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at the universities of York, Bristol, Leicester, Warwick and the London School of 
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or omissions, expressed in this document are of the authors only. NICE may take 
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ABOUT THE TECHNICAL SUPPORT DOCUMENT SERIES 

NICE describes the methods it follows when carrying out health technology 

evaluations in its process and methods manual.  This provides an overview of the key 

principles and methods of health technology assessment and appraisal for use in 

NICE Health Technology Evaluations. The manual does not provide detailed advice 

on how to implement and apply the methods it describes. The DSU series of Technical 

Support Documents (TSDs) is intended to complement the manual by providing 

detailed information on how to implement specific methods. 

 

The TSDs provide a review of the current state of the art in selected topic areas. They 

make recommendations on the implementation of methods and reporting standards 
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We recognise that there are areas of uncertainty, controversy and rapid development. 

It is our intention that such areas are indicated in the TSDs. All TSDs are extensively 

peer reviewed prior to publication (the names of peer reviewers appear in the 
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suggestions for further guides. The TSDs will be amended and updated whenever 

appropriate. Where minor updates or corrections are required, the TSD will retain its 

numbering with a note to indicate the date and content change of the last update. More 

substantial updates will be contained in new TSDs that entirely replace existing TSDs. 

  

Please be aware that whilst the DSU is funded by NICE, these documents do not 

constitute formal NICE guidance or policy. 

 

Prof Allan Wailoo, Director of DSU and TSD series editor. 

 

ACKNOWLEDGEMENTS 

We would like to thank Donna Davis for support with formatting and proofreading. We 

also thank Rhiannon Owen and the reviewers from NICE (Summaya Mohammad and 

Lorna Dunning) for their extremely helpful contributions. 

 

 

This report should be referenced as follows: 

Bell Gorrod, H., Latimer, N. R., Abrams K.R. NICE DSU Technical Support Document 

24: Adjusting survival time estimates in the presence of treatment switching: An update 

to TSD 16. 2024.  [Available from nicedsu.org.uk] 

 

https://www.sheffield.ac.uk/nice-dsu


4 
 

EXECUTIVE SUMMARY  

Treatment switching describes a situation where participants in a randomised 

controlled trial switch onto a treatment that they were not randomised to receive. 

Sometimes, treatment switches reflect treatment pathways that would be expected to 

be followed in standard clinical practice in the jurisdiction of interest, but in other cases 

they do not. Technical Support Document (TSD) 16 focused on a situation where 

patients randomised to the control group of a clinical trial are allowed to switch onto 

the treatment received by patients randomised to the experimental group.[1] Typically, 

this switching is not representative of a treatment pathway that would be expected to 

be followed in standard clinical practice, because the experimental treatment is usually 

new and not available at later lines of therapy. In such a situation, an intention to treat 

(ITT) analysis – whereby the data are analysed according to the arms to which patients 

were randomised – will not adequately address the decision problem faced in an 

appraisal of the new treatment: that of whether inserting the new treatment into the 

care pathway at its designated line of therapy represents a cost-effective use of 

resources. Instead, it may be necessary to estimate the effectiveness and cost-

effectiveness that would be expected to be observed if treatment pathways used in 

standard clinical practice were followed – adjusting for the impact of treatment 

switches that would not be expected to occur in practice.  

 

While it is often necessary to adjust when control group patients switch onto the 

experimental treatment, other types of treatment switching may also be 

unrepresentative of treatment pathways that would be expected to be observed in 

clinical practice, and further adjustment analyses may be required. For instance, 

patients in either randomised group may switch onto other experimental treatments, 

or onto treatments that are not available in standard clinical practice in the jurisdiction 

of interest, e.g. England and Wales.   

 

TSD 16 described the treatment switching problem, and introduced a selection of 

adjustment methods that may be used – rank preserving structural failure time models 

(RPSFTM), iterative parameter estimation (IPE), marginal structural models (MSM) 

with inverse probability of censoring weights (IPCW) and two-stage estimation 

(TSE).[1-5] An analysis framework was presented, to help determine which adjustment 



5 
 

methods are likely to be appropriate on a case-by-case basis. Since TSD 16 was 

published a number of developments have occurred, motivating this new TSD.[1] 

These two TSDs should be read alongside one another and TSD 24 does not replace 

TSD 16 – instead it supplements and extends it.  

 

Section 1 of this report provides an introduction and context. Section 2 describes the 

treatment switching problem, and includes a discussion around the different types of 

treatment switching and when adjustment may (or may not) be required. It is important 

to note that determining that it is relevant to adjust for a particular type of treatment 

switching does not mean that an adjustment analysis will be accepted for decision-

making purposes. Treatment switching adjustment analyses can be prone to bias and 

error and while it may be relevant to adjust for a particular type of treatment switching, 

it may not be possible to do so reliably and robustly. Adjustment analyses should be 

assessed on a case-by-case basis, firstly with respect to the relevance of the analyses, 

and secondly with respect to the reliability and robustness of the analyses performed.  

 

Section 3 summarises an addendum to the International Council for Harmonisation of 

Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) E9 

Statistical Principles for Clinical Trials document that came into effect in 2020.[6] The 

ICH guidelines are heavily relied upon in the regulatory approval of new treatments, 

and the 2020 addendum to ICH E9 considers hypothetical estimands and refers to 

treatment switching, and is therefore highly relevant for Health Technology 

Assessment (HTA). We recommend that when planning trials and pre-specifying 

analyses, trial sponsors should consider questions of interest not only for regulatory 

agencies, but also for HTA agencies, and should pay particular attention to the 

implications that this can have for data collection. 

 

In Section 4, we discuss approaches for addressing the problems associated with 

treatment switching both before and after a randomised controlled trial (RCT) has been 

run. We offer recommendations for trial planning, and provide a recap of the RPSFTM, 

IPCW and TSE adjustment methods,[2, 3, 5] and an overview of methodological 

developments that have occurred since publication of TSD 16. These include 

extensions to RPSFTM to allow for switching to treatments with different treatment 

effects,[7, 8] an increased capability to test the sensitivity of RPSFTM analyses to 
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violations of the common treatment effect assumption,[9] and a new version of the 

TSE method that uses g-estimation[10] and relies on fewer assumptions than the 

simple TSE method described in TSD 16.[1, 5] We also discuss issues relating to the 

practical application of IPCW, including covariate selection and extreme weights.[11] 

 

In Section 5, we provide a review of recent NICE Technology Appraisals (TAs) affected 

by treatment switching, demonstrating that adjustment analyses are frequently 

reported in inadequate detail, and that treatment switching is often inadequately 

considered by external assessment groups and appraisal committees. This motivated 

the development of a set of recommendations and reporting guidelines, provided in 

Section 6, to improve the clarity and consistency of the reporting and review of 

treatment switching adjustment analyses in NICE TAs. Our reporting guidelines 

expand upon those recently proposed for the RPSFTM and IPCW methods by Sullivan 

et al. (2020).[12] The guidelines provide a list of summary statistics that should be 

provided for any trial that is affected by treatment switching, and a list of information 

to be presented alongside IPCW, RPSFTM, IPE, simple TSE, TSE with g-estimation, 

or other treatment switching adjustment analyses. We recommend that multiple 

treatment switching adjustment analyses should be performed to test the sensitivity of 

the results to the assumptions of the models used. We also recommend that external 

assessment groups and appraisal committees should more consistently consider the 

issue of treatment switching, both with respect to whether it is appropriate to adjust for 

the types of switching observed in pivotal RCTs, and with respect to the validity of any 

adjustment methods and analyses that are applied.  

 

We also suggest areas for further research. In particular, it would be valuable to 

undertake neutral comparison studies that investigate more complex switching 

scenarios (for example, switching in both treatment arms, and to treatments with 

different treatment effects), which investigate the performance of all adjustment 

methods, including those developed more recently and extensions to previously 

existing methods. Further research on methods to adjust for treatment switching when 

only summary data are available would also be valuable. 
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1. INTRODUCTION 

Treatment switching is common in Randomised Controlled Trials (RCTs) used in 

submissions to the NICE technology appraisal (TA) programme. Switching occurs 

when patients in an RCT deviate from the treatment that they were randomly assigned 

to. It is often permitted due to ethical reasons and to aid trial recruitment, and is 

frequently seen in cancer trials, but it also occurs in trials in other disease areas. 

 

This technical support document (TSD) provides an update to TSD 16 (Adjusting 

Survival Time Estimates in the Presence of Treatment Switching), published in 

2014.[1] TSD 16 focused specifically on situations where patients randomised to the 

control group of an RCT switch onto the experimental treatment at some point during 

the trial. Subsequent papers have highlighted other types of switching in RCTs. In this 

TSD, we broaden our focus to include situations where participants randomised to the 

experimental arm of a trial switch onto the control treatment, or where participants 

randomised to either arm of the trial switch onto any other subsequent treatments. In 

Section 2, we provide further detail on this, and provide guidance and an over-arching 

recommendation on when adjustments for treatment switching may (and may not) be 

necessary. In particular, while in this TSD we broaden our focus to include switches 

onto any other subsequent treatments, this does not mean that it is appropriate to 

adjust for all these switches – usually it is only appropriate to adjust for switches onto 

non-standard treatments. In Section 3 we discuss the relevance for health technology 

assessment (HTA) and treatment switching of a recently published addendum to the 

ICH E9 Statistical Principles for Clinical Trials on Estimands and Sensitivity Analysis 

in Clinical Trials document, and provide a recommendation around the implications of 

this for trial planning in the context of HTA. In Section 4, we discuss methods for 

dealing with the treatment switching problem both before and after a trial has been 

run. First, we offer recommendations on considerations that should be made when 

planning a trial in which treatment switching is anticipated. Then we recap the 

treatment switching adjustment methods described in TSD 16, and summarise the 

methodological developments that have occurred since publication of the TSD.[1] In 

Section 5, we review recent NICE TAs affected by treatment switching, and in Section 

6 we present a set of recommendations and reporting guidelines, with the aim of 
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improving clarity and consistency in the reporting (and review) of future treatment 

switching adjustment analyses. 

 

As in TSD 16, our focus in this update document is on survival outcomes.[1] This is 

because treatment pathways become particularly important in economic evaluations 

that take a lifetime perspective – and in these, survival outcomes are often of critical 

importance. However, switching adjustment may also be relevant in a non-survival 

context, if trial outcomes are measured after treatment switches have occurred. For 

instance, treatment switching could affect subsequent measures of health-related 

quality of life, or other measures of clinical effectiveness. In addition, when 

adjustments to outcomes are made to account for treatment switches, adjustments to 

costs should also be included in economic analyses.  
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2. THE TREATMENT SWITCHING PROBLEM  

What is treatment switching and when should we adjust for it? 

RCTs aim to compare the effectiveness of a novel treatment (or combination of 

treatments) and a comparator. Patients enrolled in a trial are randomised to a 

treatment group. Treatment switching occurs when patients switch onto a treatment 

other than the one they were randomised to. An intention-to-treat (ITT) analysis 

represents the standard analysis used to establish the relative effectiveness of the 

treatment policies under investigation, by comparing trial outcomes in the randomised 

treatment groups. ITT analyses benefit from the important advantages associated with 

randomisation, and should always be presented.  

 

The relevance of the ITT analysis in the context of HTA depends upon the decision 

problem faced, and sometimes other analyses may be required. If the treatment 

pathways followed in a clinical trial deviate from those that would be expected to be 

followed in clinical practice, trial outcomes measured on an ITT basis may not be 

useful for resource use allocation decision making. For example, imagine that patients 

randomised to the control group of a trial are allowed to switch onto the experimental 

treatment once their disease progresses, and that the experimental treatment has a 

beneficial impact on post-progression survival but is not available as a subsequent 

therapy in standard clinical practice. In that case, the patients in the control group may 

live longer than they would have if they had instead received a standard therapy. In 

such a case, the overall survival experienced in the control group of the clinical trial is 

lengthened by the switching, and an ITT analysis may over-estimate the effectiveness 

of the control treatment, and may result in an under-estimate of the cost-effectiveness 

of the experimental treatment. It would be desirable to adjust for the treatment 

switching in order to address the HTA decision problem and allow a fully-informed 

treatment recommendation to be made.  

 

TSD 16 focused on switches from the control group to the experimental treatment.[1] 

However, we acknowledge that it is important to consider all types of treatment 

switching, and here we broaden the definition of “switching” to include switches 

between randomised treatments (from the control group to the experimental treatment 
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or from the experimental group to the control treatment), and switches from either 

randomised group to any other subsequent treatments.  

 

While all treatment changes fall within the definition of “treatment switching”, it is 

important to emphasise that not all switches need to be adjusted for in the context of 

a NICE TA. When determining which switches should be adjusted for, the decision 

problem being addressed must be considered. In NICE appraisals, the decision 

problem usually involves an assessment of whether inserting the new treatment into 

the care pathway at its designated line of therapy represents a cost-effective use of 

resources. Economic evaluations usually take a lifetime perspective when treatments 

impact survival, and therefore, whether modelled explicitly or implicitly, treatment 

pathways must be taken into account. If evidence on survival is taken from a clinical 

trial that is affected by treatment switching, the pathway of care received in the trial 

must be assessed, and it may be appropriate to move beyond ITT analyses to estimate 

the survival outcomes that would have been observed in the absence of the switching. 

