z)△z(2)+o(∥△z(2)∥).
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Since DU(z∗)△z > 0 > DΨj(z∗)△z and D2U(z∗)△z(2) < 0, Condition (C) implies
D2Ψj(z∗)△z(2) > 0. Therefore, Condition (C) implies that in direction △z locally the Ψj’s
are more convex than U is concave. Condition (C) is not at odds with the Ψj’s being quasi-
concave or with the second-order conditions, which restrict curvatures only on the space
tangent to the constraint functions.

We note that the surjectivity condition on DΦ(z∗) used in Lemma 1 is not more
demanding than regularity of z∗,2 itself sufficient to obtain necessity of the Kuhn-Tucker
conditions, and often assumed in applications as Slater conditions may not be available
because the problem may not be convex. Interesting conditions yielding regularity of
a solution, and summable Kuhn-Tucker multipliers, will be provided when the model is
specialized, below.

With regularity and summable multipliers (λi)i∈I and (α j) j∈J , the following sufficient
second-order condition characterizes solutions to Problem (P) as local maximizers,

D2U(z∗)△z(2)+∑
i

λiD2
Φi(z∗)△z(2)+∑

j
α jD2

Ψj(z∗)△z(2) < 0

for all △z ̸= 0 with DΦi(z∗)△z = 0 for every i and DΨj(z∗)△z = 0 for every j.
Ramsey Problems have the common feature that the functions Ψ j depends on marginal

utilities, often derived from U . Thus, our curvature conditions in Theorem 1 relate to the
second- and third-order derivatives of utilities – it is here prudence is going to come into
play. Further, whether there is a ’Φ-feasible’ △z with the property DU(z∗)△z > 0 crucially
relates to taxes, as we show below.

The case where there is a unique Ψ–function turns out to be of particular interest,
because it is easier to give lotteries a policy interpretation coherent with other market
restrictions.

Optimal lotteries transience and recurrence

When the conditions for Lemma 1 hold, lotteries can be optimal. Let △(Z) be the set
of (Borel) probability measures over Z –once lotteries are considered, there is no reason
to restrict attention to two-point lotteries. Associated to problem (P) we construct the
optimization problem which involves lotteries over z, that is,

max
µ∈∆(Z)

Eµ U(z)

s.t.

{
Φi(z) ≥ 0 for every i ∈ I

Eµ Ψj(z) ≥ 0 for every j ∈ J.

(L-P)

2A point z ∈ Z is regular if (DΦi∈I(z),DΨ j∈J(z)) is onto RI ×RJ .
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Again, for the time being we assume that a solution µ∗ to problem (L-P) exists, and instead
focus on a particular property of its solutions.

In our settings the set Z has a time dimension. Indeed, there is an open subset of a
Euclidean space A such that Z = ∏t≥0 Zt where Zt is the set of controls or functions from
Θt to A. A probability distribution µ over Z can be written as a sequence of conditional
probability distribution µt on Zt . Let ω t = (θ t ,zt−1) be a history of states up to date t and
controls up to date t−1 with ω0 = θ0 and let (Ft)t≥0 be the filtration generated by the
histories ω t . Hence, in problem (L-P) the planner chooses (µt)t≥0: at every date t > 0 for
every history of states θ t and all histories controls zt−1, zt is distributed according to the
probability distribution µt(ω

t).

Randomizations (µt)t≥0 are transient provided that there is T such that µt is a Dirac
measure for every t ≥ T , and recurrent provided for every T there t > T such that µt is not a
Dirac measure. We say that µ is transient (recurrent) if (µt)t≥0 is transient (recurrent). Let
supp µ denote the support of µ . The next lemma states sufficient conditions that rule out
recurrent randomizations.

Lemma 2 Suppose J is finite. Let µ∗ be a solution to Problem (L-P). Assume supp µ∗ is
product compact and (U,(Φi)i,(Ψj)j) are product continuous on supp µ∗. Then there is a
transient solution µ∗∗ to Problem (L-P) with no more than |J|+1 conditional randomizations
on any given path.

A usual concern for the use of lotteries in allocation problems is their possible
decentralization (a theme explored in other, static, contexts by, e.g., Shell and Wright (1993),
Kehoe et al. (2002), and related literature): the question is whether the randomizations from
lotteries µ∗

t can occur in markets via a coordination device (a ’taxspot’). Further, averaging
out the Ψ constraints via µ may require additional policy tools to transfer purchasing power
across the lottery realizations, and may be unattainable. Whether or not additional tools are
needed depends on the details of the policy change △z and of the underlying economy, thus
we will examine this second issue in the sections below. Instead, here we settle the first
issue, of the optimal lottery representation via taxspot states.

Let s = (st)t≥0 be a process with serially uncorrelated values st uniformly distributed in
S = [0,1], all t ≥ 0, and ẑ = (ẑt)t≥0 be a process adapted to the filtration (F̂t)t≥0 generated
by all histories ω̂ t = (θ t ,st), and with values ẑt(θ

t ,st) ∈ A.

Lemma 3 Let µ∗ be a solution to Problem (L-P) with supp µ∗ product compact. Then,

Eµ∗ U(z) = Eν∗ U(ẑ), and Eµ∗ Ψ j(z) = Eν∗ Ψ j(ẑ) for every j,

for some (Borel) probability measure ν∗ on processes ẑ = (ẑt)t≥0.
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The proof of Lemma 3 uses standard measure-theoretic tools (in particular, Kuratowski’s
Isomorphism Theorem for Borel sets, and Skorokhod’s Representation Theorem; see, e.g.,
Parthasarathy, 1967, Ch. 3) to map lottery distributions µt over zt into random variables over
(S,B(S),Leb), where B(S) is the Borel sigma-algebra and Leb the Lebesgue measure, and
is therefore omitted. We now go back to the two variants we have introduced above, and see
how the theorems apply.

3 Taxspots with complete markets

Here, using market completeness and the transversality conditions, the equilibrium
sequential budget constraints can be equivalently compressed into a single intertemporal
constraint, eliminating portfolios. As standard, the Ramsey Problem can then be expressed
in primal, relaxed form, after substitution of the equilibrium first order conditions, as

max
(ct ,xt ,kt+1)t≥0

E0 ∑
t≥0

β
tu(ct ,xt)

s.t.



ft(kt ,1−xt)− ct − kt+1 −gt ≥ 0 for t ≥ 0,

E0 ∑
t≥0

β
t [uc(ct ,xt)ct −ux(ct ,xt)(1−xt)]

≥ uc(c0,x0)( fa0k(k0,1−x0)k0+b0)

lim
t→∞

E0 β
tuc(ct ,xt)kt+1 = 0.

(RRP)

The last inequality in Problem (RRP) is the intertemporal incentive constraint, coming from
the intertemporal budget constraint and first-order conditions of the household. The weak
inequality implies that, over the lifetime, the household can spend more than its after-tax
income.

The controls are zt = (ct ,xt ,kt+1). Interest rate rt and wage rate wt can then be derived
from the first-order conditions of the firm. The tax rates can be found from the first-order
conditions of the household. The ex-ante capital tax at date t for date t+1 and the labor tax
at date t are 

τ̄k
t+1 = 1− uc(ct ,xt)

βEt uc(ct+1,xt+1) fatk(kt+1,1−xt+1)

τℓt =
uc(ct ,xt) fatℓ(kt ,1−xt)−ux(ct ,xt)

uc(ct ,xt) fatℓ(kt ,1−xt)
.

(1)

As shown by Zhu (1992), the capital tax at every date is determined only up to a martingale
transformation at every date t, making τ̄k

t+1 the relevant capital tax rate.

10



In line with the literature, to make the taxation problem interesting we assume that
the present value of government assets is not sufficient to finance future government
expenditures at solutions to Problem (RRP) without the incentive constraint. Let ẑ be the
solution to Problem (RRP) without the incentive constraint, and ψt be defined by

ψt(zt) =

 uc(c0,x0)c0 −ux(c0,x0)(1−x0)−uc(c0,x0) fa0k(k0,1−x0)k0 for t = 0

uc(ct ,xt)ct −ux(ct ,xt)(1−xt) for t > 0

with the derivatives with respect to (ct ,xt) denoted (ψct ,ψxt), and D2ψt its Hessian.

Lemma 4 Suppose that

E0 ∑
t≥0

β
tuc(ĉt , x̂t)gt+uc(ĉ0, x̂0)b0 > 0.

If z∗ is a solution to Problem (RRP), then the incentive constraint is satisfied with equality.
If ψ∗

xt > 0 for some history, then the resource constraint is satisfied with equality at that
history.

Since ψxt = uxt+uxctct−uxxt(1−xt) for t > 0, separability of u implies ψxt > 0 so
feasibility is satisfied with equality at every date.

Theorem 1 Suppose z∗ is an interior solution to Problem (RRP). Assume there is a date
t̃ ≥ 0 and history θ̃ t̃ with π

θ̃ t̃ > 0 such that at least one of the following two conditions is
satisfied:

• The labor tax rate is positive and Condition (C) is satisfied for △zℓ with

△zℓt (θ
t) =

{
( f ∗ℓt̃(θ̃

t̃),−1,0) for (t,θ t) = (t̃, θ̃ t̃)

0 otherwise.

• The ex-ante capital tax rate is positive and Condition (C) is satisfied for △zk with

△zk
t (θ

t) =


(−1,0,1) for (t,θ t) = (t̃, θ̃ t̃)

( f ∗kt̃+1(θ̃
t̃ ,θ),0,0) for (t,θ t) = (t̃+1,(θ̃ t̃ ,θ)) for some θ ∈ Θ

0 otherwise.

Then there is a random improvement over z∗.
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Proof: The theorem is established as an application of Lemma 1 to (RRP) with I = ∪t≥0Θt

and J = {1}, where U , (Φθ t )θ t∈I and Ψ are identified as:

U(z) = E0 ∑
t≥0

β
tu(ct ,xt)

Φθ t (z) = fat (kt(θ
t−1),1−xt(θ

t))− ct(θ
t)− kt+1(θ

t)−gt for every θ t

Ψ(z) = E0 ∑
t≥0

β
t
ψt(zt).

The differential (DΦθ t (z∗))θ t is onto, because the differential (DcΦθ t (z∗))θ t is minus the
identity. Clearly,

DU∗△zℓ = −β t̃π(θ̃ t̃)[u∗ct̃(θ̃
t̃) f ∗ℓt̃(θ̃

t̃)−u∗xt̃(θ̃
t̃)]△xℓt̃+1(θ̃

t̃)> 0

DU∗△zk = β t̃π(θ̃ t̃)
[
βEt̃ [u∗ct̃+1(θ̃

t̃ ,θt̃+1) f ∗kt̃+1(θ̃
t̃ ,θt̃+1)]−u∗ct̃(θ̃

t̃)
]
△kk

t̃+1(θ̃
t̃)> 0.

For both △z’s, by construction, DΦ∗△z = 0. Since Condition (C) is assumed to be satisfied
at these △z’s, it is DΨ∗△z ̸= 0. Since z∗ is optimal for (RRP), it is DΨ∗△z < 0. Thus,
△z ∈ Z. 2

Figure 1 below illustrates the theorem in case the labor tax is positive, τ∗ℓt > 0.

-

6

xt

u( ft(kt ,1−xt)−kt+1−gt ,xt)

ψt

t

x∗t

x1

x2

x1 = x∗t −△xt and x2 = x∗t +△xt

Eµ,t xt < x∗tt
t?

Theorem 1 shows that there are random improvements with the following effects on
average: consumption and labor supply increase at date t̃ in case of a positive labor tax;
investment increases at date t̃, and consumption increases at date t̃+1 in case of a positive
ex-ante capital tax. The increases in averages more than compensate for the increase
in consumption-leisure volatility. However, the result depends on Condition (C) being
satisfied.
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The assumption in Lemma 4 ensuring that at any solution to Problem (RRP) the
incentive constraint holds as equality also implies that taxes are positive at some date-event.
When taxes are positive the incentive constraint prevents the planner from increasing the
labor supply or the capital investment further. However, lotteries can help because their
uncertainty increases labor supply or capital investment without violating the incentive
constraint.

As already mentioned, D2Ψ∗△z(2) must be positive for Condition (C) to be satisfied.
Some tedious but straightforward calculations show that

D2Ψ∗(△zℓ)(2) = β t̃πt̃

[
[2u∗cct̃+u∗ccct̃c

∗
t̃ −u∗ccxt̃(1−x∗t̃ )]( f ∗ℓt̃)

2

− 2[u∗cxt̃+u∗ccxt̃c
∗
t̃ −u∗cxxt̃(1−x∗t̃ )] f

∗
ℓt̃

+ 2u∗xxt̃+u∗xxct̃c
∗
t̃ −u∗xxxt̃(1−x∗t̃ )

]
D2Ψ∗(△zk)(2) = β t̃πt̃

[
2u∗cct̃+u∗ccct̃c

∗
t̃ −u∗ccxt̃(1−x∗t̃ )

+Et̃ β [2u∗cct̃+1+u∗ccct̃+1c∗t̃+1−u∗ccxt̃+1(1−x∗t̃+1)]( f ∗kt̃+1)
2
]
.

Arguments in functions are dropped: consumption and leisure in utility; capital and labor
in production; and histories in probability, consumption, leisure, and capital. Obviously,
Condition (C) cannot be satisfied for quadratic separable utility because uccc = 0 and
D2Ψ∗(△z)(2)< 0. However, if u∗ccct̃ is positive and large, then Condition (C) can be satisfied.
Indeed, u∗ccct̃ > 0 is also necessary when the instantaneous utility is separable.

As Rothschild and Stiglitz (1971) and Kimball (1990) pointed out, a positive third-order
derivative uccct represents prudence, and leads to precautionary savings and labor supply.
Our analysis shows that, in the presence of sufficient prudence, the positive effects of
additional uncertainty can more than compensate for its negative effects.

Condition (C) holds if and only if

D2Ψ(z∗)△z(2)

DΨ(z∗)△z
<

D2U(z∗)△z(2)

DU(z∗)△z
.

Therefore, other things equal, Condition (C) is always more likely to hold the higher
the initial tax, since for the specified policies DU(z∗)△z is equal to the tax. Further,
| DΨ(z∗)△z | is equal to β t̃π t̃(ψ∗

xt̃ − fℓtψ∗
ct̃) for △zℓ, and to β t̃π t̃ [ψ∗

ct̃ −βEtψ
∗
ct̃+1 f ∗kt̃+1] for

△zk. Now ψxt is proportional to uxt(1+ 1/ηF
t ), where ηF

t is the Frisch labor elasticity,
while ψct is proportional to uct(σct −1), where σct is the consumption relative risk aversion
(hereafter, RRA) coefficient. Then, Condition (C) is also more likely to hold when σct is
greater than one; and when the labor tax is positive, the larger ηF

t .
Whether Condition (C) holds is an empirical matter once it has been shown that it can

be satisfied theoretically. It turns out that under regularity, if Condition (C) does not hold,
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then uccct can be increased without changing anything else at the solution z∗. Consequently,
as we now show, Condition (C) is not vacuous.

First, to consider changes in uccct we need a notion of convergence for utility functions.
We say that a sequence of utility functions (un)n∈N converges to u if it does so in the Whitney
C 2-topology: there is a compact subset such that un and u are identical outside that compact
set for every n, and (un,Dun,D2un) converges uniformly to (u,Du,D2u). Obviously, if
(un)n∈N converges to u, then there is a N ∈ N such that n > N implies un is differentially
strongly monotonic and strictly concave. Second, changes at a point z∗t̃ (θ

t̃) must not affect
other points of the solution z∗. Point z∗t̃ (θ

t̃) is locally isolated provided there is ε > 0 such
that either ∥z∗t (θ

t)−z∗t̃ (θ
t̃)∥> ε or ∥z∗t (θ

t)−z∗t̃ (θ
t̃)∥= 0 for every (t,θ t). Thus, at a locally

isolated point, uccc can be increased without changing z∗. It turns out that, if a second order
condition is satisfied at u, z∗ remains a solution even after the perturbation.

Theorem 2 Let z∗ be an interior and regular solution to Problem (RRP). Suppose the
sufficient second-order condition holds at z∗ and z∗t̃ (θ̃

t̃) is locally isolated with τ∗ℓt̃ (θ̃ t̃)> 0
or τ̄∗k

t̃+1(θ̃
t̃) > 0 for some θ̃ t̃ with π

θ̃ t̃ > 0. Then there is (un)n∈N converging to u such that
z∗ is a solution to Problem (RRP) at un and Condition (C) is satisfied by some △z ∈ Z.

For homothetic utilities, the perturbed utility in Theorem 2 can always be made C 3-
arbitrarily close. In finite economies, regular locally isolated solutions to (RRP) are
easily shown to be generic in utility via standard repeated applications of the Parametric
Transversality Theorem. Infinite horizon economies with solutions to (RRP) with locally
isolated points, and positive taxes, exist. In Appendix C we prove the following result,
which constructs a robust example of an economy satisfying the assumptions.

Suppose productivity is constant and u(c,x) = u(c)+v(x) is separable with RRA σct

greater than one and u(0) = −∞. Then, for small but positive g, solutions to (RRP)
are regular, and converge to a unique interior globally stable steady state with τ∗ℓ > 0.
Therefore, all of the assumptions of Theorem 2 hold, and up to a utility perturbation
Condition (C) is satisfied by some △z ∈ Z. By Lemma 1 there is a random improvement
over z∗. Hence, at the very least the utility perturbation method allows us to claim that the
set of economies where uccc is large enough, and Condition (C) holds, is non-vacuous.

Consider the lottery version of the relaxed Ramsey problem, where the functions Φ and Ψ

are defined as in Problem (RRP):

max
µ∈∆(Z)

Eµ U(z)

s.t.

{
Φt(z) ≥ 0 for every t ≥ 0

Eµ Ψ(z) ≥ 0.

(L-RRP)
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To ensure existence of solutions is not an issue, we need two additional assumptions.
According to Assumption (A.2) there is c̄, k̄ > 0 such that consumption and capital are
bounded from above by (c̄, k̄).

A.3 There exists z̃ ∈ ×t,θ t (0, c̄)×(0,1)×(0, k̄) with ∞ > E0 ∑t β t |ψt(z̃)| ≥ Ψ(z̃) > 0 and
U(z̃)>−∞.

A.4 There exists ε > 0 such that for every (t,θ t) such that ct < ε or xt < ε implies there
is △zt such that Dψt(zt) ·△zt > 0 for some △zt with zt+△zt ∈ (0, c̄)×(0,1)×(0, k̄),
Dφt · (0,△zt) = 0, and Dut(zt) ·△zt ≥ εt .

These two assumptions in addition to the two assumption already made ensure problem (L-
RRP) has a solution µ∗ with compact support and (ct ,xt ,kt+1) ∈ R++×(0,1)×R++ with
µ∗-probability one.3 As we require market clearing for every realization of uncertainty
and not ’on average’, there is only one function Ψ over which randomizations take place
– the intertemporal incentive constraint function. Using Lemma 2 we conclude that for
all solutions to Problem (L-RRP) there are equivalent solutions for which randomizations
disappear after some date t̄ > 0.

Proposition 1 Let µ∗ be a solution to Problem (L-RRP). Then there is a solution µ∗∗ for
which randomizations are transient with µ∗-probability one.

For deterministic economies Proposition 1 combined with Condition (C) has strong
implications for the long-run tax on capital. Indeed, suppose Condition (C) is satisfied
at a steady state (c̄, x̄, k̄). Then Proposition 1 implies that there exists a solution to
Problem L-RRP which randomizes over three paths (ct ,xt ,kt+1)t∈N0 with the property that
∥(ct ,xt ,kt+1)−(c̄, x̄, k̄)∥> ε for every t > t̄, for some t̄ ∈ N and some ε > 0. Consequently,
convergence to steady states does not imply that the long-run tax on capital is zero.

We now come to the issue of decentralization of the optimal lottery solving (L-RRP).
Let (st)t≥0 be a process of serially uncorrelated shocks with values uniformly distributed
on S = [0,1]. Processes

(
ĉt , x̂t , k̂t+1, b̂t+1, p̂t , ŵt , r̂t , τ̂t

)
t≥0 are now adapted to the filtration

(F̂t)t≥0 generated by histories ω̂ t = (θ t ,st). The household and government budgets,
and feasibility, do not change, but now they must be satisfied at each ω̂ t = (θ t ,st),
and there are bonds for every contingency θt+1,st+1. Let (νt)t≥0 be the distributions of(
ĉt , x̂t , k̂t+1, b̂t+1, p̂t , ŵt , r̂t , τ̂t

)
conditional on the realization of ω̂ t−1,θt , i.e., the taxspot

distribution. We say that the taxspot distribution is trivial if νt is a Dirac measure for all
t ≥ 0.

3A proof is available from the authors upon request.
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An equilibrium with taxspots is a process
(
ĉt , x̂t , k̂t+1, b̂t+1, p̂t , ŵt , r̂t , τ̂t

)
t≥0 of

consumption, leisure, capital, bond holdings, prices, wages, interest rates and taxes,
adapted to (F̂t)t≥0 and such that: markets clear; (ĉt , x̂t , k̂t+1, b̂t+1)t≥0 maximizes utility
subject to sequential budgets and transversality conditions; firms maximize profits; and, the
government satisfies its budget constraints.

An equilibrium with taxspots process decentralizes a µ over Z if the corresponding
taxspot distribution process (νt)t≥0 satisfies

νt({(ĉt , x̂t , k̂t+1) ∈ B}) = µt({(ct ,xt ,kt+1) ∈ B})

for every t and Borel set B ⊂ R3.
For fixed µ∗ solving (L-RRP), we derive the decentralizing equilibrium with taxspots

using Lemma 3 and the maps (1) defining taxes as functions of consumption, leisure and
capital. The rest of the argument consists in backing up prices and bond holdings in a
straightforward manner due to market completeness.