Often it will be appropriate to adjust for some of the treatment switches that occurred 

in the trial, but not others. For example, it is likely to be appropriate to adjust for 

treatment switches that do not represent treatment pathways that would be expected 

to be followed in clinical practice, whereas it would not usually be appropriate to adjust 

for switches that do represent standard clinical pathways. An assessment of the 

treatments that it is appropriate to adjust for should be made on a case-by-case basis, 

but simple guidelines are provided below, followed by an over-arching 

recommendation: 

 

- Switches from the control group to the experimental treatment. Adjustment 

for these switches is usually appropriate, because the experimental treatment 

is not usually available as a subsequent therapy as part of standard clinical 

practice in the jurisdiction for which a decision is being made. However, 

sometimes the treatment being appraised is already available as a later-line 

therapy, in which case it would not be appropriate to adjust for these switches. 

- Switches from the experimental group onto the control treatment. Usually 

the control treatment represents a standard therapy which is available in 

standard clinical practice. In this case, it would not be appropriate to adjust for 

patients who switch from the experimental group onto the control treatment. 
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However, there may be situations where the control treatment is not available 

as a next-line therapy, in which case it may be appropriate to adjust for this type 

of switching. 

- Switches from either randomised group onto other treatments. Here, the 

need for adjustment depends on whether the treatment switched to is available 

as part of the standard treatment pathway in the jurisdiction of interest. For 

NICE, if the treatment switched to is available at the relevant line of care in 

standard clinical practice in England and Wales, adjustment would not be 

required to address the HTA decision problem. In contrast, if a subsequent 

treatment is not available in standard practice at the relevant line of care, it 

would be appropriate to adjust. This should also be taken into account in the 

context of treatments available through managed access schemes, such as the 

Cancer Drugs Fund. It may be deemed appropriate to adjust for switches onto 

these treatments because whilst they may be available in the NHS, they are not 

part of routine commissioning.  

- Switch proportions. Differing effectiveness of initial treatments may impact 

the proportion of patients that go on to receive subsequent treatments. In 

general, provided that treatment switches involve treatments that are 

representative of a standard treatment pathway, it is not necessary to adjust for 

different proportions of patients receiving subsequent treatments – unless it can 

be shown that the proportions are not compatible with what would be expected 

in standard clinical practice.   

- Timing of switches. The timing of switches is important and may determine 

whether adjustments for switching need to be made. For treatments that are 

not part of the standard treatment pathway in the jurisdiction of interest, the 

timing of the switch is an important factor in analyses undertaken to adjust for 

the switching, but the timing does not alter the decision on whether or not it is 

appropriate to adjust for the switching. However, for treatments that do 

represent part of the standard treatment pathway in the jurisdiction of interest, 

the timing of the switch could impact whether adjustments are necessary. In 

particular, it is important to consider whether the switch times observed in the 

trial reflect the switch times that would be observed in standard clinical practice. 

For example, if switching in a trial is triggered by an interim analysis, rather than 

by a clinical event (such as disease progression, or toxicity), switching may 
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occur earlier (or later) in the trial than would be observed in reality. In this case, 

even if the treatment switched to represents part of the standard treatment 

pathway, it may be necessary to make adjustments to subsequently measured 

trial outcomes, due to the non-standard timing of the treatment switch. In this 

case, the analysis would seek to estimate what outcomes would have been 

observed if switching had taken place at the time at which it would be expected 

in standard clinical practice. 

 

Recommendation 1: It may or may not be appropriate to attempt to adjust for various 

different types of switching observed in an RCT in order to address the HTA decision 

problem. The switching observed in each treatment arm of a trial should always be 

described and it should be considered whether the observed switching is 

representative of treatment pathways available in standard clinical practice in the 

jurisdiction for which the decision is being made.  

 

It is important to note that determining that it is relevant to adjust for a particular type 

of treatment switching does not mean that an adjustment analysis will be accepted. 

As described in TSD 16, and in this document, treatment switching adjustment 

analyses are prone to bias and error.[1] It may be relevant to adjust for treatment 

switching, but it may not be possible to do so reliably and robustly. Adjustment 

analyses should be assessed on a case-by-case basis, firstly with respect to the 

relevance of the analyses, and secondly with respect to the reliability and robustness 

of the analyses performed.  

 

In addition, it is only necessary to adjust for switching if switching is expected to impact 

upon the outcomes being measured. For example, if patients in a trial switched onto 

a palliative treatment that is not available in clinical practice, it unlikely to be necessary 

to adjust survival outcomes. It may, however, be relevant to adjust cost and quality of 

life estimates. 
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3. TREATMENT SWITCHING AND THE ICH E9 (R1) 

ADDENDUM  

The International Council for Harmonisation of Technical Requirements for 

Registration of Pharmaceuticals for Human Use (ICH) bring regulatory bodies and the 

pharmaceutical industry together to develop guidelines relating to quality, safety and 

efficacy to ensure that high standards are met whilst efficiently assessing medicines. 

These are relevant for HTA because the analyses used in submissions to HTA 

agencies are often the same as those presented to regulatory bodies. Therefore, any 

changes made to ICH guidelines may have important implications for analyses 

submitted to NICE. 

 

The ICH E9 Statistical Principles for Clinical Trials was initially published in 1998, with 

the aim of harmonising statistical methods used to analyse trials. In 2020, an 

addendum to ICH E9, on estimands and sensitivity analysis, came into effect.[6] The 

addendum highlights the complexities associated with estimating treatment effects in 

the presence of intercurrent events, which are events that occur post-randomisation 

and prior to the end-point of interest and which have implications for the estimation 

and interpretation of treatment effects. Treatment switches are described as examples 

of intercurrent events, representing the first time that ICH guidelines have referred 

specifically to analyses that may adjust for treatment switches. Given the prominence 

of ICH guidelines, and the importance of treatment switching for HTA, it is important 

for those involved in HTA to understand the ICH E9 addendum. Here, we provide a 

brief overview of the addendum with respect to trial planning and estimation strategies.  

 

3.1 ICH E9 ADDENDUM: TRIAL PLANNING  

The addendum advocates carefully defining an estimand to address the research 

question of interest at the planning stage of the trial, by considering the following five 

aspects;[6]  

● Treatment, including identification of the study treatment, comparator and 

potential subsequent treatments. 
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● Population, that is the relevant patient group for the clinical question of interest, 

inclusion/exclusion criteria of the trial, and expectations for the real-world 

population. 

● The variables or endpoint required to answer the clinical question of interest. 

The addendum states that it is important to collect all data that are needed to 

support estimation of the estimand(s) of interest. Trials should be planned to 

allow this. In this TSD, we focus on overall survival as the end point of interest, 

and note that data collection on patient characteristics and treatment switches 

are required to apply statistical adjustment methods to adjust for treatment 

switching (see Section 4). As previously acknowledged, other outcome 

measures may also be affected by treatment switching, and the data collection 

required will depend upon the clinical questions of interest / endpoints identified 

at the trial planning stage. 

● List of potential intercurrent events and plans for addressing each type of 

intercurrent event. The addendum notes that treatment switches can represent 

intercurrent events, and five estimation strategies are suggested for addressing 

these events (see 3.2, below).  

● The population-level summary statistic for the comparison of treatments. It 

is relevant to note that hazard ratios (HR) are usually used to compare survival 

outcomes in clinical trials, but, for the purposes of HTA, entire survival curves 

are of most importance. It is important to note that most statistical methods that 

may be used to adjust for treatment switching provide adjusted survival times 

(“counterfactuals”) or weighted survival times, and these can be used in any 

survival model (see Section 4). Therefore, modellers are not restricted to using 

estimated HRs when incorporating adjustment for treatment switching in 

economic evaluations. While extrapolation is almost always required when 

assessing the cost-effectiveness of interventions that affect survival, it is 

relevant to note that restricted mean survival time (RMST) can be used to 

summarise survival benefits observed during the period of a clinical trial and 

this might be more meaningful than a hazard ratio, particularly in the presence 

of non-proportional hazards.[13] RMST adjusted for treatment switching can be 

estimated using the adjusted or weighted survival times produced by the 

adjustment methods described in this TSD. 
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3.2 ICH E9 ADDENDUM: ESTIMATION STRATEGIES  

The ICH E9 addendum suggests five estimation strategies that can be considered to 

address intercurrent events.[6] Of these strategies, the Treatment Policy and 

Hypothetical strategies are the most relevant in the context of treatment switching. 

- The Treatment Policy strategy describes a comparison of treatment groups as 

randomised, i.e. an ITT analysis. In the context of NICE appraisals, this type of 

analysis will be considered appropriate if all switches are made to approved 

subsequent therapies, or there are very few switchers (causing the effect of 

switching to be negligible). 

- The Hypothetical strategy describes an estimation of what would have 

happened if the specific intercurrent events (such as specific treatment 

switches) had not happened. The treatment switching adjustment methods 

outlined in Section 4 can be used to obtain estimates of survival in the absence 

of treatment switching. 

 

For survival outcomes in trials affected by treatment switching in NICE appraisals, we 

recommend that results are presented under both the treatment policy (ITT) and 

hypothetical (treatment switching adjusted) strategies, as described in the reporting 

guidelines in Section 6. 

 

The three other estimation strategies specified in the addendum are referred to as 

“Principal stratum”, “While on treatment” and “Composite” strategies. These are less 

relevant in the treatment switching context. The principal stratum strategy requires the 

analysis of sub-populations within the trial, defined by whether or not the intercurrent 

event would occur. In HTA, the objective is to estimate the effectiveness and cost-

effectiveness of the experimental treatment in the entire eligible population. As 

described in the NICE manual,[14] it is often relevant to consider subgroups, but it is 

unlikely to be appropriate for these subgroups to be defined according to whether or 

not a patient would be expected to switch treatment during follow-up of a trial. This is 

because treatment switching is unlikely to be random, with switching often motivated 

by disease progression or lack of response – therefore, analysing subgroups of 

patients based on whether they would be expected to switch or not involves 

conditioning on a future event and is likely to introduce bias. In some cases, a principal 
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stratum strategy might be informative – for example, an estimate of the treatment 

effect in patients able to tolerate a treatment might be useful. However, in general, this 

strategy seems less likely to be relevant in an HTA context, including when 

adjustments for treatment switching are required.  

 

The while-on-treatment strategy only considers events that occur prior to the 

intercurrent event. It may be useful when, for example, the outcome of interest is 

adverse drug reactions, but some participants discontinue treatment: it may then be 

appropriate to assess the event risk while participants remain on treatment. However, 

it is not appropriate in the context of treatment switching and the estimation of 

treatment effects on survival, because the strategy would involve censoring data for 

patients who switch at the time of switch, which is highly prone to selection bias as 

switching is likely to be correlated with prognosis. 

 

The composite strategy requires that information on the intercurrent event is 

incorporated into the endpoint variable, thus changing the variable from a binary 

endpoint to a categorical variable. This might be helpful in some contexts – for 

example, if the primary outcome in a trial was response or non-response, but some 

patients discontinued treatment before response was measured, then the intercurrent 

event of treatment discontinuation could be added to the outcome variable. 

Progression-free survival is itself a composite endpoint variable, measuring a 

combination of the growth of a tumour and survival. However, in the context of 

treatment switching and OS, a variable that combines treatment switch and survival 

events would not be intuitively meaningful, and would not be appropriate for 

addressing HTA decision problems – particularly where economic models are used, 

splitting the disease pathway into mutually exclusive health states.  

 

See the addendum itself,[6] Manitz et al. (2022) and Clark et al. (2022) for further 

discussion of the estimation strategies and examples of estimands in the context of 

treatment switching.[15, 16] 
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3.3 ICH E9 ADDENDUM: IMPLICATIONS FOR HTA  

By acknowledging treatment switching as an intercurrent event, the ICH E9 addendum 

may result in adjustment analyses becoming more commonplace in regulatory 

submissions – in the past these analyses were frequently conducted on an ad hoc 

basis specifically for HTA submissions. The addendum provides a basis for estimating 

treatment effects moving beyond the ITT principle, but is clear that appropriate 

estimands and analyses should be pre-specified at the trial planning stage, and that 

trials should be designed in a way that allows reliable estimates to be obtained for 

relevant estimands, for example by incorporating appropriate data collection 

strategies. The addendum does not describe statistical adjustment methods in detail, 

but acknowledges that some estimands may require methods of analysis that involve 

important assumptions, and trials should be designed with these in mind. As described 

in Section 4 of this TSD, several adjustment methods require intensive data collection, 

and the ICH E9 addendum specifically states that all relevant data should be collected 

to support estimation. The addendum also states that results from all analyses should 

be reported systematically, specifying whether each analysis was pre-specified.[6] 

Through improved pre-specification of treatment switching adjustment analyses, 

improved trial design to support the subsequent application of adjustment methods, 

and transparent reporting of analyses conducted, adoption of the ICH E9 addendum 

may improve the quality and robustness of adjustment analyses included in 

submissions to HTA agencies.  

 

Recommendation 2: We recommend that when planning trials and pre-specifying 

analyses, trial sponsors should consider questions of interest not only for regulatory 

agencies, but also for HTA agencies, and especially the implications that this can have 

for data collection. Recommendations made in the ICH E9 addendum around trial 

planning, pre-specification of analyses, and reporting of results, should be adopted. 
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4. TREATMENT SWITCHING ADJUSTMENT: PLANNING, 

METHODS, AND DEVELOPMENTS  

In this section we give an overview of how to deal with the treatment switching problem 

both before and after a trial has been run. Our guidance on trial planning (in Section 

4.1) is based upon our knowledge of the requirements of adjustment methods and 

difficulties that we have observed in the application of adjustment methods when 

treatment switching has not been anticipated or planned for. Our overview of 

adjustment methods (Section 4.2) includes a re-cap on the main characteristics of the 

methods, together with a summary of methodological developments that have 

occurred since the publication of TSD 16.[1] This summary is based on a targeted 

review of the literature – methods for this review are presented in Appendix A.  

 

4.1 PLANNING A TRIAL  

Treatment switching should ideally be considered at the planning stage of every trial. 

Here, we build on the advice provided by Henshall, et al. (2016).[17] The 

recommendations listed below should be taken into account alongside the 

development of an estimand, as referred to by the ICH E9 (R1) Addendum.[6] Here 

we focus on aspects specifically relevant to treatment switching – we do not cover 

some more general issues, such as internal validity of the data collected (including 

data curation, quality insurance), which should be taken into account when analysing 

any dataset.  

 

Recommendation 3: Consider the types of switches that could occur 

Switches from the control arm to the experimental treatment should be considered, as 

well as switches from either arm to subsequent treatments which do not represent 

standard care. It is important to acknowledge that what constitutes a “non-standard” 

subsequent treatment will differ across countries and jurisdictions, and so different 

adjustment analyses may be required in different jurisdictions.  

 

Recommendation 4: Consider when the switches could occur 

Some trials will specify in the protocol that treatment switching will be permitted only 

after disease progression, or some other clinical event, or on the basis of interim 



23 
 

results. The time of earliest switch will affect which methods can be applied, for 

instance the simple version of the two-stage estimation (TSE) adjustment method can 

only be applied if switching occurs after a disease related secondary baseline.  

 

Recommendation 5: Consider sample sizes  

The trial should recruit sufficient participants to allow conclusions to be drawn on key 

outcomes and end points even if treatment switching occurs. It should be noted that 

treatment switching adjustment methods are less likely to perform well when sample 

sizes are small and switching proportions are high. Potentially, sample size 

calculations could formally include assumptions around treatment switching, though 

this represents an area where further research would be valuable. 

 

Recommendation 6: Consider data collection  

Different treatment switching adjustment methods have different data requirements. 

For instance, the rank preserving structural failure time model (RPSFTM) and iterative 

parameter estimation (IPE) methods require data on assigned treatment arm, time to 

death, occurrence of switch and time of switch, whereas the inverse probability of 

censoring weights (IPCW) and TSE methods require additional data on patient 

characteristics at regular time intervals to meet the “no unmeasured confounders” 

assumption.[1-4, 10, 18] This assumption ideally requires that all characteristics that 

both have a direct effect on the decision to switch and the probability of death are 

collected. Although the no unmeasured confounders assumption may seem 

impossible to meet perfectly, it should be kept in mind that the decision to switch can 

only be based on the information that the clinician has available, combined with the 

clinicians own clinical experience. Missing data (or unmeasured variables) are not 

necessarily a problem, unless the information is observable by the clinician and/or 

patient, but was not collected in trial datasets. It is useful to set out the causal 

relationships between relevant variables in the form of a Directed Acyclic Graph 

(DAG), as a tool for informing appropriate variable selection and data collection.[19, 

20] This is discussed in more detail in subsection 4.2.3.2. 

 

Recommendation 7: Describe the plans for adjusting for treatment switching in the 

statistical analysis plan (SAP) 
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Plans for the application of treatment switching adjustment methods should be 

described in the Statistical Analysis Plan (SAP) for the trial, and this should be set out 

prior to the trial initiation. The reporting guidelines in Section 6 of this TSD stipulate 

that appropriate adjustment methods should be applied and compared. Each method 

makes strong assumptions, so ideally a range of adjustment methods should be 

applied that rely on different assumptions. It is unlikely to be possible to pre-specify 

the most appropriate adjustment method, but it is possible to specify analyses that will 

be undertaken to provide information that will help determine which method has 

produced the most reliable results – for example, by assessing the range of IPCW 

weights and the performance of g-estimation. These analyses are detailed in the 

reporting guidelines in Section 6. Once the trial data have been collected, the statistical 

methods should be applied to the data as described in the SAP. 

 

4.2 ADJUSTMENT METHODS  

In this section, we provide a brief re-cap of the methods described in TSD 16, followed 

by a summary of new developments. Simple methods, such as censoring at the time 

of switch or excluding switchers from the analysis, are prone to bias and are not 

recommended. Switching is often related to prognosis, therefore excluding or 

censoring switchers removes a relevant subset of the trial population and creates a 

non-random loss of information. To appropriately address the NICE TA decision 

problem, more complex methods are required. We therefore focus on more complex 

methods that adjust for treatment switching. The adjustment methods presented in 

TSD 16, including IPCW, RPSFTM, IPE, and TSE, remain relevant.[1-3, 5]  

 

4.2.1 RPSFTM and IPE  

The standard RPSFTM can be applied in situations where patients switch between the 

control and experimental treatments, but is not applicable to situations that involve a 

switch to a subsequent treatment which does not represent standard care.[2] The 

application of the model requires dividing observed patient time into time spent on the 

control treatment (𝑇𝑖
𝑐) and time spent on the experimental treatment (𝑇𝑖

𝑒). For those 

that do not switch to the experimental treatment, 𝑇𝑖
𝑒 is zero. A common treatment effect 

is assumed for all patients regardless of when the treatment is received – that is, the 

time ratio (𝜓) (sometimes referred to as the “acceleration factor”) associated with 
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receiving treatment is the same for all patients (relative to the amount of time the 

treatment was taken for), whether they were originally randomised to the experimental 

treatment or only switched onto it later. Counterfactual survival times 𝑈𝑖 are specified 

as follows 

𝑈𝑖 = 𝑇𝑖
𝑐 + 𝑒𝑥𝑝(𝜓)𝑇𝑖

𝑒  (1) 

 

The RPSFTM method identifies an optimal value of 𝜓 using g-estimation, which 

involves entering a range of values for 𝜓 into the counterfactual model and using a g-

test to compare the counterfactual survival in randomised groups.[2] The choice of test 

used for the g-test can affect results and should be justified – typically a log-rank test 

is used but other options are available, such as a Wilcoxon test, which gives more 

weight to earlier time-points. The optimal value of 𝜓 is found when the g-test z-statistic 

equals zero, i.e. where counterfactual (untreated) survival times in the control group 

are equal, on average, to counterfactual (untreated) survival times in the experimental 

group. In some instances, there may be multiple values for 𝜓 that result in a zero z-

test statistic. In such circumstances some software packages include an algorithm so 

that an average of the solutions for 𝜓 is calculated,[9] but it is always important for the 

analyst to investigate the data and the g-estimation output to identify whether multiple 

solutions exist, and to determine why this might be the case. Alternatively, the IPE 

method could be used to estimate 𝜓.[4] The IPE method is based upon the same 

counterfactual framework as the RPSFTM and relies on the common treatment effect 

assumption, but instead of using g-estimation to identify an optimal value of 𝜓, the IPE 

method iteratively fits a parametric survival model. This requires an additional 

assumption that is not required by the RPSFTM – that is, that survival times follow a 

parametric distribution. However, taking the IPE approach has the advantage of 

ensuring that multiple solutions will not be identified for 𝜓. 

 

Once the value of 𝜓 is obtained – whether using the RPSFTM or the IPE method – 

survival times in switchers can be adjusted to provide the hypothetical survival times 

that would have occurred if there had been no switching. A new dataset is then 

obtained, and survival analysis can be undertaken on it – this could include fitting 

standard parametric models to the adjusted data, or more flexible models if standard 

models are deemed inappropriate (see TSD 21).[21] However, when fitting models to 
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the adjusted datasets provided by RPSFTM or IPE adjustment, the fact that the data 

are no longer fully observed (that is, the data are adjusted) must be taken into account. 

To adequately capture the uncertainty associated with this, the entire adjustment and 

subsequent model-fitting process should be bootstrapped, or, if deriving an adjusted 

hazard ratio, by using the p-value from the ITT analysis.[2, 22]  

 

If censoring is present in the data, re-censoring can be applied to adjust the data in all 

groups affected by treatment switching.[23] Re-censoring aims to break the 

dependence between treatment received, counterfactual censoring time and 

prognosis, which may cause bias in the adjusted dataset – see Section 4.2.1.1 for 

more details. The recommendations in Section 6 of this TSD state that the RPSFTM 

and IPE (and TSE) methods should be applied with and without re-censoring for 

submissions to NICE. 

 

The RPSFTM can be applied using the strbee package in Stata[9] or the RPSFTM 

package in R.[24] The IPE can also be applied using the strbee package in Stata.[9] 

It is notable that both methods can be applied on an “on treatment” (sometimes 

referred to as “as treated”) or a “treatment group” (sometimes referred to as “ever 

treated”) basis. The “on treatment” approach only considers time actually spent 

receiving the experimental treatment as time spent on treatment (i.e. time during which 

the 𝑇𝑖
𝑒 indicator equals 1). The “treatment group” approach considers all time after 

initiating the experimental treatment as time spent on treatment (i.e. the 𝑇𝑖
𝑒 indicator 

equals 1 for all time periods after treatment initiation). The “treatment group” approach 

may be useful when a treatment effect beyond treatment discontinuation is expected, 

or when the control treatment is an active therapy (in which case the estimate of 𝜓 will 

represent the effect of the treatment pathway initiated when starting the experimental 

treatment, rather than the effect specific to the experimental treatment itself). See 

Section 3.3.1 of TSD 16 for more information on this.[1] 

 

4.2.1.1 Extensions and recent developments to RPSFTM and IPE 

Issues relating to re-censoring 

Censoring is problematic in the counterfactual datasets created when adjusting for 

treatment switching, because whilst adjusted event times are estimated for people who 

switched treatments and experienced an event (usually death), adjusted censoring 
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times are estimated for people who switched treatments and did not experience the 

event of interest during trial follow-up. This introduces a relationship between switching 

and censoring times, because censoring times are adjusted in switchers but not in 

non-switchers. Because switching is likely to be associated with prognostic 

characteristics, a relationship is created between prognostic characteristics and 

censoring times, resulting in informative censoring. The purpose of re-censoring is to 

break the dependence between switching, censoring time and prognosis, and involves 

estimating adjusted potential censoring times for all patients in a treatment arm in 

which switching occurred, not just for patients who switched.  

 

Re-censoring results in valid estimates of treatment effects up to the maximum 

recensored follow-up time. However, re-censoring involves a loss of longer-term data, 

and the larger the treatment effect, the more data are lost, because re-censoring times 

are a function of the estimated treatment effect. When the intention is to extrapolate 

survival beyond the period of the trial, the loss of information associated with re-

censoring could result in poor extrapolations and biased estimates of long-term 

treatment effects. This is likely to be the case when important changes in hazards 

occur beyond the recensored follow-up times, and/or when important changes in the 

treatment effect occur beyond the recensored follow-up times. Latimer et al. (2019) 

performed simulations to study the impact of re-censoring and found that analyses 

both with and without re-censoring were prone to bias, and concluded that including 

re-censoring should not always represent the default approach when estimating long-

term survival. This is of particular importance, given that a key objective in HTA often 

involves estimating life-time survival benefits, and these estimates are frequently a key 

driver of cost-effectiveness results. The authors found that the two approaches often 

provided bias in opposite directions, and therefore recommended that analyses should 

be performed with and without re-censoring, as this may give decision-makers a 

clearer idea of the range in which the true longer-term treatment effect lies.[25] 

  

The original paper that introduced the IPE method, published by Branson and 

Whitehead (2002),[4] described an abridged version of re-censoring, which was 

subsequently shown to be sub-optimal.[26] Since publication of TSD 16, Zhang and 

Chen (2016) have further discussed re-censoring in the context of the IPE, and 
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proposed a “modified IPE” which applies re-censoring correctly.[27] This is in line with 

recommendations previously made in TSD 16. 

 

Weighted log-rank test for RPSFTM  

The log-rank test that is used within the RPSFTM performs optimally when the hazard 

ratio comparing control and experimental group survival times is constant over time. 