Proposition 2 If µ∗ is a lottery solving problem (L-RRP), then there exists an equilibrium
with taxspots process

(
ĉt , x̂t , k̂t+1, b̂t+1, p̂t , ŵt , r̂t , τ̂t

)
t≥0 decentralizing µ∗.

Hence, when Theorem 2 (thus, Lemma 1) holds for problem (RRP) (a nonvacuous
situation, as we showed), no solution to (L-RRP) can be a Dirac measure so there are
nontrivial taxspots at equilibrium. While markets are complete, and households can buy
insurance to hedge against taxspots, the planner implicitly chooses the bond supply so that
full taxspot insurance is not priced at fair odds, and households optimally choose to hold
some taxspot risk.

If D2ψt is negative definite for all (ct ,xt), as in the separable quadratic case, there are no
taxspots. Moreover, if the process (θt)t≥0 has first-order Markovian transition, optimal fiscal
policy is a function of solely of the current state θt . This is the well-known ’Markovian’
aspect of optimal taxation – see, e.g., Ljundqvist and Sargent (2018). However, if instead
Condition (C) is satisfied (e.g., by △zℓ or △zk), D2ψt is positive definite and optimal taxes
are random and not deterministic functions of the current state. Hence, the optimal fiscal
policy creates randomness which conflicts with the presumed smoothing role of taxes. In
other words, the serial correlation properties of taxes and of government expenditures (or of
productivity shocks) are different.

Combining Propositions 1 and 2, every optimal lottery is payoff equivalent to a taxspot
equilibrium where tax uncertainty disappears in finite time. Taxspot uncertainty, represented
by a nontrivial (ντ

t )t≥0 with finite support, need not have more than two taxspots episodes.
Therefore, at the optimal taxspot equilibrium at most finitely many taxspot-contingent bonds
are needed to decentralize the optimal lottery.
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4 Taxspots with no bonds

The absence of bonds makes the reduction of household and government sequential budget
constraints to a single intertemporal constraint impossible. Therefore, the primal relaxed
Ramsey Problem takes the form

max
(ct ,xt ,kt+1)t≥0

E0 ∑
t≥0

β
tu(ct ,xt)

s.t.



ft(kt ,1−xt)− ct − kt+1 −gt ≥ 0 for every t ≥ 0

c0 + k1 −
ux(c0,x0)

uc(c0,x0)
(1−x0)− fk0(k0,1−x0)k0 −b0 ≥ 0

βEt−1 [uc(ct ,xt)(ct+kt+1)−ux(ct ,xt)(1−xt)]

−uc(ct−1,xt−1)kt ≥ 0 for every (t,θ t) with t ≥ 1

lim
t→∞

E0 β
tuc(ct ,xt)kt+1 = 0.

(RRP-I)

There is an incentive constraint for every history, resulting in additional restrictions on the
decentralization of Pareto improving random taxes, as we will explain below.

We first present sufficient conditions to ensure an ancillary technical property, i.e., that
any solution to Problem (RRP-I) solves the Ramsey primal problem with all constraints as
equalities. It turns out that merely ruling out the unconstrained optimum ẑ as a solution to
(RRP-I) is not sufficient to ensure equality for the constraints. We obtain equality under
more stringent, but common parametric restrictions.

Lemma 5 Suppose u is separable with σct > 1 and gt ≥ 0 with Et−1 gt > 0 for every t. Then
every constraint is satisfied with equality at all solutions to Problem (RRP-I).

Separable utility case with σct > 1 and gt > 0 will feature prominently in the analysis below
as a special and relevant case.

Throughout, we require that solutions to (RRP-I) are regular. Below we will construct
economies where regularity holds.

To show existence of a random improvement upon solutions to problem (RRP-I), we
apply Lemma 1. Key to the existence of decentralizable random improvements is the
construction of policy changes that are Pareto improving but are ’Ψ-unfeasible’ at a single
date. If such policy changes also satisfy Condition (C), then we can apply Lemma 1 to
claim the optimality of randomizations. To this end, for every date-event θ t consider the
3(1+|Θ|)-dimensional vector (zt(θ

t),(zt+1(θ
t ,θ))θ∈Θ), and when we omit reference to θ t
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we write (zt ,zt+1). For every t ≥ 0, let ψ
f

t be defined by

ψ
f

t (zt ,zt+1) =

βEt [uc(ct+1,xt+1)(ct+1 + kt+2)−ux(ct+1,xt+1)(1−xt+1)]−uc(ct ,xt)kt+1,

with derivative Dψ
f

t =(Dψ
f

t,t ,Dψ
f

t,t+1) and Hessian D2ψ
f

t . We further define ψ
f
−1(z0;b0,k0)

as the incentive (or budget) constraint at date t = 0. Next, let

φt(zt−1,zt) = ft(kt ,1−xt)− ct − kt+1 −gt .

and consider φ̂t = (φt ,φt+1) and ψ̂t = (ψt−1,ψt ,ψt+1) as functions of (ct ,xt ,kt+1,ct+1,xt+1),
keeping the other controls fixed. Then at a date-event θ t , vectors (Dφ̂t ,Dψ̂t) form a 3+2|Θ|-
dimensional square matrix.

Hereafter, we let Zt̃ to be the set Z for Ψ = ψ
f

t̃ and Φ = ((φt)t≥0,(ψ
f

t )t ̸=t̃) so every
incentive constraint except the one at date t̃ is treated as a feasibility constraint.

Theorem 3 Let z∗ be an interior and regular solution to Problem (RRP-I) of an economy
for which leisure is a differentiable strictly normal good, and gt ≥ 0 with Et−1 gt > 0 for
every t. Suppose there is (t̃, θ̃ t̃) with t̃ > 0 and π

θ̃ t̃ > 0 such that (Dφ̂t̃(z∗),Dψ̂t̃(z∗)) has full
rank and at one of the following two conditions is satisfied:

(ℓ) The labor tax rate is positive.

(k) The labor tax rate is zero and the ex-ante capital tax rate is positive.

Then there exists △z ∈ Zt̃−1. If △z satisfies Condition (C), then a random improvement over
z∗ exists.

Theorem 3 finds ’Ψ-unfeasible’ Pareto improving policy changes △z which violate a
household budget in the corresponding competitive equilibrium, yielding a government
deficit. This is not surprising, since z∗ is optimal in Problem (RRP-I). Crucially for
decentralization, there is a budget deficit at a single date-event. Indeed, the lottery can
be chosen such that

βEµ,t [uc(ct+1,xt+1)(ct+1 + kt+2)−ux(ct+1,xt+1)(1−xt+1)]−uc(ct ,xt)kt+1 = 0

at all t ≥ 0. It is easily checked that if τ∗ℓt̃ , τ̄∗k
t̃+1,τ

∗ℓ
t̃+1 > 0, then either Eµ,t̃ xt̃ < x∗t̃ or

Eµ,t̃+1 xt̃+1 < x∗t̃+1 or Eµ,t̃ kt̃+1 < k∗t̃+1. Otherwise the general effects of the considered policy
changes are ambiguous.

Theorem 3 does not cover economies where labor is subsidized at every date-event, i.e.,
τ∗ℓt < 0 for every (t,θ t) with t > 0. However, much of the literature focuses on economies
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with solutions converging to steady states with positive labor taxes, a case covered by the
theorem.

Theorem 3 requires that Condition (C) be satisfied by the Pareto improving Ψ-unfeasible
policy changes △z. This holds provided the curvature of ψ

∗ f
t̃−1 in the direction of the Pareto

improving change is sufficiently large. If △ct̃ ̸= 0, then it is the case provided u∗ccct̃ > 0 is
sufficiently large. Hence, as for complete markets, random taxes improve on non-random
taxes provided prudence is sufficiently large.

As in the previous section, we can make u∗ccct̃ > 0 sufficiently large to ensure Condition
(C) is satisfied some △z ∈ Zt̃−1 without changing the equilibrium, provided the solution to
Problem (RRP-I) contains locally isolated points.

Theorem 4 Let z∗ be an interior and regular solution to Problem (RRP-I) satisfying the
sufficient second-order condition of an economy for which leisure is a differentiable strictly
normal good and gt ≥ 0 with Et−1 gt > 0 for every t. Suppose there is (t̃,θ t̃) with t̃ > 0 and
π

θ̃ t̃ > 0 such that:

• z∗t̃ (θ̃
t̃) is a locally isolated point.

• τ∗ℓt̃ (θ̃ t̃)> 0 or τ∗ℓt̃ (θ̃ t̃) = 0 and τ̄∗k
t̃+1(θ̃

t̃)> 0.

• (Dφ̂t̃(z∗),Dψ̂t̃(z∗)) has full rank.

Then there is (un)n∈N converging to u such that z∗ is a solution to Problem (RRP-I) at un

and Condition (C) is satisfied by some △z ∈ Zt̃−1.

The conditions stated in Theorem 4 are not vacuous for economies where solutions to
Problem (RRP-I) converge to a steady state. As an example, consider the deterministic
economy we constructed in Section 3 with positive government expenditures g > 0, and
separable utility with RRA greater than one for every t. A straightforward extension of the
argument in Appendix C shows that the economy has a regular solution to Problem (RRP-I),
and a unique interior, globally stable steady state for g sufficiently small. Combining
feasibility and the incentive constraint, steady states for Problem (RRP-I) are solutions to
the following equation:

f (k,1−x)−g =
ux(x)

uc( f (k,1−x)−g−k)
(1−x)+

1
β

k,

where fk = 1/β , and fℓ > ux/uc. Hence, at the steady state for Problem (RRP-I) capital
taxes are zero and labor taxes are positive.

Under separability, a second-order derivatives utility perturbation of uxx at the steady
state ensures both that (Dφ̂t(z∗),Dψ̂t(z∗)) has full rank and △ct ̸= 0, for every t sufficiently
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large. Therefore, since τ∗ℓt > 0 for all large t, and convergence to a steady state also implies
optimal paths contain locally isolated points for t large, the conditions of Theorem 4 are
satisfied.4 We conclude that there is a random improvement over z∗.

For deterministic economies with positive government expenditures g > 0 recurrence is
possible in the absence of bonds. Indeed, Lemma 2 does not apply, because in Problem
(L-RRP-I) the number of constraints over which there can be lotteries is infinite. At steady
states capital taxes are zero, so labor taxes must be positive. If all solutions to Problem
(RRP-I) converge to steady states, Theorem 4 can be used to show that, modulo a utility
perturbation, the curvature and ancillary regularity conditions needed for Condition (C) to be
satisfied can be met by some △z ∈ Zt , all large enough t. Then there are taxspots according
to Lemma 1. These taxspots must be recurrent because if they were transient, then there
would be convergence to steady states and the argument can be repeated.

Proposition 3 Let µ∗ be a solution to Problem (L-RRP-I) for a deterministic economy with
g > 0. Suppose there are finitely many steady states and all solutions to Problem (RRP-I)
converge to a steady state. Then there is (un)n∈N converging to u such that the corresponding
solutions (µ∗

n )n∈N to Problem (L-RRP-I) are recurrent.

Proposition 3 implies that either all solutions to Problem RRP-I converge to steady
states, and then taxspots are recurrent, or the dynamics are complex. This is in contrast
to Chamley (1986), where optimal tax equilibria lead to convergence to a steady state, and
to consumption smoothing.

In light of Theorem 4, we introduce the following relaxed optimal random taxation
problem,

max
µ∈△(Z)

Eµ,0 ∑
t≥0

β
tu(ct ,xt)

s.t.



ft(kt ,1−xt)− ct − kt+1 −gt ≥ 0 for every t ≥ 0

c0 + k1 −
ux(c0,x0)

uc(c0,x0)
(1−x0)− fk0(k0,1−x0)k0 −b0 ≥ 0

Eµ,t−1 β [uc(ct ,xt)(ct + kt+1)−ux(ct ,xt)(1−xt)]

−uc(ct−1,xt−1)kt ≥ 0 for every (t−1,θ t−1) with t > 0

lim
t→∞

E0 β
tuc(ct ,xt)kt+1 = 0.

(L-RRP-I)

Relative to (L-P), we have put restrictions on the randomizations: we are focusing on
lotteries over processes z = (zt)t≥0 that are not averaging the household or government)

4The rank condition here provided: f ∗ℓt+1u∗ct [1+σ∗
ctκ

∗
t+1(1− f ∗ℓt

ψ
∗ f
kt−1,t−ψ

∗ f
ct−1,t

ψ
∗ f
xt−1,t− f ∗ℓt ψ

∗ f
ct−1,t

)] ̸= f ∗kt+1ψ
∗ f
xt,t+1.
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budget at any date. Existence of a solution is guaranteed with the assumptions already
made.

An equilibrium with taxspots can be defined as for the case of complete markets.
Importantly, feasibility and the sequential budgets are satisfied at every history and no bonds
are introduced. An equilibrium with taxspots decentralizing the lottery µ∗ solving Problem
(L-RRP-I) can be constructed using Lemma 3.

Proposition 4 If µ∗ is a lottery solving problem (L-RRP-I), then there exists an equilibrium
with taxspots process

(
ĉt , x̂t , k̂t+1, ŵt , r̂t , τ̂t

)
t≥0 decentralizing µ∗.

Proposition 4 finds a taxspot equilibrium decentralizing the optimal lottery satisfying
feasibility and the budget constraint at every history without bonds, so budget constraints
are satisfied history by history. Under the conditions of Theorem 4, the taxspot equilibrium
must be nontrivial: if µ∗ solves Problem (L-RRP-I), then µ∗ cannot be a Dirac measure so
there are nontrivial taxspots at some date-event.

The reason why budget constraint is satisfied at every date-event is that even if

βEt−1,st [uc(ct ,xt)(ct+kt+1)−ux(ct ,xt)(1−xt)]

−uc(ct−1(ω̂
t−1),xt−1(ω̂

t−1))kt(ω̂
t−1) < 0

at some history ω t−1 = (θ t−1,st−1) and for a set of current taxspot states st with positive
probability, this is consistent with the budget constraint at (θt ,st):

ct(ω̂
t−1, ω̂t)+ kt+1(ω̂

t−1, ω̂t) = (1−τℓt (ω̂
t−1, ω̂t))wt(ω̂

t−1, ω̂t)(1−xt(ω̂
t−1, ω̂t))

+(1−τk
t (ω̂

t−1, ω̂t))rt(ω̂
t−1, ω̂t)kt(ω̂

t−1)

for every st and (θ t ,ω t−1), because the Euler equation for capital kt at ω t−1 must be
satisfied ν∗

t -average. Since feasibility is satisfied history by history, the government budget
is balanced at every history and taxspot realization: the randomization does not produce any
budget deficit or violation of the household’s budget.

Instead, if in Problem (L-RRP-I) we considered lotteries over Z with constraints of the
form

Eµ ψ
f

t (zt ,zt+1) ≥ 0

at every t, we would need ’taxspot insurance’ bonds to decentralize the optimal lottery.
Allowing the government to organize taxspot insurance can be difficult to justify in the
present setting where we have assumed that financial markets are totally incomplete. Hence,
the absence of taxspot insurance at the optimal equilibrium with taxspots can be seen as a
policy advantage in the case the government is supposed not to have had the ability to issue
bonds.
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Workers and capitalists

Above we have built economies where taxspots occur on labor income taxes. This is not
a necessary feature. For a prominent example where taxspots affect capital tax rates, we
consider the Judd (1985)-inspired variant of a no bond economy with workers and capitalists
studied by Straub and Werning (2020).

There are households owning capital k0 and the production technology (’capitalists’),
and those with no capital but who supply labor inelastically (’hand-to-mouth workers’).
Assume that productivity is constant, and let gt = g > 0, all t, and the capitalists’ utility u
be isoelastic with RRA coefficient σu > 1. Labor can still be taxed or subsidized, but in
a lump-sum fashion. Letting Tt be this transfer, the government budget becomes g+Tt =

τk
t rtkt . The workers’ consumption is ĉt , and their per-period utility is v(ĉt), which is a

twice continuously differentiable, differentially increasing and strictly concave function.
Hereafter, we write f (kt) ≡ f (kt ,1). The workers’ budget is ĉt = f (kt)− rtkt + Tt , the
capitalists’ budget is ct +kt+1 = (1−τk

t )rtkt , and market clearing is f (kt) = ĉt +ct +kt+1+

gt . Assuming here for simplicity that the Ramsey planner cares only about workers’ welfare,
the relaxed primal Ramsey problem becomes

max
(ct ,ĉt ,kt+1)t≥0

∑
t≥0

β
tv(ĉt)

s. to


f (kt)− ĉt − ct − kt+1 −gt ≥ 0, t ≥ 0,

βuc(ct)(ct + kt+1)−uc(ct−1)kt ≥ 0, t > 0,

lim
t→∞

β
tuc(ct)kt+1 = 0.

(RRP-WC)

where we let T0,τ
k
0 be derived from (c0, ĉ0, ,k0) to make the workers’ and the government

budgets at t = 0 hold, and rt = fkt . Under the stated assumptions, all solutions to Problem
(RRP-WC) are interior and regular, and constraints are satisfied with equalities. A steady
state is (c, ĉ,k) = limt→∞(ct , ĉt ,kt+1). Straub and Werning (2020) show that any solution to
Problem (RRP-WC) converges to a unique steady state with c > 0, ĉ = 0, k > 0 and positive
capital tax in the limit.

Hereafter, to ease the notation we write zt = (ct , ĉt ,kt+1) and z = (zt)t≥0, and keep
denoting as ψ

f
t−1 the left-hand side of the incentive inequality, and use φ e

t for the feasibility
constraint function. Correspondingly, we let ZWC

t be the previously introduced set of policy
changes Zt but where functions φ e

t , instead of φt , are used.

Theorem 5 Let z∗ be a solution to Problem (RRP-WC). Then there is date t > 0 and a
change △z ∈ Zt such that △zt ′ = 0 for t ′ /∈ {t+1, t+2}, and △kt+2 ̸= 0. There is (un)n∈N
converging to u such that z∗ is a solution to Problem (RRP-WC) at un, Condition (C) is
satisfied for △z, and optimal nontrivial taxspots are recurrent.
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Theorem 5 claims the suboptimality of a deterministic fiscal policy in economies C 2-
arbitrarily close to those considered by Straub and Werning (2020). As in Section 3, the
intuition for Theorem 5 is that prudence can be exploited to increase the capitalists’ savings
with taxspot uncertainty. As in the previous representative agent economy, when we run the
Pareto improving lottery, and decentralize it via taxspots, we obtain budget-balance at all
lottery realizations.

Conclusions

We have shown that taxspots arise in response to the need to spur the agents’ incentives to
work or to save. The possibility that random taxes are Pareto improving depends on the
comparison between the benefit and the cost of the increased uncertainty, or on the relative
size of the precautionary effect of prudence and of risk aversion.

All taxspots occur without violating horizontal equity. Taxspots can occur also with
complete markets, but essentially vanish in finite time. When there are no financial assets,
taxspots can be recurrent unless the dynamics of optimal taxation are complex, that is,
violate regularity and display some elements of chaotic behavior.

Appendix A: Proofs

Proof of Lemma 1: The requirement

2µ −1 < −1
2

D2Ψj(z∗)△z(2)

DΨj(z∗)△z

implies µΨj(z∗+△z)+(1−µ)Ψj(z∗−△z)> Ψj(z∗) because DΨj(z∗)△z < 0 and

µΨj(z∗+△z)+(1−µ)Ψj(z∗−△z)−Ψj(z∗) ≈ (2µ−1)DΨj(z∗)△z+
1
2

D2
Ψj(z∗)△z(2).

Since DU(z∗)△z > 0,

2µ −1 > −1
2

D2U(z∗)△z(2)

DU(z∗)△z

similarly implies µU(z∗+△z)+(1−µ)U(z∗−△z)>U(z∗).
The requirements on 2µ−1 can be satisfied if Condition (C) holds, as assumed. Because

DΦi(z∗)i∈I , is onto RI , and DΦi(z∗)△z = 0, it can immediately be seen that (△z1,△z2) ≈
(△z,−△z) can be chosen such that also Φi(z∗+△zh) > 0 for h ∈ {1,2} and for all i such
that Φi(z∗+△z) ̸= Φi(z∗). Then, (△z1,△z2,µ) is a random improvement over z∗, and it is
verified that µ > 1/2 as wanted. 2
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Proof of Lemma 2: First, observe that supp µ∗ ⊂ {z ∈ Z : Φi(z) ≥ 0, i ∈ I}. Since
Z = ∏t,θ t Zθ t , and Zθ t is open in Rm, Z is separable in the product topology, and supp µ∗ is
nonempty (see, e.g., Aliprantis and Border (2005), Thm 12.14). Let

E = {(u,r) ∈ R1+|J| | ∃z ∈ supp µ
∗ : u =U(z) and rj = Ψj(z) for every j}

Then E itself is compact. Second, let (u∗,0) be the point u∗ =
∫

U(z)dµ∗ and 0 =∫
Ψj(z)dµ∗. Then, since Z is metrizable, by Theorem 15.10 in Aliprantis and Border (2005)

limn→∞(un,rn) = (u∗,0) for un =
∫

U(z)dµn and rn =
∫

Y Ψj(z)dµn where limn→∞ µn = µ∗

in the weak∗ topology, and µn has finite support for every n. Thus (un,rn) is in the convex
hull of E, coE. Further, since coE is closed because E is closed, it is (u∗,0) ∈ co E. Since
E is a subset of R1+|J|, by Carathéodory’s Convexity Theorem, all points in coE can be
expressed as the convex combination of at most 2+ |J| points in E. Thus, there is µ∗∗ with
support on at most 2+|J| points in E corresponding to 2+|J| elements of supp µ∗.

Then, µ∗∗ has finite support z j, j = 1, ..., |J|+ 2. Let J (θ t−1) be the set of j that are
consistent with history (θ t−1,zt−1), that is,

J (θ t−1) = { j = 1, ..., |J|+2 : zt−1 = zt−1
j (θ t−1)}.