However, in the presence of an experimental treatment with a non-zero treatment 

effect, treatment switching results in changes in the ITT-estimated hazard ratio over 

time, even if the actual treatment effect is constant over time. To address this issue, 

Bowden et al. (2016) propose a weighted log-rank test, where weights are derived 

from the proportions of trial participants on the experimental treatment in each trial arm 

over time.[28] The authors propose the use of these weights for testing the ITT null 

hypothesis of no difference in the survival distributions between randomised groups 

when treatment switching is present, and further propose their use within the RPSFTM 

framework. The authors demonstrate that a simple weighted log-rank test can be 

statistically more powerful than a standard log-rank test when substantial treatment 

switching occurs, and when large rates of separation between the two randomised 

treatment groups’ survival functions over time coincide with large differences in the 

proportion of patients “on treatment” in each arm. Thus, using a weighted log-rank test 

could result in narrower confidence intervals around estimated treatment effects in ITT 

and RPSFTM-adjusted analyses in the presence of treatment switching. Bowden et 

al. (2016) suggest that the RPSFTM with a weighted log-rank test should be used 

alongside the standard RPSFTM, as a supplementary analysis.[28] However, the 

authors also caution that using a weighted log-rank test could result in inappropriate 

conclusions around treatment effectiveness if in reality an experimental treatment 

provides early benefit and later harm (or reduced benefit), because more weight would 

be given to earlier event times. R code is available from the authors. A modified log-

rank test (Jimenez et al. 2021) and a weighted log-rank method (Ristl et al. 2020) were 

also identified by our literature searches as amended versions of the log-rank test that 

may also be considered as supplementary analyses in the presence of treatment 

switching.[29, 30] 
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Adjusting for switches to more than one treatment, or to a treatment with a different 

effect  

The common treatment effect assumption is crucial to the standard one-parameter 

RPSFTM. The model assumes that patients are either “on” or “off” treatment, and 

therefore only one treatment effect is estimated. Hence, the method is not appropriate 

when the objective is to adjust for switches to “other” treatments – i.e. when switching 

is to a treatment other than one of the randomised treatments, or, more specifically, 

when switching is to a treatment that has a different effect to those associated with the 

randomised treatments. Over time, various studies have attempted to extend the 

RPSFTM method by re-parameterising the model to allow more than one treatment 

effect to be estimated.[23, 31] However, these attempts have been unsuccessful, with 

authors finding that bivariate RPSFTM models do not provide robust results. 

 

Xu et al. (2021), propose a stratified RPSFTM which allows for patients in the control 

arm to switch to multiple treatments that may or may not be part of the original trial 

protocol.[7] The authors refer to this as “multilevel switching”, which could include 

different doses of one of the randomised treatments, or completely different 

treatments. Their model reflects the RPSFTM as described in equation (1), with the 

difference being that a series of parameters ψk, k=0,...., K are estimated, which 

represent the different “levels” of treatment, instead of a single parameter for 𝜓. An 

advantage of the model is that it relaxes the common treatment effect assumption to 

allow for different effects for each treatment level. However, the model is limited by the 

extra complexity that is introduced by incorporating additional parameters. This is 

associated with increased computational burden, potential difficulties in obtaining a 

unique solution, and possible biases in parameter estimates. The authors use the 

same g-estimation procedure for multiple acceleration parameters described (and 

shown to be imprecise) by Robins and Greenland (1994).[31] The difference between 

the Xu et al.’s (2021) stratified RPSFTM and the method proposed by Robins and 

Greenland (1994) is that Xu et al. adjust for a switch from the control group to different 

levels of the experimental treatment and explicitly use RPSFTM, whereas Robins and 

Greenland (1994) adjust for a switch to an alternative treatment from randomly 

assigned low or high doses of the experimental treatment, and use a more general 

structural nested failure time model. Despite these superficial differences, the models 

appear to be very similar and it is unclear whether the method of Xu et al. (2021) 
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provides any advantages over the Robins and Greenland (1994) method. Given the 

similarities between the methods, we would expect them to be subject to the same 

limitations – i.e. in practice it is not possible to reliably estimate multiple parameters 

using the RPSFTM method without making additional assumptions.  

 

Li et al. (2017) present what they describe as an “enhanced” RPSFTM, to adjust 

survival estimates for post-disease progression treatment switching from the control 

group to the experimental treatment, as well as for switches to an alternative 

subsequent treatment, by introducing a second parameter into the model and making 

additional assumptions.[8]  

 

𝑈𝑖(𝜓1, 𝜓2) = 𝑇𝑖
𝑃𝐹𝑆𝑒𝑥𝑝(𝑍𝑖

0𝜓1) + (𝑇𝑖 − 𝑇𝑖
𝑃𝐹𝑆)𝑒𝑥𝑝(𝐼(𝑍𝑖

𝑃 = 2)𝜓2 + 𝐼(𝑍𝑖
𝑃 = 1)𝜓1)       (2) 

 

𝑈𝑖 represents the counterfactual survival time for patient i, 𝜓1 and 𝜓2 represent the 

treatment effect 1 and treatment effect 2, 𝑇𝑖 denotes overall survival time, 𝑇𝑖
𝑃𝐹𝑆denotes 

progression-free survival time, 𝑍𝑖
0 represents treatment received at randomisation and 

𝑍𝑖
𝑃represents treatment received post-progression. The authors apply additional 

assumptions beyond those specified by Robins and Greenland (1994) to allow two 

treatment effects to be estimated. Li et al’s model is designed specifically for a case 

where switching is either to the experimental treatment, or to one other subsequent 

treatment. Whilst the model refers to progression-free survival, it is actually more 

general, in that treatment effects for the second-line treatments are estimated for the 

post-switch period – that is, the actual time of disease progression is not used in the 

model; instead the time of switch is assumed to equal the time of disease progression. 

This is important because the authors go on to estimate the post-progression 

treatment effect associated with the treatments that may be switched to and, if actual 

switching times varied with respect to disease progression times, these second-line 

treatment effects may become biased (as for the simple TSE method – see Section 

4.2.3).  

 

The premise of Li et al.’s approach is that the standard RPSFTM can only reliably 

estimate one treatment effect parameter (in line with the original findings of Robins 

and Greenland (1994) [31]), and so it is necessary to use a two-stage procedure when 
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attempting to estimate two treatment effects. Their proposed method achieves this by 

assuming that the treatment effects 𝜓1 and 𝜓2, are related through a nuisance 

parameter, 𝛾, where 𝛾 ≡ 𝜓2 −𝜓1. Thus, if 𝛾 can be estimated, it can be substituted 

into 𝜓1 + 𝛾 to represent 𝜓2, allowing g-estimation to be used as in the standard 

RPSFTM to estimate 𝜓1. To estimate 𝛾, the authors assume that post-progression 

survival times are distributed according to a Weibull distribution with a constant shape 

parameter, 𝜅, and a baseline (no therapy) scale parameter, 𝜆, which is a function of 

𝜓1 and 𝜓2, and depends on post-progression treatment 𝑍𝑖
𝑃 and patient characteristics 

at baseline and disease progression. By fitting a Weibull model to post-progression 

survival times, controlling for baseline characteristics and those measured at disease 

progression (i.e. the time of switch), comparing those who switched onto the 

experimental treatment and those who switched onto the alternative treatment, 𝛾 can 

be estimated. The authors further propose combining their enhanced RPSFTM with 

IPCW to adjust for any bias arising from informative drop-out that may occur during 

the trial. 

 

Li et al. present a simulation study comparing their enhanced RPSFTM method 

against ITT, per protocol, censoring at time of switch and a Cox regression with time-

varying treatment covariates. The authors demonstrate that the enhanced RPSFTM 

method produces less bias in the estimated treatment effect compared to these other 

methods.[8] The simulation study indicates that the solutions for 𝛾 in the proposed 

model were unstable when there were a small number of patients who remained in the 

study after disease progression. The authors recommend that a value of 𝛾 based on 

the literature and expert opinion could be used in these circumstances. In addition, 

they recommend keeping the number of treatments, or levels of treatment, to a 

minimum, due to the increased computational burden arising with each additional 

parameter added to the model.  

 

Li et al.’s method is innovative, but its performance against other methods that can be 

used to adjust for switches to various subsequent treatments (e.g. IPCW and TSE) is 

unclear. The two stages involved in the method mean that it has similarities to the TSE 

method, but it is designed specifically for cases where two types of switching occur – 

from the control group onto the experimental treatment; and from the control group 
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onto an alternative treatment – with the emphasis of the first stage of the method being 

on estimating the difference in effectiveness between these two types of switching. As 

discussed in Section 4.2.3, the TSE method can also be used to adjust for switches to 

more than one treatment. Like the TSE method, Li et al.’s method requires information 

on patient characteristics at baseline and at the time of progression (or switch), and 

requires the assumption of no unmeasured confounding for the estimation of 𝛾. The 

authors do not address issues around time-dependent confounding that could occur if 

switches do not all occur exactly at the time of disease progression. In addition, owing 

to their use of the RPSFTM and g-estimation to estimate the effect of the experimental 

treatment, Li et al. assume that the effect of the experimental treatment is the same 

before and after disease progression (i.e. the common treatment effect assumption) 

in order to keep the dimension of the parameter space to 2, rather than 3 – an 

assumption that the TSE approach does not rely on. Therefore, Li et al.’s method 

requires both the no unmeasured confounding and the common treatment effect 

assumptions to hold. 

 

Relaxing the common treatment effect assumption 

In response to concerns about the plausibility of the common treatment effect 

assumption, software packages that implement RPSFTM have been modified to allow 

the treatment effect to vary between individuals. The strbee Stata package includes a 

‘psimult(k)’ option, and the rpsftm R package includes a ‘treat_modifier(k)’ option.[9] 

The default is for k=1, but if, for example, k was set to 1 in patients randomised to the 

experimental arm of the trial, and was set to 0.7 in the control arm, the RPSFTM 

analysis would be run under the assumption that the effect of the experimental 

treatment is 30% lower in patients from the control group who switch onto the 

experimental treatment, than in patients initially randomised to the experimental group. 

In this way, k could be varied between, for example, 0.5 and 1.5, to show how sensitive 

the RPSFTM analysis is to the common treatment effect assumption, allowing for the 

potential that the experimental treatment could be 50% less effective (or 50% more 

effective) in switchers.[9] 

 

This technique for relaxing the common treatment effect assumption differs importantly 

from the multi-parameter versions of RPSFTM previously investigated by Robins and 

Greenland (1994) White et al. (1999), and Xu et al. (2021).[7, 23, 31] The ‘psimult’ and 
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‘treat_modifier’ options still only estimate one value of 𝜓, but assume that the actual 

treatment effect received by defined groups (such as those initially randomised to the 

experimental treatment and those in the control group who switch onto the 

experimental treatment) is a multiplicative factor of 𝜓. This avoids problems associated 

with having to estimate more than one treatment effect. The limitation is that the 

analyst has to specify the multiplicative factor(s), making it/them somewhat arbitrary. 

However, by running scenario analyses with a series of multiplicative factors (e.g. 0.5, 

0.6, 0.7, 0.8, 0.9, 1.0 and perhaps greater than 1.0 if it is considered possible that 

switchers could benefit more from the experimental treatment than those initially 

randomised to the experimental group), useful information on the sensitivity of the 

RPSFTM analyses to the common treatment effect assumption can be obtained. 

Deciding on suitable values for these multiplicative factors represents an area where 

the elicitation of clinical expert opinion would be valuable. Given that the common 

treatment effect assumption is sometimes perceived to suffer from a lack of plausibility, 

this development in the application of the RPSFTM is valuable. This sensitivity 

analysis allows the impact of violations of the common treatment effect assumption to 

be quantified, allowing interpretation of the results of RPSFTM analyses to be better 

informed. This may allow decision-makers to use RPSFTM analyses to inform their 

recommendations more confidently, as opposed to a situation where the impact of 

violations of the common treatment effect assumption is completely unknown.   

 

However, it remains likely that the RPSFTM will only be appropriate when switching is 

directly between randomised groups, as assigning the effect of subsequent treatments 

to be a multiplicative factor of the experimental group treatment effect would appear 

to make most sense when the treatment switched to is in fact the experimental 

treatment (or perhaps a drug of the same class). Alternatively, each subsequent 

treatment could be assigned a value of k such that its effect is a multiplicative factor 

of the experimental treatment effect. This would be similar to the approach suggested 

by Li et al. when the objective is to estimate multiple treatment effect parameters – 

that is, using the literature and expert opinion to estimate the effect of each subsequent 

treatment relative to the experimental treatment.[8] However, this would involve 

making very strong assumptions about the relative effects of the various subsequent 

treatments and moves far beyond analysing the data from the pivotal trial to estimate 

treatment effects. Such an approach may be more credible in circumstances where 
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evidence on the relative effectiveness of the relevant subsequent treatments is 

available. 

 

4.2.2 IPCW 

Inverse probability of censoring weights (IPCW) can be applied in marginal structural 

models (MSM) to adjust for treatment switching from the control group to the 

experimental treatment, and from either trial arm to other subsequent treatments.[3, 

20] The approach requires a “switching model” to estimate the weights, and an 

“outcomes model” to estimate the treatment effect adjusted for switching. The 

outcomes model (also referred to as an MSM) could take the form of a Cox model, to 

estimate a hazard ratio, or parametric models could be fitted to IPCW weighted 

survival times to perform extrapolation. The method relies upon the no unmeasured 

confounding assumption, and therefore requires data for each patient on prognostic 

characteristics that influence the probability of switch and survival (or another outcome 

of interest). A positivity assumption is also required, which specifies that there are no 

confounding factors that perfectly predict switching.[3, 11]  

 

To apply IPCW, data on prognostic covariates are required at baseline and at regular 

time intervals until the earliest time-point of either switch, death, drop-out or end-of-

follow-up. For patients who switch, the data are artificially censored at the time of 

switch. This can create bias due to informative censoring, because switching is likely 

to be associated with prognostic characteristics. To address this, a weight for each 

remaining patient at each time point is calculated based upon estimated switch 

probabilities. Patients who have similar prognostic characteristics to switchers, but 

who themselves have not yet switched, receive a weight that is greater than 1. 