As
supp µ

∗∗
t (θ t ,zt−1)⊂ {z ∈ Zθ t : (zt−1,z) = zt

j(θ
t), some j ∈ J (θ t−1)},

and J (θ t−1) is nonincreasing in the history length, there cannot be more than |J|+ 1
randomizations µ∗

t over processes z j, and there exists t̄ such that µ∗
t ∈ Zt , all t ≥ t̄, as

wanted. 2

Proof of Lemma 4: Suppose not, and then

E0 ∑
t≥0

β
t [u∗ctc

∗
t −u∗xt(1−x∗t )]> u∗c0[ fk0k0 +b0].

This makes the solution z∗ to (RRP) equal to ẑ. As market clearing then holds as equality,
the intertemporal incentive inequality holds only if

E0 ∑
t≥0

β
tuc(ĉt , x̂t)gt +uc(ĉ0, x̂0)b0)≤ 0,

a contradiction to the assumption.
Now suppose ψ∗

xt > 0 at some date-event θ̂ t and, by contradiction, that
fat (k

∗
t (θ̂

t−1),1−x∗t (θ̂
t))− c∗t (θ̂

t)− k∗t+1(θ̂
t)− θ̂t > 0. Consider △z with △xt(θ̂

t) > 0, and
△ct(θ̂

t) =△kt+1(θ̂
t) = 0, while △zt(θ

t) = 0 at all other date-events θ t , and further △zt ′ =

0 at all t ′ ̸= t. Since ψxt > 0, it is DΨ∗△z > 0, thus the intertemporal incentive equation is
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satisfied, while all other constraints are unchanged, and DU(z∗)△z = β tπ(θ̂ t)uxt△xt(θ̂
t)>

0, a contradiction to the optimality of z∗.
Proof of Theorem 2: Let an interior solution z∗ to problem (RRP) and θ̃ t̃ , t̃ ≥ 0 be given

where z∗t̃ (θ̃
t̃) is locally isolated and either tax is positive.

By regularity, and Theorem 1 in Luenberger (1969, p. 249), there is a separating
positive continuous linear functional. Moreover, the derivative of the constraint functions
is a bounded linear operator which is matrix representable and upper-diagonal. Thus, by
Rustichini (1998, Theorem 5.5 and its Corollary) the separating functional is representable
by a summable nonnegative multipliers process (λ̂ ∗

t )t≥0 (for feasibility) and by α∗ ≥ 0 (for
the incentive constraint). Letting (u∗ct ,u

∗
xt) be the derivative of u with respect to ct ,xt , and

λ̂ ∗
t = β tπtλ ∗

t , the following first order conditions hold:
u∗ct −λ ∗

t +α∗ψ∗
ct = 0

u∗xt −λ ∗
t f ∗ℓt +α∗ψ∗

xt = 0

−λ ∗
t +βEtλ

∗
t+1 f ∗kt+1 = 0.

If τ∗ℓt̃ (θ̃ t̃) > 0, then immediately from the first two equations α∗ > 0. If τ̄∗k
t̃+1(θ̃

t̃) > 0,
consider the first equation in the FOC at (θ̃ t̃) and at (θ̃ t̃ ,θ), any θ ∈ Θ, respectively. Then,
rearranging terms and dropping the history arguments we obtain

α
∗[ψ∗

ct̃ −βEt̃ψ
∗
ct̃+1 f ∗kt̃+1] = βEt̃u

∗
ct̃+1 f ∗kt̃+1 −u∗ct̃ > 0

implying again α∗ > 0.
Hereafter, we drop reference to θ̃ t̃ whenever possible and illustrate the proof for the case

when τ∗ℓt̃ > 0, and leave the analogue case of a positive ex-ante capital tax to the reader.
By regularity, Condition (C) is satisfied by some △z ∈ Z provided

[α∗D2
Ψ

∗+D2U∗](△z)(2) > 0,

where α∗ =−DU∗△z/DΨ∗△z.
The sufficient second order condition for z∗ to be a local maximizer is

β
t̃
π

t̃ [α∗D2
ψ

∗
t̃ +D2U∗

t̃ ](△zt̃)
(2)+E0 ∑

t ̸=t̃
β

t [α∗D2
ψ

∗
t +D2U∗

t ](△zt)
(2)

+∑
t

λ̂
∗
t D2

φ
∗
t (△zt−1,△zt)

(2) < 0 (2)

E0 ∑
t

β
tDψ

∗
t ·△zt = 0 (3)

DΦ
∗ ·△z = 0 (4)

all △z ̸= 0.
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Suppose that Condition (C) fails at all △z ∈ Z. Pick △ẑ satisfying (3) and (4) and such
that △ẑt̃−1 = △ẑt̃+1 = 0, while △ĉt̃ ̸= 0. This can be done by regularity. Then, Dφ∗

t̃ ·
(0,△ẑt̃) = 0, Dφ∗

t̃+1 · (△ẑt̃ ,0) = 0 and τ∗ℓt̃ > 0 imply, by α∗ > 0, that Dψ∗
t̃ ·△ẑt̃ ̸= 0. If

[α∗D2ψ∗
t̃ +D2U∗

t̃ ](△ẑt̃)
(2) > 0, then the vector △ẑ′ where △ẑ′t = 0 at all t ̸= t̃, and with

±△ẑt̃ as t̃ coordinate would have the two properties: △ẑ′ ∈ Z and Condition (C) satisfied, a
contradiction. Thus,

[α∗D2
ψ

∗
t̃ +D2U∗

t̃ ](△ẑt̃)
(2) ≤ 0

for all such vectors △ẑt̃ .
Next, using the perturbation of Appendix B, we change D2ψ∗

t̃ by increasing u∗ccct̃ by a
term ζc > 0, and thereby increasing [α∗D2ψ∗

t̃ +D2U∗
t̃ ](△ẑt̃)

(2), in a neighborhood Nz∗t̃ (θ̃
t̃) ⊂

R3 of z∗t̃ (θ̃
t̃) without upsetting the derivatives at any other z∗t (θ

t), t ̸= t̃, by local isolation,
or D2U∗

t and D2φ∗
t at any t.

As the involved expressions are continuous in ζc and monotonically increasing, there
exists ζ̄c > 0 large enough so that [α∗D2ψ∗

nt̃(ζ̄c)+D2U∗
t̃ ] · (△ẑt̃)

(2) = 0. Then, Condition
(C) is satisfied by △ẑ with ζc = ζ̄c + ε any ε > 0.

Consider the problem

max
△z:||△z||=1

E0 ∑
t

β
t [α∗D2

ψ
∗
nt(ζc)+D2U∗

t ](△zt)
(2)+ λ̂

∗D2
Φ

∗(△z)(2) s.to (3) and (4).

This problem is continuous in D2ψ∗
nt(ζc), that is, in ζc. Let △z(ζc) denote its maximizer,

and V (ζc) its value, which is increasing in ζc as long as it is below zero, and V (0)< 0.
To guarantee that z∗ is still a solution at a ζc, we need to make sure that V (ζc) is negative.

Let ζ ∗
c > 0 be the infimum level of ζc for which V (ζc) = 0.

Without loss of generality (△kt(ζ
∗
c ),△xt(ζ

∗
c )) ̸= 0 for some t. Then, if λ̂ ∗ is strictly

positive, λ̂ ∗D2Φ∗(△z(ζ ∗
c ))

(2) < 0 by strict concavity of f , and as a result

E0 ∑
t≥0

β
t [α∗D2

ψ
∗
nt(ζ

∗
c )+D2U∗

t ](△zt(ζ
∗
c ))

(2) > 0. (5)

By continuity, V (ζ ∗
c − ε) < 0 for ε > 0 small enough, while (5) still holds. Then, by

regularity we can find △z′ close to △z(ζ ∗
c − ε) such that △z′ ∈ Z while Condition (C)

holds and so does the sufficient second order condition.
Suppose instead that λ̂ ∗D2Φ∗(△z(ζ ∗

c ))
(2) = 0. Then, (5) holds as a weak inequality,

implying that ζ ∗
c > ζ̄c. Then, V (ζ̄c) < 0, and by continuity V (ζ̄c + ε) < 0 for some ε > 0

small enough. Then, △ẑ ∈ Z and satisfies Condition (C) at ζ̄c + ε , while the second order
condition is satisfied, concluding the proof. 2

Proof of Lemma 5: Suppose that ẑ is a solution to (RRP-I). Then, f̂ℓt ûct = ûxt and
βEt−1ûct f̂kt = ûct−1 at every t > 0. Substituting, and using the resource constraint at every
t, the incentive constraint at t −1 is −βEt−1ûctgt ≥ 0, a contradiction.
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Next, let u be separable and σct > 1. Suppose that at a solution z∗ to (RRP-I) it is
ψ

f
t−1(z

∗
t−1,z

∗
t )> 0 for some θ t−1, and t > 1.

If f ∗ℓtu
∗
ct > u∗xt for some θ t = (θ t−1,θt), then consider a change △z everywhere zero

except for at θ t , where △ct > 0 and △xt = −△ct
f ∗ℓt

, △kt+1 = 0. Then, it is DU(z∗) ·△z > 0

while no constraint is violated, as Dψ
∗ f
t (△zt ,0)> 0, a contradiction.

If f ∗ℓtu
∗
ct ≤ u∗xt for all θt , then[

βEt−1u∗ct f ∗kt −u∗ct−1
]

k∗t ≥ βEt−1u∗ctgt > 0.

Thus, consider a change △z everywhere zero except for at θ t−1 and all (θ t−1,θt), where
△kt = −△ct−1 > 0, △ct = f ∗kt△kt , △xt−1 =△xt =△kt+1 = 0. Letting Dψ

f
t−2,t−1 be the

derivative of ψ
f

t−2 with respect to the vector zt−1 it is

ψ
∗ f
ct−2,t−1△ct−1 +ψ

∗ f
xt−2,t−1△kt = [ψ

∗ f
xt−2,t−1 −ψ

∗ f
ct−2,t−1]△kt > 0

because σct−1 > 1 and u is separable. Thus, all constraints are satisfied, while

DU(z∗) ·△z = u∗ct−1△ct−1 +βEt−1u∗ct△ct =
[
βEt−1u∗ct fkt −u∗ct−1

]
△kt > 0,

a contradiction to optimality.
Finally, suppose that at a solution z∗ it is φt(z∗t−1,z

∗
t )> 0 for some θ t , and t ≥ 0. Consider

a change △z which has all coordinates zero except for at θ t , where we denote it simply as
△zt . From Dψ

∗ f
t,t ·△zt = 0, using separability we get

u∗ct△kt+1 =−u∗cctk
∗
t+1△ct

and from Dψ
∗ f
t−1,t ·△zt = 0, we get

△xt =
u∗cctk

∗
t+1 −ψ

∗ f
ct−1,t

ψ
∗ f
xt−1,t

△ct

which applied to the utility gradient yields

u∗ct△ct +u∗xt△xt =

[
1− u∗xt

ψ
∗ f
xt−1,t

(1−σ∗
t ))

]
u∗ct△ct

and given the assumptions the term in brackets is positive, so setting △ct > 0 gives △kt+1 >

0, and Dφ∗
t+1 · (△zt ,0)> 0, a contradiction to optimality. 2
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Proof of Theorem 3: Drop the superscript * throughout. Let

U(z) = E0 ∑
t

β
tu(ct ,xt)

Φe
θ t (z) = φt(zt−1(θ

t−1),zt(θ
t),gt)

Φ
f
θ t (z) = ψ

f
t (zt(θ

t),zt+1(θ
t ,θ)θ∈Θ) for all t ̸= t̃ −1, all θ t̃−1 ̸= θ̃ t̃−1;

Ψ(z) = ψ
f

t̃−1(zt̃−1(θ̃
t̃−1),zt̃(θ̃

t̃−1,θ)θ∈Θ),

It is

Dψ
f

t = D(zt ,zt+1)ψ
f

t = (−kt+1(ucct ,ucxt),−uct , ...,ψ
f

ct,t+1,ψ
f

xt,t+1,ψ
f

kt,t+1, ...),

and
ψ

f
ct,t+1 = βπt+1,t [uct+1

(
1−σt+1

(
ct+1+kt+2

ct+1

))
−ucxt+1(1− xt+1)],

ψ
f

xt,t+1 = βπt+1,t [uxt+1 −uxxt+1(1− xt+1)+ucxt+1(ct+1 + kt+2)],

ψ
f

kt,t+1 = βπt+1,tuct+1,

where πt+1,t = π(θt+1|θ t), and σt =−ucctct/uct is the RRA coefficient.
Consider △z = (△zt)t≥0, with △zt = 0 except for at θ̃ t̃ and its (immediate) successors.

Then, the nonzero changes in the φt functions occur only at t = t̃, t̃ + 1, t̃ + 2 (at histories
θ̃ t̃ ,(θ̃ t̃ ,θ),(θ̃ t̃ ,θ ,θ ′) for θ ,θ ′ ∈ Θ). From Dφt̃+2 · (△zt̃+1,0) = 0 we obtain △kt̃+2 = 0.
The nonzero changes in functions ψ

f
t occur only for t = t̃ − 1, t̃, t̃ + 1 (i.e., at histories

θ̃ t̃−1, θ̃ t̃ ,(θ̃ t̃ ,θ) for θ ∈ Θ).
The vectors Dφ̂ = (Dφt , t = t̃, t̃ + 1) and Dψ

f
t , t = t̃ − 1, t̃, t̃ + 1 of derivatives at the

given histories with respect to the variables (△zt̃ ,△zt̃+1), excluding △kt̃+2, form a 3 +

2 | Θ | square matrix, which by assumption has full rank. Thus, there exists a nonzero
(△zt̃ ,△zt̃+1) ∈ R3 ×R2|Θ| (with △kt̃+2 = 0) such that

Dφ̂ · (0,△zt̃ ,△zt̃+1,0) = 0,

Dψ
f

t̃−1 · (0,△zt̃)< 0,

Dψ
f

t̃ · (△zt̃ ,△zt̃+1) = 0,

Dψ
f

t̃+1 · (△zt̃+1,0) = 0,

and by optimality DU(z)△z ≥ 0. We are left to rule out DU(z)△z = 0.
Since z∗ is a regular interior solution to (RRP-I), then, and using Rustichini (1998),

given the matrix-representable and upper-diagonal form of the derivative of the constraint
functions, the Kuhn-Tucker first order conditions hold for some summable multiplier
process (λ ∗

t )t≥0 (for φt) and (α∗
t )t≥0 (for ψ

f
t ), with λ ∗

t ≥ 0 and α∗
t ≥ 0.
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The tangency condition Dφ̂ · (0,△zt̃ ,△zt̃+1,0) = 0 is

△ct̃ = − fℓt̃△xt̃ −△kt̃+1,

△ct̃+1(θ) = fkt̃+1△kt̃+1 − fℓt̃+1△xt̃+1(θ).

Thus, when restricted to △z as above, DU(z)△z is proportional to Dût̃,t̃+1 ·
(△xt̃ ,△kt̃+1,△xt̃+1(θ)θ∈Θ), where

Dût̃,t̃+1 = (uxt̃ − fℓt̃uct̃ ,βEt̃uct̃+1 fkt̃+1 −uct̃ , . . . ,βπt̃+1,t̃(uxt̃+1 − fℓt̃+1uct̃+1), . . .).

Similarly, let D be the matrix of derivatives (Dψ
f

t̃ , . . . ,Dψ
f

t̃+1, . . .) applied to △z restricted
to the same tangency conditions, i.e., D is

kt̃+1(ucct̃ fℓt̃ −ucxt̃) βEt̃ψ
f

ct̃,t̃+1 fkt̃+1 − (uct̃ − kt̃+1ucct̃) . . . ψ
f

xt̃,t̃+1 − fℓt̃+1ψ
f

ct̃,t̃+1 . . .

...
...

0 −kt̃+2ucct̃+1 fkt̃+1 . . . kt̃+2(ucct̃+1 fℓt̃+1 −ucxt̃+1) . . .

...
...


where the columns are in the order of the variables △xt̃ ,△kt̃+1,△xt̃+1(θ)θ∈Θ, respectively.

Hence, to ensure that DU(z)△z> 0, by the Kuhn-Tucker conditions it suffices to exclude
that

Dût̃,t̃+1 +α(θ̃ t̃)D
θ̃ t̃ + ∑

θ∈Θ

α(θ̃ t̃ ,θ)Dθ = 0

for some α ≥ 0, where D
θ̃ t̃ ,(Dθ )θ∈Θ are the rows of D.

If (ℓ), i.e., τℓt̃ (θ̃
t̃) > 0, the first coordinate of the Dût̃,t̃+1 vector is negative, and under

strict normality ucct̃ fℓt̃ −ucxt̃ < 0, implying α(θ̃ t̃)< 0, a contradiction.
If (k), i.e., τℓt̃ (θ̃

t̃) = 0, as the first row and column entry of D is negative by normality,
α(θ̃ t̃) = 0. Since in the second column all entries but the first are positive, and since
by τ̄k

t̃+1(θ̃
t̃) > 0 the second coordinate of Dût̃,t̃+1 is positive, it is α(θ̃ t̃ ,θ) < 0 for some

contingency θ at t̃ +1, a contradiction. Then, △z ∈ Zt̃−1.
Finally, we observe that the rank condition on (Dφ̂t̃(z∗),Dψ̂t̃(z∗)) gives us the rank

condition for DΦ∗
i for i ∈ I \H, and from Lemma 1 we conclude that a random improvement

over z∗ exists. 2

Proof of Proposition 3: We want to show that for every t > 0 there exists t ′ ≥ t such
that µ∗

t ′ is not a Dirac measure over A ⊂ R3. If not, suppose µ∗ is such that µ∗
t ′ is Dirac,

all t ′ ≥ t, with positive µ∗ probability. Then, µ∗ solves problem (RRP-I) starting at t with
capital kt > 0 given. Let z∗t ′, t

′ ≥ t be the corresponding continuation solution.
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As for all admissible k0 > 0 there is (c∗,x∗,k∗) ∈ R++×(0,1)×R++ such that
lim
t→∞

(c∗t ,x
∗
t ,k

∗
t+1) = (c∗,x∗,k∗) for (c∗t ,x

∗
t ,k

∗
t+1)t≥0 solving (RRP-I), the continuation

converges to a steady state. Then, points z∗t ′′ , t
′′ ≥ t, are locally isolated. Considering the

finitely many incentive and feasibility equations up to t, and time and separability of the
utility function, by Carathéodory’s Convexity Theorem there is a finite collection of distinct
points in supp µ∗

t ′ for t ′ < t, and we can assume that the z∗t ′′ are also locally isolated from any
of the points in supp µ∗

t ′ for t ′ < t. Through a round of second-order derivatives perturbations
at the steady state, (Dφ̂t ′′ (z

∗),Dψ̂t ′′ (z
∗)) has full rank for at least one t ′′. Since labor taxes are

positive at the steady state, a change ∆z ∈ Zt ′′−1 as in Theorem 4 then exists, with △ct ′′ ̸= 0,
satisfying Condition (C). By local isolation, no other point z∗t ′ is affected by the perturbation,
and the original sequence z∗t ′, t

′ ≥ t, is also a solution to (RRP-I) starting at t, also for the
perturbed economy and, by the same token, µ∗ is still a solution. Yet, we get a two-point
lottery that Pareto improves over z∗t ′, t

′ ≥ t, and then over µ∗, a contradiction. 2

Proof of Theorem 5: Hereafter, we write σ for σu, and drop the superscript ∗. Let
κt be the capital-to-consumption ratio. Pick a t > 0 and let △zt ′ = 0 for all t ′ < t + 1, and
△zt ′ = 0 for t ′ > t+2. Then, △z ∈ Z, and only three incentive equations, at dates t, t+1 and
t +2, are affected by △z. If we neglect the incentive equation at t, then (△ct+1,△kt+2) and
(△ct+2,△kt+3) satisfy the incentive equations at dates t+1 and t+2 with (△ct+3,△kt+4)=

0: [
β (1−σ(1+κt+3)) β

σκt+3 −1

][
△ct+2

△kt+3

]
=

[
m−1

t+2(−σκt+2△ct+1+△kt+2)

0

]
(*)

where mt ≡ uct/uct−1. Thus, Dψ
f

t ′ ·△z = 0 all t ′ ̸= t. The determinant of the matrix on the
l.h.s. of (*) is −β (1−σ), and for σ > 1 the matrix is invertible. Then, let △t+1 ⊂R4 be the
set of (△ct+1,△kt+2) ∈ R2 and (△ct+2,△kt+3) ∈ R2, where (△ct+1,△kt+2) is arbitrary
and (△ct+2,△kt+3) is uniquely determined as a function of (△ct+1,△kt+2), via (*).

Straightforward calculations show that ĉ changes only at dates t +1, t+2 and t+3, and
△ĉt ′ are determined via the feasibility equations at dates t +1, t +2 and t +3 so that Dφ e

t ′ ·
△z = 0 for all t ′ ≥ 0. As limt→∞ z∗t exists, and at this limit κ = β/(1−β ), for t large enough
these changes in ĉ are approximately equal to

△ĉt+1 = −△ct+1 −△kt+2

△ĉt+2 =
1

β (1−σ)
[ fkβ (1−σ)△kt+2 − (1+σκ)(−σκ△ct+1+△kt+2)]

△ĉt+3 =
1

β (1−σ)
fkσκ(−σκ△ct+1+△kt+2).
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We now prove the following intermediate step. Let

Dv = (0, ...,0,vĉt+1,βvĉt+2,β
2vĉt+3,0...).

Auxiliary Claim: Suppose that σ > 1, κ = β/(1−β ) and fk > 1/β . Then, there exist
a date t > 0 and a change in △t+1 such that Dv ·△ĉ ̸= 0.
Proof: For t > 0 large enough and a change in △t+1, the derivatives of ĉ with respect to
ct+1 and kt+2 are


−1 −1

a1 b1

a2 b2

 ≡


−1 −1

1
β (1−σ)

(1+σκ)σκ
1

β (1−σ)
[ fkβ (1−σ)− (1+σκ)]

− 1
β (1−σ)

fk(σκ)2 1
β (1−σ)

fkσκ

 .