Provided the model used to estimate switch probabilities is appropriately specified, 

and the no unmeasured confounding assumption holds, this weighting corrects for the 

bias introduced by censoring switchers. Survival analysis can then be undertaken on 

the weighted dataset and, as for the RPSFTM, standard or more flexible survival 

modelling can be used (see TSD 21 [21]). 

 

The switching model estimates the probability of not switching for each individual over 

time, conditional on prognostic baseline and time-dependent variables. Time-
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dependent weights are estimated for each individual, with the weight representing the 

inverse probability of remaining unswitched over time – that is, the probabilities 

estimated by the switching model represent the denominator of the weight. These are 

“unstabilised” weights and can be highly variable. For this reason, “stabilised” weights 

are often used. The switching model for stabilised weights involves the estimation of 

a model for the numerator of the weight in addition to the model used for the 

denominator for unstabilised weights. The model use for the numerator of stabilised 

weights can be specified in different ways, but must not include any time-dependent 

confounding variables. Typically, the model used for the numerator is the same as that 

used for the denominator, but includes only prognostic baseline variables.[10] Any 

prognostic baseline variables that are included in the numerator of the weighting model 

should also be included in the weighted outcomes model. While stabilised weights are 

likely to result in less extreme weights, unstabilised weights are more intuitive to apply 

to survival models for extrapolation, and more straightforward to interpret when 

estimating treatment effects (with respect to conditional and marginal effects).  

 

4.2.2.1 Extensions and recent developments to IPCW 

Our review did not identify specific extensions to the IPCW method, but research 

relevant to the method has been published. In our experience, key issues around the 

application of IPCW surround covariate selection and extreme weights, so we focus 

mainly on these issues here. 

 

Adjusting for multiple types of switching 

If treatment switching to subsequent treatments occurs in both arms of a randomised 

trial, IPCW can be applied to both arms. Separate weighting models should be 

estimated for each arm of the trial, and used to generate a weight per patient at each 

time point. Separate weighting models could also be specified for each treatment that 

patients switch to within each randomised arm, but it is unclear whether this is 

preferable to simply grouping together all treatments that adjustment is required for in 

each treatment arm – further research on this would be valuable. 
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Variable selection and directed acyclic graphs (DAGs) 

Selecting appropriate variables for inclusion in the IPCW switching models (and the 

outcomes model) is crucial in obtaining unbiased adjusted outcomes. The positivity 

assumption and no unmeasured confounders assumption are intrinsically related to 

data availability and variable selection. 

 

The positivity assumption requires that there are no confounding factors that perfectly 

predict switching. Hence, the weighting cannot be applied if there are structural 

differences between the switchers and non-switchers. A relevant structural difference 

between switchers and non-switchers exists if there is a prognostic characteristic that 

can determine if a patient is a switcher or non-switcher without information on switch 

status. For instance, if every patient in a cancer trial who had an Eastern Cooperative 

Oncology Group (ECOG) performance status score of 1 switched treatment, and if 

ECOG performance status was a predictor of survival, it would not be possible to apply 

IPCW to adjust for the switching. In the absence of structural differences, it is still 

useful to consider this assumption when constructing categorical dummy variables 

from levels of continuous data or from other categorical variables to avoid creating 

variables that perfectly predict switch or no switch.[11]   

 

The no unmeasured confounding assumption requires that prognostic variables that 

influence switch and death are included in the model. The assumption cannot be 

perfectly tested, but expert clinical opinion and DAGs should be used together to 

identify which covariates should be included in switching models.[10, 20] There is often 

concern that too few variables are included in IPCW analyses, making the no 

unmeasured confounders assumption unlikely to hold. This is important, but it is also 

important not to include unnecessary variables in models because (i) the inclusion of 

an inappropriate variable may result in selection bias from collider stratification, (ii) the 

inclusion of too many variables relative to the sample size may result in finite-sample 

bias, and (iii) the confidence intervals around point estimates will be larger with the 

inclusion of non-confounding variables.[11]  

 

Satisfying the no unmeasured confounders assumption should not be taken to mean 

that every prognostic variable must be included. Variables that affect switching but do 

not affect survival, or that affect survival but not switching, are not needed, i.e. are not 
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confounders. In addition, only variables that have an independent effect on switching 

and survival are required – for example, imagine a clinical trial collected information 

on ECOG performance status but not on Karnofsky score, and that a clinical expert 

states that both these variables are prognostic for survival and may be related to the 

switch decision. Failure to collect information on the Karnofsky score only results in 

unmeasured confounding if it affects switching and survival independent of the ECOG 

score – see Figure 1(a) where Karnofsky score is important because there are arrows 

from Karnofsky score to the switching variable and to survival. If the impact of 

Karnofsky score on switching and survival is fully explained by its relationship with 

ECOG performance status, then Karnofsky score would not be needed in switching 

models (see Figure 1(b)).  

 

Figure 1: (a) Simplified DAG where Karnofsky score and ECOG PS are both important 

confounders; (b) Simplified DAG where only ECOG PS is an important confounder 

 

DAG: Directed Acyclic Graph; ECOG PS: Eastern Cooperative Oncology Group Performance Status 

 

Further, only information that is available to the clinician (or patient) can cause 

confounding, because if a variable (or the value of a variable) is unknown, it cannot 

directly affect the switching decision. Therefore, missing data must be dealt with 

carefully. A variable might be observed and be a confounder for one patient, but may 

be missing and therefore not a confounder for another patient. Therefore, it may be 

important to create variables to indicate the missingness of variables, and it may be 

reasonable to use a last observation carried forward approach in switching models. 

However, imputation techniques may be important if the value of a variable was likely 

to have been known by the treating clinician but was not recorded in the trial dataset.  
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It is important to note that the IPCW method is prone to serious bias when data 

collection is stopped at a point during the trial (for example at disease progression), 

when switching could occur some time after that point. This resonates with the ICH E9 

addendum referred to in Section 3, which states that trials should be planned in order 

to ensure that data are collected to support the application of methods required to 

address all estimands of interest.  

 

Often it may be difficult to identify optimal formulations of switching models, with 

respect to which covariates are included and how they are parameterised. Akaike 

information criterion (AIC) and the Bayesian information criterion (BIC) may be used 

to provide information on relative model fits, but the clinical plausibility of the no 

unmeasured confounding assumption is of greatest importance. The range of weights 

estimated by different model formulations should also be considered and reported (see 

Section 6). Versions of models can also include different ways of modelling time (e.g. 

with cubic splines) and/or categorical variables defined in different ways. Readers are 

referred to Hernán and Robins (2020), Tennant et al. (2021), among others for more 

information on DAGs and covariate selection.[10, 19, 20, 32]    

 

Truncation of extreme weights 

The IPCW method performs better when sample sizes are large and with small or 

moderate proportions of switchers.[10, 33, 34]  In contrast, when switching proportions 

are high IPCW results can be prone to substantial bias, especially when sample sizes 

are small, primarily because in these cases extreme weights are common.[10, 33, 34] 

Some studies have proposed methods to deal with extreme inverse probability 

weights. Cole and Hernan (2008) describe the trade-off between bias and precision 

associated with the truncation of weights.[11] Truncation of weights involves selecting 

a maximum value that the weights can take. The value is selected based upon a pre-

specified percentile of the weight distribution. Often the 99th or 95th percentile of the 

weight distribution is chosen. As truncation of the distribution is increased, the 

estimates become more biased due to loss of information, but standard errors of the 

weights and therefore of the estimated treatment effects are reduced.[11] Bai et al. 

(2015) propose an adaptive truncated marginal structural model whereby weights are 

truncated at each time point to prevent extremely large weights being propagated over 

time.[35] If weights are truncated, a sensitivity analysis should be undertaken around 
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the truncation percentiles to assess the robustness of the results to changes in the 

truncation percentiles.  

 

4.2.3 Two-stage estimation (TSE) 

The TSE approach involves first estimating the effect on survival associated with 

treatment switching, and then using this effect to estimate survival times that would 

have been observed if switching had not occurred.[5, 36] The method can be used to 

adjust for treatment switching from the control group to the experimental treatment, 

and/or from either trial arm to other subsequent treatments. The TSE approach 

requires that switching only occurs at or after a disease-related “secondary baseline” 

time-point.[5] Often, disease progression fits the criteria of a suitable secondary 

baseline. The method also requires the no unmeasured confounding assumption to 

hold, whereby switching must be independent of potential outcomes, conditional on 

patient characteristics measured (and included in the model) at the secondary 

baseline. The simple version of the TSE method described by Latimer et al. (2017) 

also assumes that if switching occurs after the secondary baseline, there is no time-

dependent confounding between the secondary baseline time-point and the switch 

time-point – that is, there should be no important prognostic changes in patients 

between these time-points.[5] An extension to this simple approach is described in 

Section 4.2.3.1. 

 

In the situation where patients randomised to the control group switch onto the 

experimental treatment after disease progression, the application of the simple TSE 

method involves applying an accelerated failure time (AFT) model to compare post-

secondary baseline (i.e. post-progression) survival in control group switchers with 

post-secondary baseline survival in control group non-switchers. The AFT model 

includes prognostic variables measured at the secondary baseline time-point to 

account for differences in prognosis between switchers and non-switchers. The 

treatment effect associated with switching is estimated in the form of a time ratio, and 

is used to adjust survival times in switchers using a counterfactual survival model 

similar to that described in equation (1). Through this process an adjusted dataset is 

derived. Survival analysis can then be undertaken on the adjusted dataset, to estimate 

a treatment effect adjusted for treatment switching, and/or to fit parametric models to 
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extrapolate survival beyond the trial period. As for the RPSFTM, standard or more 

flexible survival models can be applied to the adjusted dataset (see TSD 21 [21]), but 

uncertainty should be appropriately characterised by bootstrapping the entire 

adjustment and subsequent survival model-fitting process. 

 

4.2.3.1 Extensions and recent developments to TSE 

Issues relating to re-censoring 

The recent research on re-censoring by Latimer et al. described in Section 4.2.1.1 is 

relevant for the TSE method as well as the RPSFTM and IPE methods, and therefore 

it is recommended that TSE should be applied with and without re-censoring.[25] 

Further to this, Latimer et al. (2019) tested an application of TSE that used IPCW to 

deal with potentially informative censoring in the TSE-adjusted dataset, as an 

alternative to re-censoring.[33] This method performed well in simulations and 

provided results between the two extremes of with and without re-censoring, but 

involves increased complexity and is subject to the same limitations associated with 

applying IPCW in general, most notably the assumption of no unmeasured 

confounding. 

 

Adjusting for multiple types of switching 

TSE can be applied to adjust for switches to subsequent treatments in either or both 

randomised arms. When adjusting for switching in both arms, a separate AFT model 

can be applied to each arm to compare switchers with non-switchers from the 

secondary baseline time-point. Survival times for switchers should then be adjusted 

using the estimated subsequent treatment effect from the relevant treatment arm. If it 

is relevant to adjust for different types of switching within each treatment arm (for 

example, if some patients switched to subsequent treatment A, and some switched to 

subsequent treatment B), potentially an AFT model could be used to estimate the 

effect of each subsequent treatment separately, or one average effect of subsequent 

treatment could be estimated. Theoretically, calculating separate subsequent 

treatment effects may be preferred due to an increased level of detail. However, it is 

possible that the benefits of such analyses may be minimal, and that they are likely to 

suffer from small sample sizes, potential error, and uncertainty – further research in 

this area would be valuable.  
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Ouwens et al. (2021) applied a modified two-stage method (M2SM) using time of 

switch as a secondary baseline, rather than time of disease progression.[37] The 

authors analysed a trial for a new treatment for unresectable stage III non-small cell 

lung cancer, in which patients in both arms of the trial were permitted to receive 

immunotherapy after discontinuing their study treatment. The authors aimed to adjust 

for the impact of immunotherapy on overall survival, but decided that they could not 

use disease progression as the secondary baseline time-point, because in a large 

proportion of patients switching occurred at a time point substantially after disease 

progression (median switch time was approximately 6 months after progression), and 

hence using disease progression as the secondary baseline could have resulted in 

important time-dependent confounding. The authors state that this time-dependent 

confounding could be eliminated by using the time of switch as the secondary 

baseline.  

 

In general, using switch time as the secondary baseline in a TSE analysis is 

problematic; firstly because patients who do not switch must be excluded from the 

analysis (even if they have discontinued study treatment and are following a standard 

treatment pathway – i.e. no subsequent treatment), and secondly because if the 

secondary baseline time-point does not represent a common disease-related time-

point, patients may differ significantly at their respective switch times. Ouwens et al. 

dealt with the first issue by estimating the effect of subsequent immunotherapy 

treatment compared to subsequent ‘other’ treatment – i.e. assuming that if a patient 

had not switched onto immunotherapy they would have switched onto some other 

treatment (rather than no treatment at all). They dealt with the second issue by using 

prognostic information measured at (or before) the time of switch to control for 

differences between patients who switched onto immunotherapy and patients who 

switched onto other treatments.  