The vector (vĉt+1,βvĉt+2,β
2vĉt+3) is orthogonal to the two columns in the matrix of

derivatives if and only if[
−1 a1

−1 b1

][
vĉt+1

βvĉt+2

]
=−

[
a2

b2

]
β

2vĉt+3.

Since σ > 1 implies a1 < 0 and b1 > 0, the determinant of the l.h.s. matrix is not zero, so
the matrix is invertible. Since σ > 1 implies a2 > 0 and b2 < 0, the ratios vĉt+1/βvĉt+2 and
βvĉt+2/β 2vĉt+3 are well defined, and equal to

vĉt+1

βvĉt+2
= −a1b2−a2b1

a2−b2
=

σκ

1+σκ

vĉt+2

βvĉt+3
= −a2−b2

a1−b1
=

fk(1+σκ)σκ

(1+σκ)2 − fkβ (1−σ)
.

If the vector (vĉt+1,βvĉt+2,β
2vĉt+3) is orthogonal to the columns in the matrix at every date

t (large enough), then the two ratios have to be identical, and

fk =
(1+σκ)2

(1+σκ)2+β (1−σ)
.

Observe that (1+σκ)2+β (1−σ) > 0. Now fk > 1/β is equivalent to (1−β )(1+σκ)2 <

β (σ −1). Clearly, for κ = β/(1−β ) the inequality is violated. Consequently, there is t > 0
such that (vĉt+1,βvĉt+2,β

2vĉt+3) is not orthogonal to the columns in the matrix. 2

It is now an immediate consequence of the Auxiliary Claim that if τk∗ > 0, i.e., f ∗k β > 1,
then there is a date t > 0 and a change in △t+1 such that Dv∗ ·△ĉ ̸= 0. Thus, there exists
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△z ∈ Z such that DU∗ ·△z = Dv∗ ·△ĉ > 0, and Dψ
∗ f
t ′ ·△z = 0 all t ′ ̸= t, Dφ e

t ′ ·△z = 0 all
t ′ ≥ 0. By optimality of z∗, it cannot be that Dψ

∗ f
t ·△z ≥ 0. It is immediately checked that

△ct+1 ̸= 0, and D2ψ
∗ f
t,t+1(△z)(2) is proportional to β [2ucct+1 + uccct+1(ct+1 + kt+2)]. This

proves the statement. 2

Appendix B: A perturbation argument

Lemma 6 For all u ∈ C 3(R2
++,R), (c̄, x̄) ∈ R++×(0,1), ζc,ζx ∈ R and ε > 0 there exists

(un)n∈N ∈ C ∞(R2
++,R) converging to u in the Whitney C 2-topology such that

• |c− c̄|, |x− x̄| ≥ ε implies un(c,x) = u(c,x).

• Dmun(c̄, x̄) = Dmu(c̄, x̄) for every m ≥ 0, except unccc(c̄, x̄) = uccc(c̄, x̄)+ζc and
unxx(c̄, x̄) = uxx(c̄, x̄)+ζx/n.

Proof: Let the bump function χ ∈ C ∞(R, [0,1]) satisfy

χ(ξ ) =

{
1 for ξ ∈ [−1/2,1/2]

0 for ξ /∈ [−1,1].

For (ζc,ζx,ε) ∈ R3 and every n ≥ 1 let the function un ∈ C ∞(R2
++,R) be defined by

un(c,x) = u(c,x)+χ(n△c)
ζc

6
△3

c +χ(ε△x)
ζx

2n
△2

x .

where △c = c− c̄ and △x = x− x̄. Then,

unc(c,x)−uc(c,x) = nχ ′(n△c)
ζc

6
△3

c +χ(n△c)
ζc

2
△2

c

uncc(c,x)−ucc(c,x) = n2χ ′′(n△c)
ζc

6
△3

c +nχ ′(n△c)ζc△2
c

+χ(n△c)ζc△c

unccc(c,x)−uccc(c,x) = n3χ ′′′(n△c)
ζc

6
△3

c +n2χ ′′(n△c)
3ζc

2
△2

c

+3nχ ′(n△c)△c +χ(n△c)ζc

unx(c,x)−ux(c,x) = εχ ′(ε△x)
ζx

2n
△2

x +χ(ε△x)
ζx

n
△x

unxx(c,x)−uxx(c,x) = ε2χ ′′(ε△x)
ζx

2n
△2

x +2εχ ′(ε△x)
ζx

n
△x

+χ(ε△x)
ζx

n

and the sequence (un)n∈N has the properties described in the statement. 2
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Appendix C

Let z−1 ≡ (c−1,x−1,k0), at arbitrary c−1,x−1. Let z(0;z−1) ∈ Z ⊂ L(R3) be the solution to
the optimal growth problem for g = 0 = b0, of

V (k0) = max
(ct ,xt ,kt+1)t≥0

∑
t≥0

β
tu(ct ,xt)

s.t. f (kt ,1−xt)− ct − kt+1 ≥ 0, all t ≥ 0,
(G)

given initial capital k0. Under our maintained assumptions there exists a unique interior
solution to (G), and the value function V uniquely satisfies the Bellman equation,

V (kt) = max
(ct ,xt ,kt+1)

u(ct ,xt)+βV (kt+1)

s.t. f (kt ,1−xt)− ct − kt+1 ≤ 0.

and V is concave.
We are first going to show the existence of a unique, globally stable steady state.

Then, by our separability and σct assumptions, we show that z(0;z−1) as well as all points
uniformly interior satisfying the constraints with equality are regular for problem (RRP),
leading to the solutions to be (sup norm) continuous in g in a neighbourhood of g = 0.
Combining these two observations, for positive but small g the dynamics in (RRP) display
the same behavior as when g = 0. As the stated assumptions imply that the first order
conditions apply, and there must be labor taxes at some date-event, the multiplier α is
positive, and labor taxes are then nonzero at every t.

Existence, uniqueness and global stability of the steady state at g = 0

In the present subsection we weaken the assumptions on utility to:

• lim
x→0

uc(w(1−x),x)
ux(w(1−x),x)

= 0 and lim
x→1

uc(w(1−x),x)
ux(w(1−x),x)

= ∞ for all w > 0.

• uc(c,x) fℓ(k,1−x)−ux(c,x) = 0 implies ucc(c,x) fℓ(k,1−x)−ucx(c,x)≤ 0.

The first assumption is about the marginal rate of substitution between consumption and
leisure. The second assumption implies leisure is a differentiable normal good.

Lemma 7 (Existence and uniqueness of the interior steady state) There is a unique
steady state z̄ = (c̄, x̄, k̄) ∈ R++×(0,1)×R++.
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Proof: Clearly, (c̄, x̄, k̄) is a steady state if and only if
f (k̄,1−x̄)− c̄− k̄ = 0

uc(c̄, x̄) fℓ(k̄,1−x̄)−ux(c̄, x̄) = 0

β fk(k̄,1−x̄) = 1.

Use the first equation to eliminate c in the second equation. Since there are constant returns
to scale, there is a unique capital intensity v̄ = k/(1−x) such that the third equation is
satisfied. By substitution, the second equation becomes

uc(( f (v̄,1)−v̄)(1−x),x)
ux(( f (v̄,1)−v̄)(1−x),x)

fℓ(v̄,1)−1 = 0.

By assumption the expression inside the parentheses converges to minus one when x →
0, and tends to infinity when x → 1. Hence, by the Intermediate Value Theorem there is
x̄ ∈ (0,1) such that the equation is satisfied. If x̄ is unique, then we set k̄ = v̄x̄ and c̄ =

f (k̄,1− x̄)− k̄ for the unique steady state. We now show uniqueness of x̄.
By the Implicit Function Theorem, β fk(k,1−x) = 1 implies dk/dx = fℓk/ fkk < 0

because fℓk > 0 > fkk by constant returns to scale. Constant returns to scale also imply
fkk fℓℓ− fℓk fkℓ = 0. Moreover, ucc fℓ fℓ − (uxc+ucx) fℓ + uxx < 0 because D2u is negative
definite. Thus, the derivative of the second equation with respect to x at (x,k) with
β fk(k,1−x) = 1 is positive, because ucc fℓ−ucx ≤ 0 by assumption and fk = 1/β > 1.
Consequently, there is a unique x̄ such that the second equation is satisfied, as wanted. 2

Since limk→0 f (k,1−x) = 0 and limc→0 uc(c,x) = limx→0 ux(c,x) = ∞, limk→0V ′(k) = ∞.
Let

ρ(k,k′) = u( f (k,1−x(k,k′))−k′,x(k,k′)),

be the return function, where x(k,k′) is the twice-differentiable optimal static leisure policy
for (k,k′) with f (k,1)−k′ > 0. Strict concavity of utility u and production function f imply
that ρ is concave. Further, some tedious but straightforward calculations show that

detD2
ρ(k,k′) =

uc fkk detD2u
uc fℓℓ+ucc fℓ fℓ−uxc fℓ−ucx fℓ+uxx

> 0.

Since ρ is strictly concave and detD2ρ(k,k′)> 0, D2ρ(k,k′) is negative definite.
For the next two lemmas we assume the value function V is twice continuously

differentiable. Afterwards we show that the assumption is not needed.
Let h : R++ →R3

++ denote the policy correspondence so (c̄, x̄, k̄)∈ h(k̄) and (ct ,xt ,kt+1)

is a solution to the Bellman problem at capital kt if and only if (ct ,xt ,kt+1) ∈ H(kt).
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Lemma 8 (Monotonicity of the dynamics) The policy correspondence h is a continuously
differentiable function h = (hc,hx,hk), and the capital dynamics are monotonic with
hk′(kt)> 0 for all kt > 0.

Proof: There is a function h ∈ C (R++,R3
++) such that (ct ,xt ,kt+1) is a solution to the

Bellman problem if and only if (ct ,xt ,kt+1) = h(kt), where existence and continuity follow
by Berge’s Maximum Theorem, and single-valuedness by strict concavity. Inada conditions,
marginal productivity conditions and limk→0V ′(k) = ∞ imply that for all kt > 0 there is
ε ∈ (0,1) such that for if ct < ε , xt /∈ [ε,1−ε] or kt+1 < ε , then (ct ,xt ,kt+1) is not a solution
to the Bellman problem. Thus, and after substitution of material balance in the utility u, the
first-order conditions of the problem are{

−uc( f (kt ,1−xt)−kt+1,xt) fℓ(kt ,1−xt)+ux( f (kt ,1−xt)−kt+1,xt) = 0

−uc( f (kt ,1−xt)−kt+1,xt)+βV ′(kt+1) = 0.