 

Ouwens et al.’s M2SM represents a useful adaptation to the simple TSE method, and 

may be preferable to it when there are large time intervals between disease 

progression and the time of switch. However, concerns around the lack of a common 

disease-related secondary baseline remain, and, potentially, a method that uses a 

common disease-related baseline and is able to deal with time-dependent 

confounding may be preferred. This may be achieved using TSE with g-estimation. 
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TSE with g-estimation 

Latimer et al. (2020) describe an extension to the simple TSE method, which takes the 

form of a structural nested model (SNM) and uses g-estimation, referred to as 

TSEgest.[10] The TSEgest method replaces the simple AFT model used in the simple 

TSE method with g-estimation and a SNM, so that time-dependent confounding can 

be accounted for. Therefore, switching that is delayed for a period of time after the 

chosen secondary baseline is no longer a problem for the method, provided that 

information on time-varying characteristics that predict switching and survival is 

measured beyond the secondary baseline time-point.  

 

The approach involves a model for switching, and a model for counterfactual survival 

times. The model for switching has a binary switch-dependent variable which 

represents observed switch status for patient i. Explanatory variables include all 

confounding variables for patient i measured at baseline and over time, and 

counterfactual survival time for patient i from the secondary baseline. The 

counterfactual survival time model is similar to that represented by equation (1). The 

switching model and counterfactual model are used simultaneously to obtain the g-

estimate of ψ. A value is chosen for ψ, and the counterfactual survival time associated 

with this value is estimated for each patient. This counterfactual survival time is then 

substituted into the switching model, and the “true” estimate of ψ is the one that results 

in the coefficient of the counterfactual survival time variable in the switching model 

equalling zero – indicating that switching is independent of counterfactual survival 

time, conditional on all the other variables included in the switching model.  

 

Once identified, ψ can be used to generate the post-secondary baseline survival times 

adjusted for switching, and adjusted overall survival estimates can be derived. As for 

the simple TSE method, TSEgest should be applied with and without re-censoring, 

and could also be applied with IPCW instead of re-censoring.[33] Confidence intervals 

should be obtained by bootstrapping the entire adjustment process (including 

estimation of ψ) to adequately capture uncertainty. Similar to the simple TSE method, 

TSEgest could be used to adjust for switches from either randomised group onto any 

other subsequent treatments. Switching and outcomes models would need to be 

specified to compare outcomes between patients who did and did not switch onto the 
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treatments that need to be adjusted for, allowing the treatment effects of subsequent 

treatments to be estimated, and adjusted survival times derived.  

 

The key advantage of TSEgest over simple TSE is that it does not rely on the 

assumption that there is no time-dependent confounding between the secondary 

baseline and the time of switch. In addition, theoretically the method could also be 

used when switching occurs before or after the secondary baseline time-point – that 

is, a secondary baseline is not actually needed – if switching could occur before 

disease progression, the time of randomisation could be used as the analysis baseline. 

Such an analysis would require that there is no unmeasured confounding between the 

time of trial randomisation and the time of switch (for switchers), and between the time 

of randomisation and the end of trial follow-up (for non-switchers). This is similar to the 

assumption that would be made by IPCW in the context of switching that is permitted 

before disease progression, but may represent a stronger assumption than that of 

assuming no unmeasured confounding between the time of secondary baseline and 

the time of switch (or end of follow-up) – which is what is required when switching is 

only permitted after a specified secondary baseline. In general, for both TSEgest and 

IPCW, the longer the time period between the analysis baseline and the switch time-

points, the stronger the assumption of no unmeasured confounding between these 

time-points.  

 

Latimer et al. (2020) demonstrate that TSEgest produces much lower bias than the 

simple TSE method when time-dependent confounding occurs between the secondary 

baseline and switch time-points, and that TSEgest is less prone to bias than IPCW in 

situations with high switching proportions.[10] Hence, the authors conclude that 

TSEgest represents a more flexible alternative to simple TSE, that can provide 

additional information to policy makers when presented alongside IPCW, RPSFTM 

and IPE results. TSEgest does not make the simple TSE method obsolete, but when 

time-dependent confounding is suspected the simple TSE method should not be relied 

upon. 

 

Variable selection and directed acyclic graphs (DAGs) 

Like the IPCW method, the TSE method (and adaptations/extensions of the method) 

are reliant upon the no unmeasured confounding assumption. Therefore, the 
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discussion contained in Section 4.2.2.1, around variable selection, model selection 

and specification, missing data and DAGs, is as relevant for TSE (and TSEgest) as it 

is for IPCW – we refer readers back to that section. 

 

4.2.4 Other methodological developments 

A random forest-based prediction approach 

Xu et al. (2021) proposed a random forest-based prediction approach for adjusting for 

treatment switching.[7] The method uses a random forest algorithm to predict 

counterfactual survival times to estimate what would have happened in the absence 

of switching. It requires data on baseline and time-varying prognostic covariates that 

could influence survival time and the probability of switching. It is applied by splitting 

the data into a training set of non-switchers in the control arm and a prediction set of 

switchers. These subgroups are split into further subgroups depending upon whether 

they had an event or were censored. The counterfactual survival times for switchers 

with an event are generated using the random forest algorithm applied to the training 

set of non-switchers who experienced an event, and the counterfactual survival times 

for switchers who were censored are generated using the random forest algorithm 

applied to the training set of non-switchers who were censored. The random forest 

algorithm involves taking bootstrap samples from the training set, generating a 

prediction of the counterfactual survival for each bootstrap sample, and then averaging 

over the bootstrapped samples. Once counterfactual event times are predicted, re-

censoring can be applied and the final survival analysis, adjusted for switching, can 

be performed.  

 

An advantage of the method is that it does not require a pre-specified model structure 

to define the relationships between covariates, treatment indicator and outcome. The 

authors claim that the model does not rely on the no unmeasured confounders 

assumption, however the model requires data on covariates that predict the 

counterfactual survival time and the probability of switching, and therefore in practice 

the data requirements and assumptions for the model are similar to IPCW or TSE. The 

method is capable of adjusting for switching to multiple treatments, and for switching 

in both arms of the trial. It is recommended that the number of treatment effects should 

be kept to a minimum, because computational burden increases with the number of 

treatment effects included in the model. Treatments which are expected to have similar 
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effects should be grouped together. According to the results of a simulation study by 

the authors, the model performed well compared with RPSFTM, IPE, IPCW and simple 

censoring. Further research is required to test the performance of the approach in a 

wider range of scenarios. 

A regression imputation approach 

Luo et al. (2016) propose an approach for adjusting for subsequent therapies which 

extends existing approaches.[38] The authors devise an approach that involves three 

adjustment factors: for the time at which treatment switching occurs, the treatment 

effect associated with the treatment switched to, and the treatment group to which the 

patient was originally randomised. Therefore, while switches to more than one different 

treatment are not explicitly modelled, the overall impact of the switch can vary 

according to when the switch occurred and which randomised group the patient was 

originally allocated to. To estimate the three adjustment factors, two survival models 

are used. The first relates counterfactual (without switching) survival times to observed 

survival times as a function of whether a switch occurred, and the time of the switch 

and which group the patient was randomised to (if a switch did occur). Starting values 

for the coefficients of each of these three factors are chosen, and counterfactual 

survival times are estimated. These are then used in a second survival model, where 

the counterfactual survival times are related to randomised group, baseline covariates, 

and a function of the three adjustment factors. In this model, the coefficients of the 

three adjustment factors should be close to zero, since in this model counterfactual 

(without switching) survival times are being modelled. If these coefficient values are 

not close to zero, they are taken as the next set of values to substitute into the first 

survival model. The process is continued until the values of the three coefficients are 

close to zero.  

 

This iterative estimation process is similar to that used in the IPE method, but, unlike 

the IPE and RPSFTM, the approach does not rely upon the common treatment effect 

assumption (as the overall impact of switching is permitted to vary according to three 

factors), and does not use randomisation to allow the effects of switching to be 

identified. Instead it is assumed that the three modelled adjustment factors are 

sufficient for representing the impact of switching and the cause of switching, and that 

there is no unmeasured confounding in the second survival model.  
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The authors demonstrate the use of their method in a simulation study where 

performance is good, but the scenarios considered are relatively simple and the 

assumptions associated with their method are not discussed in detail. While the 

method potentially offers more flexibility than the RPSFTM and IPE methods, it does 

not benefit from being randomisation-based, and therefore requires the no 

unmeasured confounding assumption. The modelling approach is perhaps less 

intuitive than the switching and outcomes modelling approach associated with IPCW 

and more complex TSE methods, and the relationship between prognostic 

characteristics and switching is not explicitly modelled. Further research on the 

performance of the method in more realistic settings would be valuable.    

 

A semi-competing risks model 

Chen et al. (2020) develop a method that can deal with switches to subsequent 

therapies that extends an approach originally suggested by Zeng et al. (2012).[27, 39] 

The method is also similar to an approach described by Zhang et al. (2021) which 

uses semi-competing risks models applied in a Bayesian framework to estimate 

treatment effects adjusted for treatment switching.[40]  

 

A semi-parametric mixture model is used that allows the effects of subsequent 

treatments to differ from that of the initially randomised treatment (therefore the 

common treatment effect assumption is not required), and also allows the effect of 

subsequent treatments to differ depending on whether switching happens before or 

after disease progression, and depending on which randomised group a patient is 

originally in. This is achieved by using a model with three components and a transition 

model structure; i) a model for disease progression status, as a function of baseline 

covariates and randomised group; ii) a model for survival for those who do not 

progress as a function of randomised group, switching status (and the interaction of 

switching status and original randomised group), and baseline covariates; iii) a model 

for time to disease progression and time from progression to death (in those who 

experience disease progression) as a function of randomised group, baseline 

covariates (and prognostic information measured at disease progression), and switch 

status. Patients are then split into four groups, according to whether or not disease 

progression and death were observed or censored (i.e. yes, yes; yes, no; no, yes; no, 
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no), and the contribution of each group to the likelihood function is calculated based 

upon the previously described model components. The proposed models are then 

used within a counterfactual outcomes framework to estimate survival functions 

conditional on covariates, randomised group, and switching, such that the potential 

survival function with no switching can be estimated. The method involves modelling 

the disease process and is reliant on the no unmeasured confounding assumption.[27]  

 

Chen et al.’s method only uses prognostic data measured at baseline and the time of 

disease progression – the authors state that this could be extended to include factors 

measured at other timepoints, but it is unclear whether this would cause issues around 

standard regression and time-dependent confounding. The authors compared their 

approach to that of Luo et al. (2016) (see “a regression imputation approach”, above) 

and showed that Luo et al.’s approach produced substantial bias when simulated data 

was generated in a way that reflected the specification required by Chen et al.’s 

approach, whereas Chen et al.’s method performed reasonably well when tested using 

Luo et al.’s simulation mechanism.[27, 38] Comparisons to other adjustment methods 

in more general settings were not made, and therefore further research would be 

valuable.  

  

A semi-parametric copula-based model 

Huang et al. (2020) describe a semi-parametric copula-based model to estimate 

treatment effects in the presence of treatment switching.[41] The method is designed 

to deal with switching that happens immediately upon disease progression. The model 

described by the authors only includes one type of treatment switch, but the authors 

state that this could be extended. The approach consists of a copula model for the 

joint distribution of time-to-progression and overall survival (which includes terms for 

randomised group and baseline covariates), and a conditional hazard model for overall 

survival subsequent to disease progression, which includes terms for randomised 

group, baseline covariates, covariates measured at the time of disease progression, 

and treatment switching. The coefficients of the randomised group and treatment 

switching terms are interpreted as the effects of randomised treatment (with no 

switching effect), and the effect of switching, respectively. Because the authors use a 

proportional hazards framework, treatment effects on the hazard scale are estimated. 

The authors state that time-dependent covariates could be accommodated (rather 
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than simply covariates measured at baseline and at the time of disease progression), 

but it is unclear how potential time-dependent confounding would be dealt with.  

 

Huang et al.’s approach has similarities to the TSE method, in that a post-progression 

effect of switching is estimated which in turn allows the effect of randomised treatment 

to be identified. However, the method does not readily generate counterfactual survival 

times, and so it may be less useful in an HTA context. The method also includes the 

limiting assumption that switching happens immediately upon disease progression, 

and so would not use actual switching times if these occurred after disease 

progression – this may result in face-validity issues. The authors state that the method 

does not require the no unmeasured confounders assumption, but in fact analyses will 

depend upon inclusion of sufficient covariates to allow valid treatment effects to be 

estimated, and therefore we believe that the no unmeasured confounding assumption 

is still implicitly required.   

 

A decision-analytic modelling approach 

Kuehne et al. (2021) describe a novel decision-analytic modelling approach for 

estimating survival outcomes that would have been observed in a clinical trial if 

treatment switching had not occurred.[42] Unlike all the other methods described in 

this document, patient-level data from the trial affected by treatment switching is not 

required.  

 

The authors describe two trials that investigated the use of bevacizumab to treat 

ovarian cancer. In one trial (ICON7) treatment switching from the control group onto 

bevacizumab was not permitted, and significant progression-free and overall survival 

benefits in favour of bevacizumab were shown. In the second trial (GOG-218), 70% of 

patients randomised to the control treatment switched onto bevacizumab after disease 

progression and a significant benefit was shown for progression-free survival, but not 

for OS. The authors developed a “causal decision-analytic Markov model” (CDAMM) 

which they used to emulate the GOG-218 trial. The two arms of the GOG-218 trial 

were emulated, and the modelled population was defined by age and disease status 

according to summary data on the characteristics of the trial population. The model 

structure was based upon a DAG, with the presence of malignant ascites thought to 

represent a key prognostic characteristic that was affected by treatment with 
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bevacizumab, affected the probability of a control group patient switching onto 

bevacizumab, and affected the rate of mortality after disease progression. Summary 

data from a range of RCTs (including GOG-218) and other published literature were 

used to inform transition probabilities in the model. Once the model was constructed, 

the authors calibrated its output to match the GOG-218 Kaplan-Meier overall survival 

curves by modelling the 70% switch proportion and varying the characteristics of 

switchers with respect to presence of malignant ascites. Once calibration had been 

achieved, the switching proportion was set to 0% to estimate outcomes that would 

have been observed with no switching. 

 

Kuehne et al.’s method is novel, in that it attempts to estimate outcomes adjusted for 

treatment switching in the case where patient-level data (and therefore information on 

key prognostic characteristics and their relationship with the probability of switching) 

are not available. Work on alternative methods to adjust for treatment switching when 

only summary data are available have previously been presented as research 

abstracts,[43, 44] but full peer-reviewed journal articles have not followed. Such 

approaches would make the application of adjustment analyses possible for a wider 

range of analysts – in the context of NICE appraisals, it is very rare for external 

assessment groups to have access to patient-level data from the RCTs under 

investigation. In their example, Kuehne et al. show that their switching-adjusted results 

matched those from the ICON7 trial (which investigated bevacizumab for ovarian 

cancer and was not affected by treatment switching) reasonably closely. However, the 

authors acknowledge that their approach cannot model the switching process in detail, 

and is reliant on several important assumptions around the treatment effect in 

switchers, the characteristics of switchers, and the disease process. Whilst this novel 

approach represents a potentially valuable area of research, approaches that attempt 

to adjust for treatment switching without making use of patient-level data from the trial 

in question are likely to be regarded as more speculative than those that are able to 

leverage the trial data. 

  

Using external data 

The focus of TSD 16 and of this update is on methods that adjust for treatment 

switching by making adjustments to observed data from the pivotal trial in which 

treatment switching occurred. Alternative approaches could involve the use of external 
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data. Kuehne et al.’s method makes use of a wide range of data, including data from 

external trials,[42] and Li et al. suggest supplementing their “enhanced” RPSFTM with 

the use of the literature and expert opinion when attempting to adjust for several 

treatments with different effects.[8] A more direct use of external data was identified in 

TSD 16: in the NICE appraisal of lenalidomide for multiple myeloma, in which the 

pivotal trial was affected by patients in the control group switching onto lenalidomide, 

an analysis was presented that used patient-level data from previous trials of the 

comparator treatment to estimate control group survival.[45, 46] This type of analysis 

– whereby external data sources are used to estimate comparator group survival 

outcomes due to the confounded control group data observed in the pivotal clinical 

trial – is akin to methods used to estimate comparative effectiveness in uncontrolled 

(or single arm) studies. We did not identify any new methods that relied solely on using 

external data to estimate counterfactual survival times for switchers (or for entire 

treatment arms affected by switching). However, in recent years a substantial amount 

has been written about estimating comparative effectiveness from uncontrolled 

studies and, relatedly, about analysing observational (or “real world” data) – TSD 17 

focuses on the analysis of observational data, TSD 18 describes methods for 

conducting population-adjusted indirect comparisons, and the NICE real world 

evidence framework covers related issues, including the use of external control 

studies.[47-49]  

 

Using external data sources to estimate counterfactual survival times for switchers (or 

for entire treatment arms affected by switching) would require access to patient-level 

data from the external data source, and would require there to be no unmeasured 

confounding such that any prognostic differences between the patients included in the 

pivotal trial and those included in the external data could be controlled for – for 

example, external control data could be matched or adjusted to represent control 

group patients who switched treatment in the pivotal trial. If external data were used 

to completely re-estimate survival times for an entire trial arm affected by switching, a 

large amount of data from the pivotal trial would be discarded, including data for non-

switchers and data observed in switchers before switching occurred. For this reason, 

it is likely to be preferable to use the adjustment methods described in this TSD, which 

do not discard these data. However, an alternative, and possibly more attractive, 

approach may be to attempt to use external data to estimate counterfactual survival 
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beyond the switching time-point, resulting in an adjusted dataset that includes data 

from the pivotal trial for non-switchers and for switchers up to the switch time-point, 

and data derived from the external data source for the post-switch period in switching 

patients. We are not aware of any papers that describe such a method – further 

research may be valuable, particularly given the increasing availability of routine 

electronic health record (EHR) data (e.g. SAIL Databank for the Welsh population and 

Systemic Anti-Cancer Therapy [SACT] data for England) and the fact that these data 

sources will often represent outcomes associated with standard treatments in a 

particular jurisdiction. 

 

We believe that in most cases it will be preferable to base adjustments for treatment 

switching on data observed in the pivotal trial in which switching took place. However, 

in some instances it may be appropriate to attempt to use external data to estimate 

survival times that would have been observed in the absence of treatment switching. 

In such cases, methods should follow those recommended in relevant guidance 

documents related to the use of matched controls and analysing observational data, 

including TSDs 17 and 18, and the NICE real world evidence framework.[47-49]   
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5. TREATMENT SWITCHING IN NICE APPRAISALS 

5.1 INTRODUCTION 

In this section, we provide a review of treatment switching in recent NICE TAs. The 

aim of this review is to identify instances where treatment switching was discussed, 

ascertain the circumstances of the treatment switching, establish which methods were 

used to address treatment switching, how applications of these methods were 

presented in submissions to NICE, and highlight issues that have arisen in practical 

applications of treatment switching adjustment methods. A similar review was 

undertaken in TSD 16 for the period 2000-2009. Since publication of TSD 16, we 

expected to see greater use of more complex treatment switching adjustment methods 

than observed previously.[1]   

 

5.2  METHODS 

We identified TAs of cancer treatments published between 1st January 2020 and 20th 

April 2022 (accessed 20th April 2022) from the NICE website. We focused on cancer 

TAs because switching is most prevalent in these, but we acknowledge that switching 

can also be important in TAs in other disease areas. Searches were performed to find 

the terms “switch” and/or “crossover” within the Final Appraisal Document (FAD) for 

each of the cancer TAs (noting that the appraisals we reviewed were initiated before 

the term ‘FAD’ was replaced with ‘Final draft guidance’). An assessment of the 

surrounding text was made to establish if the terms “switch” or “crossover” referred to 

switching or crossover in a trial. For those TAs that referred to switch or crossover in 

a trial, a review was performed of the FAD, evidence review group (ERG) report (noting 

that the appraisals we reviewed were initiated before the term ‘ERG’ was replaced 

with ‘External Assessment Group’), company submission (CS) and where relevant, 

other publicly available documents on the NICE website. From the review we collected 

data on the context in which the switches occurred, the adjustment methods applied, 

and the reporting associated with the application of the method. 

 

5.3 RESULTS 

In the 40 cancer TAs reviewed, 10 of the FADs mentioned switching or crossover. 

These were the FADs for TA784, TA742, TA741, TA740, TA709, TA705, TA670, 

TA660, TA653 and TA643. Within these TAs, treatment switching adjustment methods 
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were applied to the trial data in 7 TAs.[50-56] In 3 TAs,[57-59] treatment switching 

adjustment methods were not applied to the pivotal trials themselves, however 

treatment switching adjusted external trials were used in indirect treatment 

comparisons (ITC) to inform the appraisal. Adjusted summary statistics were used in 

the ITC without any in-depth consideration recorded in the FAD or CS of 

appropriateness of the adjustment methods used to create the summary statistics.  

 

Of the 7 TAs with switching in the pivotal clinical trial, 4 were affected by switching 

from the control arm to the experimental treatment, and 6 were affected by switching 

from either arm to subsequent therapies that were not available in England and Wales 

at the time of the submission. 3 involved trials that were affected by both types of 

switching. Table 1 provides a summary of the type of switching and the treatment 

switching adjustment methods used in the TAs. None of the TAs applied all four of the 

complex methods suggested in TSD 16. 3 TAs applied more than one adjustment 

method.  

Table 1: Treatment switching in NICE TAs 

TA number 

Switching from 

control to 

experimental 

Switching to 

subsequent 

treatments 

Used 

RPSFT

M 

Used 

IPE 

Used 

IPCW Used TSE 

Used another 

switching 

adjustment method 

TA784  X   X   

TA740 X X     X 

TA741  X   X  X 

TA709 X X X  X X  

TA705  X X     

TA660 X X X X    

TA653 X  X     

TA: Technology Appraisal; RPSFTM: rank preserving structural failure time model; IPE: iterative 
parameter estimation; IPCW: inverse probability of censoring weights; TSE: two-stage estimation. 

 

Within these 7 TAs, 5 state that additional information on the switching adjustment 

analyses are included in submission appendices, which are not publicly available. Only 

one TA [53] contained a discussion of the key methodological assumptions in relation 

to the trial within the main company submission document, and a further 3 [51, 52, 56], 

provided some justification of the methods used. Of the 6 TAs that applied RPSFTM, 

IPE, TSE or another method that was compatible with re-censoring, only 4 TAs 

mentioned re-censoring in the company submission.[51-53, 56] It was not clear how 

re-censoring had been dealt with in the other TAs.[54, 55] 
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TA784 was a Cancer Drugs Fund review of TA528 (niraparib for maintenance 

treatment of relapsed, platinum-sensitive ovarian, fallopian tube and peritoneal 

cancer).[50, 60] The NOVA trial (niraparib vs placebo) had two cohorts: participants 

with germline breast cancer gene mutated (gBRCAm), and participants with non-

gBRCAm. The trial was confounded by subsequent switches to poly adenosine 

diphosphate-ribose polymerase (PARP) inhibitors in both trial arms, and an issue in 

the appraisal was that PARP inhibitors are not available as the next line of treatment 

in standard clinical practice in England and Wales. In the non-gBRCAm cohort, 234 

were randomised to niraparib and 15 (6.4%) of those switched onto a subsequent 

PARP inhibitor, and 116 were randomised to placebo and 15 (12.9%) of those 

switched. IPCW was applied to adjust for switching to PARP inhibitors. Estimated 

treatment effects and Kaplan-Meier survival curves were very similar between 

adjusted and non-adjusted analyses. There was no information in the publicly 

available documents submitted to NICE on how the IPCW analysis was conducted, 

the range of the calculated weights and whether these were stabilised, or which 

covariates were included in the switching and outcome models and how these were 

selected. Nor was there any indication that information on these aspects were 

provided in an appendix – indeed, in its report, the ERG stated that they could not 

comment on the robustness of the IPCW analyses due to the sparse information 

provided.[61] 

 

TA740 appraised apalutamide with androgen deprivation therapy (ADT) for treating 

high-risk hormone-relapsed non-metastatic prostate cancer, and TA741 appraised 

apalutamide with ADT for treating hormone-sensitive metastatic prostate cancer.[51, 

52] The pivotal trial for TA740 was SPARTAN, and for TA741 was TITAN, both of 

which compared apalutamide plus ADT to placebo plus ADT. In the SPARTAN trial, 

switches were made from the control arm to the experimental treatment and from both 

trial arms to ‘other’ subsequent treatments, such as abiraterone and enzalutamide. 

The Appraisal Committee noted that standard practice in England and Wales is for 

people to have only one androgen receptor inhibitor (such as abiraterone, 

enzalutamide, or apalutamide), and this was taken into account when deciding which 

treatment switches it was relevant to adjust for. The Committee also recognised that 

in some circumstances it may be reasonable to assume that drugs of the same class 

have similar effectiveness, and so the RPSFTM method could be appropriate even if 
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switches are onto ‘other’ treatments. The company used a modified RPSFTM 

approach to adjust for treatment switching, a currently unpublished method which was 

proposed by Diels et al. (2019) in a poster presented at the International Society for 

Pharmacoeconomics and Outcomes Research (ISPOR) conference.[62] The 

justification for using this method was that the standard single-parameter RPSFTM 

cannot deal with switches to ‘other’ subsequent treatments. The company attempted 

to apply IPCW but stated that it "generated counter-intuitive and clinically implausible 

results" (TA740, Draft guidance 1, Committee papers, pp102 [52]). The modified 

RPSFTM approach involved a hybrid of the TSE and RPSFTM methods, where the 

treatment effect associated with ‘other’ subsequent treatments was estimated based 

upon analyses of the effects of these treatments in an external trial, allowing 

counterfactual survival times to be derived for those in SPARTAN who switched onto 

‘other’ treatments. An RPSFTM analysis was then used to adjust for participants who 

switched from the control group onto apalutamide. This bears some similarity to the Li 

et al. (2017) approach summarised in Section 4.2.1.1.[8] In their analysis of the TITAN 

trial, relevant for TA741, the company applied the same modified RPSFTM as well as 

IPCW to adjust for switches to a second androgen receptor therapy in both arms of 

the trial. The company found that there was no significant difference between the 

adjusted and unadjusted analyses, which may have been due to the relatively small 

number of switchers. In both TA740 and TA741 the details of the adjustment analyses 

were provided in submission appendices, which are not published on the NICE 

website, so we are unable to describe the information provided regarding the methods 

used. The publicly available appraisal documents do not include a substantial amount 

of technical detail on the switching adjustment analyses, instead providing a general 

description of how the modified RPSFTM was applied, a discussion of the key 

assumptions of the methods, and the results of the analyses presented as HRs.[51, 

52] 

 

In TA709, the pivotal clinical trial was KEYNOTE-177, which compared 

pembrolizumab to chemotherapy for untreated metastatic colorectal cancer with high 

microsatellite instability (MSI-H) or mismatch repair deficiency (dMMR).[53] 56 

participants (36%) randomised to the control arm switched onto pembrolizumab and 

a further 35 control arm participants switched to other anti-PD-1/PD-L1 (Programmed 

Cell Death Protein 1 / Programmed Cell Death Ligand 1) therapies, which are not 
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available at second line and beyond in standard clinical practice in England and Wales. 