The matrix of derivatives of the first-order conditions with respect to (xt ,kt+1) is:

A =

(
uc fℓℓ+ucc fℓ fℓ− (uxc+ucx) fℓ+uxx ucc fℓ−ucx

ucc fℓ−uxc ucc +βV ′′

)

where arguments and dates are dropped for convenience. The determinant of A is |A| > 0
because V ′′ ≤ 0. Therefore, by the Implicit Function Theorem, the derivatives of (xt ,kt+1)

with respect to kt are(
hx′

hk′

)
=

1
|A|

 ucucc fkℓ+[uc fkl+(ucc fℓ−ucx) fk]βV ′′

uc[−(ucc fℓ−ucx) fkℓ+ucc fk fℓℓ]+ |D2u| fk


so hk′(kt)> 0 is positive because ucc fℓ−ucx ≤ 0 by assumption. 2

Next, we combine the results on uniqueness of the steady state and monotonicity to show
that the steady state is globally stable.

Lemma 9 (Global stability of the steady state) Dynamics are monotone, hk(k) ∈ (k, k̄)
for all k < k̄ and hk(k) ∈ (k̄,k) for all k > k̄.

Proof: By Lemma 8 there is a function hk ∈ C 1(R++,R++) such that kt+1 = hk(kt) and
hk′(kt) > 0 for all kt > 0. By Lemma 7 the function hk has a unique fixed point hk(k̄) = k̄.
Therefore: either hk(k)< k for all k < k̄ or hk(k)> k for all k < k̄; and, either hk(k)< k for
all k > k̄ or hk(k)> k for all k > k̄.
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If kt > k̄, then: k̄ = hk(k̄) < hk(kt) because hk′(k) > 0 for all k > 0; and, hk(kt) < kt

because kt+1 < f (kt ,1) and limk→∞ fk(k,1) < β so there is K > 0 such that k > K implies
f (k,1)< k.

If kt < k̄, then: k̄ = hk(k̄)> hk(kt) because hk′(k)> 0 for all k > 0. Suppose hk(kt)< kt .
Then V ′(kt) ≤ V ′(kt+1). By the Envelope Theorem, V ′(kt) = uct fkt , and by the first order
conditions V ′(kt+1) = uct/β . Thus, β fk(kt ,1−hx(kt)) < 1. As a result, fk(kt ,1−hx(kt)) <

fk(v̄,1) and fℓ(kt ,1−hx(kt)) > fℓ(v̄,1), and limkt→0 1−hx(kt) = 0. On the other hand, the
first-order condition with respect to xt for the maximization problem is:

−uc[ f (kt ,1−hx(kt))−hk(kt),hx(kt)] fℓ(kt ,1−hx(kt))

+ux[ f (kt ,1−hx(kt))−hk(kt),hx(kt)] = 0.

Since limkt→0 uc( f (kt ,1−hx(kt))−hk(kt),hx(kt)) = ∞, fℓ(kt ,1−hx(kt)) > fℓ(v̄,1) implies
limkt→0 ux( f (kt ,1−hx(kt))−hk(kt),hx(kt)) = ∞, so limkt→0 hx(kt) = 0. A contradiction is
obtained as limkt→0 1−hx(kt) = 0 and limkt→0 hx(kt) = 0 so hk(kt)> kt for all kt < k̄.

Now let hk,0(k) = k and hk,t = hk ◦ hk,t−1(k) for every t ≥ 1. Then the sequence
(hk,t(k))n∈N converges to the steady state k̄ for all k > 0. 2

Lemmas 8 and 9 were obtained using the assumption that the value function is twice
continuously differentiable, but that assumption is not needed. Indeed, consider iteration of
the functions (Vn)n∈N so

Vn+1(k) = max
k′

ρ(k,k′)+βVn(k′).

Then (Vn)n∈N converges to V and (hk
n)n∈N converges to hk. Suppose Vn is concave and twice

continuously differentiable so the policy function hk
n is continuously differentiable with the

property that hk
n(k)∈ (k, k̄) for all k ∈ (0, k̄) according to Lemma 8. Hence, Vn+1 concave and

twice continuously differentiable so the policy function hk
n+1 is continuously differentiable

with the property that hk
n+1(k) ∈ (k, k̄) for all k ∈ (0, k̄). Consequently, h(k) ∈ [k, k̄] for all

k ∈ (0, k̄). However, according to Lemma 7 there is a unique steady state so hk(k) ∈ (k, k̄]
for all k ∈ (0, k̄) implying (hk,n(k))n∈N converges to k̄ for all k > 0.

Continuity, and local isolation

The optimum correspondence Z(g;z−1) is nonempty for all small enough g: this comes
from product upper semicontinuity of the utility and product compactness of the domain.
For O ⊂ R a neighborhood of zero, let Ξ : O ⇒ L(R3) be the correspondence

Ξ(g) = {z ∈ L(R3) : (Φ,Ψ)(z)≥ yg},
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where (Φ,Ψ)(z)≥ yg corresponds to

φt(zt−1,zt ;g)≥ 0, ∑
t≥0

β
t
ψ(zt ,zt+1)−uc0r0k0 ≥ 0

and yg is the vector with 0 at its first coordinate, and g otherwise. Let ∂Ξ denote the
boundary of the correspondence, where inequalities are exact equalities.

We observe that z(0;z−1) is also a solution to problems (RRP) at g = 0, and that it is in
Ξ(0). In fact, under our assumptions Z(g;z−1) ⊂ ∂Ξ(g), and we just need to show that ∂Ξ

is continuous at g = 0. To this end, we say that a point z is uniformly interior if infct > 0,
infkt+1 > 0 and 0< infxt and supxt < 1. Since the solution z(0;z−1) converges to an interior
steady state, it is uniformly interior, and we can restict attention to uniformly interior points
of the domain.

Lemma 10 (Regularity) Under the stated assumptions, the continuous linear map
D(Φ,Ψ)(z) is onto at every uniformly interior z ∈ ∂Ξ(0).

Proof: Hereafter, all functions are evaluated on the Banach space L(R3) of sup-norm
bounded processes with values in R3, and the set of bounded sequences is ℓ∞. Given the
assumptions that u is separable, at = 1 and σct > 1, all t, it is Dxψ∗

t − fℓtDcψ∗
t ̸= 0 at all

θ t . We can generate the vector (0, ...,0,1) via changes △z where only △zt is nonzero at
that date event, △kt+1 = 0, and △ct = − f ∗ℓt△xt . The derivative of the constraint functions
applied to this △z has nonzero coordinates only corresponding to the feasibility constraint
at θ t and the function ψ at the same date-event, where it is[

− f ∗ℓt −1

Dxψ∗
t Dcψ∗

t

]

with nonzero determinant. Vectors (0, ...,0,1,0, ...,0), with 1 corresponding to the
feasibility constraint at some θ t can be generated with changes △z where only △zt is
nonzero at that date event, △kt+1 =△xt = 0 and △ct ̸= 0.

Further, since we are computing derivatives for points z uniformly interior, E0 ∑t β tu∗ct

exists and is finite, and any indicator function of countable subsets of the nonnegative
integers can be generated in the tangent space of the domain of the feasibility constraint
functions, using △ct = −1 for every t in the subset, and adjusting the effect on the
intertemporal incentive constraint with the perturbation identified above. Thus, as any other
vector in ℓ∞ ×R is the image of limits of simple functions over indicators of subsets of the
nonnegative integers, they can all be generated in L(R3). We conclude that the derivative of
the constraint functions is onto. 2
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Lemma 11 (Continuity) The solution correspondence is sup-norm continuous at g = 0:

for every ε > 0 there exists Nε such that ∥z(gn;z−1)− z(0;z−1)∥< ε , all n > Nε ,

for every z(gn;z−1) ∈ Z(gn;z−1) and gn → 0 as n → ∞.

Proof: To obtain the continuity property, we show that ∂Ξ is continuous in g at g = 0, in the
sup-norm topology. We then apply Berge’s Maximum Theorem to obtain the conclusion.

For l.h.c., as by regularity the continuous linear map D(Φ,Ψ)(z) is onto, by Liusternik’s
Theorem (see Luenberger 1969, Thm 1, p. 240) there exists B > 0 such that for every
neighborhood N0 of 0 ∈ L(R) and every point y ∈ N0 it is (Φ,Ψ)(z′) = y for all z′ ∈ Nz ⊂
L(R3) and ∥z′− z∥

∞
≤ B||y||∞. Choose yn = (...,gn, ...,0). Then, (Φ,Ψ)(zn) = yn and zn ∈

∂Ξ(gn), while from ∥zn − z∥
∞
≤ B||yn||∞ we get that zn → z in sup-norm when gn → 0 (and,

thus, ||yn|| → 0 ≡ y0).
Now, for u.h.c., suppose gn → 0, and let zn ∈ ∂Ξ(gn). Then, φt(zn,t−1,zn,t ;gn) = 0, and

∑t≥0 β tψ(zn,t ,zn,t+1) = 0.
If ∥zn − z∥

∞
→ 0, some z ∈ L(R3), then the coordinates t − 1, t converge, and since

φt is continuous (as a finite dimensional map), we have that limφt(zn,t−1,zn,t ;gn) =

φt(zt−1,zt ;0) = 0, and since ∑t≥0 β tψ(.) is product continuous on the domain,
lim∑t≥0 β tψ(zn,t ,zn,t+1) = ∑t≥0 β tψ(zt ,zt+1) = 0. Thus, z ∈ ∂Ξ(0), as we wanted to show.

The only thing left to prove is that ∥zn − z∥
∞
→ 0.

Since D(Φ,Ψ) is onto at all z′−1(y0), it is ∥zn − z′∥
∞
≤ B

∥∥ygn − y0
∥∥

∞
for zn ∈

(Φ,Ψ)−1(ygn), for all n ≥ N1. Thus, given ε > 0, take n,m > N2 ≥ N1 such that
max(

∥∥ygn − y0
∥∥

∞
,
∥∥ygm − y0

∥∥
∞
)≤ ε/2B. Then,

∥zn − zm∥∞
≤
∥∥zn − z′

∥∥
∞
+
∥∥zm − z′

∥∥
∞
≤ B

∥∥ygn − y0
∥∥

∞
+
∥∥ygm − y

∥∥
∞
< ε

for all n,m > N, and {zn}n≥N is a Cauchy sequence in the sup norm. Since L(R3) is
complete, zn converges to z ∈ L(R3), in the sup norm. 2

As zt(gn;z−1) is close in the sup-norm to zt(0;z−1) by Lemma 11, by Lemma 10 it is
regular (an open property), and it satisfies the first order conditions for some α∗(gn)> 0, as
in Theorem 2. Consider problem

max
(ct ,xt ,kt+1)t≥0

∑
t≥0

β
t [u(ct ,xt)+α(gn)ψt(z)]

s.to f (kt ,1−xt)−gn − ct − kt+1 ≥ 0, all t ≥ 0.
(GP)

With û(ct ,xt) = u(ct ,xt)+α(gn)ψt(ct ,xt) and f̂ (kt ,1− xt) = f (kt ,1− xt)− gn, for α(gn)

(i.e., gn) small enough û, f̂ preserve the properties of u, f at g = 0. Then, problem (GP) is an
instance of problem (G). It is convex, the first order conditions are necessary and sufficient,
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and zt(gn;z−1) solves them. Then, zt(gn;z−1) is a solution to (GP). However, since problem
(GP) is an instance of problem (G), we conclude that for a small enough g > 0, zt(g;z−1)

converges to an interior, globally stable steady state, and points can be found which are
locally isolated.
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