The company applied RPSFTM, the simple TSE method and IPCW to adjust for both 

types of switching in the control arm. Of the switching adjusted analyses, the company 

favoured their application of the TSE method without re-censoring, which they used 

as a sensitivity analysis to the primary ITT-based OS analysis. Justification of their 

favoured method was provided in the main text of their submission by discussing the 

assumptions of each of the adjustment methods applied in the context of the 

KEYNOTE-177 trial. The RPSFTM was disregarded because the company believed 

the common treatment effect assumption was unlikely to hold, and assessment of the 

data supported this claim. The IPCW approach was also disregarded because data 

had not been collected on all relevant confounders, therefore the no unmeasured 

confounders assumption was not considered to be valid. TSE was preferred because 

it does not rely on the common treatment effect assumption. However, it was not 

mentioned that TSE relies on adequate data collection at the secondary baseline 

(disease progression in this case), and requires that switching happens at or shortly 

after the secondary baseline, which did not appear to hold for all switchers in the trial. 

The committee papers indicate that switching was not only from the control group onto 

pembrolizumab – patients in both trial arms also switched to other subsequent immune 

checkpoint inhibitors, and some switching occurred before disease progression (5 in 

the pembrolizumab arm and 15 in the standard care arm). In the primary ITT analysis 

of progression-free survival, these patients were simply censored at initiation of their 

new-anti-cancer treatment. This simple censoring approach is prone to bias. There 

was no comment on the appropriateness of this censoring approach in the FAD. In 

addition, whilst the company appeared to conduct analyses to adjust survival 

estimates in the control arm for switches to pembrolizumab and to other anti-PD-1/PD-

L1 therapies, there is no mention of any adjustments made for switching in the 

experimental arm of the trial. Failing to adjust for switches to other anti-PD-1/PD-L1 

therapies in both arms will result in bias in favour of pembrolizumab if other anti-PD-

1/PD-L1 therapies are beneficial treatments and if those treatments do not represent 

standard treatment pathways available in England and Wales. This issue was not 

discussed in the FAD or company submission.  

 

In TA705, the pivotal trial compared atezolizumab to platinum based chemotherapy 

(combined with pemetrexed or gemcitabine) for the treatment of stage IV non-small 
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cell lung cancer (NSCLC).[54] Switching was not permitted in the trial, but some 

participants received subsequent lines of cancer therapies, including non-protocol 

immunotherapies. The company applied the RPSFTM as a sensitivity analysis, to 

estimate what the treatment effect might have been if switches onto subsequent lines 

of immunotherapies had not occurred. The details of this analysis were provided in an 

appendix to the submission document which is not in the public domain, therefore we 

cannot assess the validity of the assumptions imposed. If a standard RPSFTM was 

applied, it seems likely to have assumed that the treatment effect of the non-protocol 

immunotherapies that patients switched to would be similar in magnitude to the 

treatment effect of atezolizumab. The FAD does not discuss the RPSFTM analysis, or 

report any discussion on whether it was appropriate to adjust for treatment switching 

in this case.  

 

In TA660, the pivotal clinical trial was ARAMIS, which compared darolutamide plus 

ADT to placebo plus ADT for the treatment of men with non-metastatic castrate 

resistant prostate cancer with high-risk of developing metastatic disease.[55] In the 

trial, 31% of patients randomised to the control group switched onto darolutamide. The 

company adjusted for this switching using the IPE and RPSFTM methods. These 

analyses were presented as sensitivity analyses but the company did not present 

details of how they were applied, and did not explicitly discuss their assumptions. No 

appendix containing this information was referred to. Results for the switching adjusted 

analyses were presented as estimates of predicted survival percentages at 5, 10, 15, 

20 and 25 years by arm, using parametric survival models fitted to the adjusted data. 

Switches to other subsequent therapies that are not recommended for use within 

England and Wales also occurred in ARAMIS, but no adjustments were made for 

these. The company stated that it did not adjust for these switches because "First, it 

is not clear how one would combine the crossover adjustment for switching from 

control to intervention with adjustment for non-UK standard subsequent treatment use, 

as these are not mutually exclusive given that some patients could have both events 

in a sequence. Second, it may require pooling treatments to make this viable with the 

low number of patients upon stratification, and as such this would result in further 

challenges regarding the assumption of a pooled treatment, which would introduce 

further uncertainties into the long-term treatment effect." (TA660, Final draft guidance 

1, Committee papers, Company response to NICE’s request for clarification, 
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pp224.[55]). In Section 4.2.1.1 we note that the RPSFTM adjustment method is 

unlikely to be appropriate when there is a need to adjust for multiple treatment 

switches, whereas both IPCW and TSE can deal with these situations (see Sections 

4.2.2.1 and 4.2.3.1). However, we also note that this remains an area for further 

research (see Section 7.1). 

 

In TA653, the pivotal clinical trial was AURA3, which compared osimertinib to 

platinum-based doublet chemotherapy for patients with a confirmed diagnosis of 

advanced or metastatic (Stage IIIB-IV) epidermal growth factor receptor (EGFR) 

T790M non-small cell lung cancer, who have progressed following prior therapy with 

an approved EGFR tyrosine kinase inhibitor (TKI) agent.[56] 100 patients (71%) in the 

control arm switched to osimertinib. The company chose RPSFTM as its preferred 

adjustment method, stating that IPCW and TSE are known to produce unreliable 

results when the proportion of switchers is high. The company presented 6 

applications of the RPSFTM – “on treatment” and “treatment group” RPSFTM 

analyses were applied with re-censoring; without re-censoring; and with re-censoring 

of the acceleration factor. From the company submission, it is unclear how re-

censoring of the acceleration factor was applied. Further details on the application of 

the methods were included in an appendix, which is not publicly available. 

 

5.4 SUMMARY 

NICE TAs of cancer treatments were reviewed for the period January 2020 to 20th 

April 2022. 7 TAs were identified in which treatment switching was an issue in the 

pivotal trial. Switches were reported to occur from control arm to experimental 

treatment (n=4), or to subsequent treatments not available in standard practice in 

England and Wales (n=6). There were some discussions regarding which switches 

were appropriate to adjust for in company submissions and recorded in FADs, but this 

was not done systematically. In TA660, the company chose not to adjust for 

subsequent therapies that are not available in England and Wales, due to complexities 

associated with the application of an adjustment analysis in the context of two types 

of switching. In TA741 and TA740, adjustments were made for both types of 

switching.[51, 52] In this TSD we have described how methods can be used to adjust 

for more than one type of switching in the same trial. 
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A range of switching adjustment methods were applied across the TAs identified, 

including RPSFTM, IPE, IPCW and TSE. However, none of the TAs applied all of the 

methods suggested in TSD 16 and some applied alternative methods that were not 

described in TSD 16.[1] TA740 and TA741 applied a modified RPSFTM approach 

(Diels et al. 2019).[51, 52, 62] Using alternative methods is acceptable, provided that 

these are appropriately described and justified. It will not always be necessary to apply 

all of the adjustment methods suggested in TSD 16. However, the rationale for 

excluding or including methods should be carefully justified – see Recommendation 7 

in Section 4.1, and Recommendation 8 in Section 6. 

 

When faced with a situation where different types of treatment switching occur in a 

trial – for instance, where participants randomised to the control group switch onto the 

experimental treatment, and participants randomised to either group switch onto some 

other treatments – applications of adjustment methods typically require additional 

decisions and assumptions to be made. Firstly, as discussed in Section 2, it is 

necessary to determine which switches it is appropriate to adjust for, related to 

whether or not the observed switching is representative of treatment pathways 

available in standard clinical practice in the jurisdiction for which an analysis is being 

undertaken. In Sections 4.2.2.1 and 4.2.3.1 we explain that IPCW and TSE methods 

are able to adjust for multiple switches, when required. In addition, the company 

submission in TA660 highlights complications around individual patients making more 

than one switch sequentially, and the need for pooling together treatments to apply 

methods more simplistically.[55] Neither of these issues mean that a treatment 

switching adjustment analysis cannot be done. For sequential switches, adjustment 

can be made from the point of the first switch to a non-standard treatment. For pooling, 

expert advice should be sought to enable the grouping together of treatments with 

similar treatment effects. Again, either IPCW or TSE methods could be used - although 

we note that this remains an area for further research (see Section 7.1). 

 

Justification for the adjustment methodology used was provided in the company 

submissions of 4 of the TAs.[51-53, 56] The no unmeasured confounding and common 

treatment effect assumptions were directly referred to in the main text of only one 

company submission (TA709). In TA740, TA741 and TA653, the common treatment 

effect assumption was mentioned in the ERG report,[51, 52, 56] and the no 
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unmeasured confounding assumption was also mentioned in the ERG reports for 

TA740 and TA741.[51, 52]  

 

None of the TAs provided information on how covariates had been selected for 

applications of IPCW or TSE. In Section 4.2.2.1 we explain how DAGs can be useful 

for this purpose, and we recommend that covariate selection is addressed in reporting 

(see Recommendation 8, Section 6). Re-censoring was referred to in the company 

submissions of 4 of the TAs,[51-53, 56] and analyses were presented with and without 

re-censoring in the company submission of 3 TAs.[51, 52, 59] Key diagnostics for the 

models, such as the range of weights for IPCW, or g-estimation plots for RPSFTM, 

were not presented in the main text of any company submissions. In at least 5 of the 

TAs,[51-53, 56] important information on the application of the adjustment methods 

was included in appendices to the company submission, but these are not publicly 

available. It was unclear whether additional information on the application of the 

treatment switching methods was available in unpublished appendices for TA784 and 

TA660.[50, 55] Given the importance of these analyses, we suggest that the 

information on the application of the methods should be included in publicly available 

documents. 
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6. RECOMMENDATIONS AND REPORTING GUIDELINES 

In Section 2 we provided an over-arching recommendation (Recommendation 1) 

stating that it may be appropriate to attempt to adjust for various different types of 

switching observed in an RCT in order to address the HTA decision problem. The 

switching observed in each treatment arm of a trial should always be described and it 

should be considered whether the observed switching is representative of treatment 

pathways available in standard clinical practice. However, we note that determining 

that it is relevant to adjust for a particular type of treatment switching does not mean 

that an adjustment analysis will be accepted, due to uncertainties around the reliability 

and potential bias associated with adjustment analyses.   

 

In Sections 3 and 4.1 we provided recommendations for the planning of trials when 

treatment switching is anticipated (Recommendations 2-7). We refer readers back to 

those sections, and in particular re-iterate that when planning trials and pre-specifying 

analyses, trial sponsors should consider questions of interest not only for regulatory 

agencies, but also for HTA agencies, and especially the implications that this can have 

for data collection. 

 

Our review of recent NICE TAs, presented in Section 5, highlights key issues 

associated with treatment switching and adjustment analyses in NICE appraisals. It is 

clear that the reporting of analyses that adjust for treatment switching, and the review 

of those analyses, has been sub-optimal. To encourage clear, transparent and 

consistent reporting, we present a set of reporting guidelines to be followed when 

submitting analyses that adjust for treatment switching in submissions made to NICE 

(see Recommendation 8, below, which includes all our reporting guidelines). Sullivan 

et al. (2020) provided a set of reporting guidelines for IPCW and RPSFTM to support 

improved interpretation of analyses undertaken to adjust for switching.[12] We have 

added to their guidelines and extended them to cover IPE and the TSE adjustment 

methods. For clarity, our additions and extensions are highlighted with an asterisk. In 

some cases, we have altered the wording of the recommendations made by Sullivan 

et al. for clarity. For further context on the application and reporting of IPCW and 

RPSFTM, and for a review of the reporting of these methods in NICE TAs and journal 

articles published prior to 22 May 2018, we refer readers to Sullivan et al. (2020).[12]  
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The reporting guidelines cover a description of the types of treatment switching 

observed, how adjustment methods were chosen, and detailed description of the 

assumptions and output of the adjustment methods used. Providing this information 

on a case-by-case basis should ensure that adjustment analyses used in NICE 

appraisals are consistently and rigorously justified and reported. 

 

Recommendation 8: Reporting guidelines for treatment switching adjustment 

analyses 

Description of the data and unadjusted results 

D1. Provide unadjusted results from an ITT analysis for comparison. 

D2. Describe the treatment switching mechanism - who can switch and when. 

D3. Detail the number of patients who switched, the number eligible to switch 

and when switching occurred. 

D4. Give an overview of the data available for adjustment - what predictors 

were collected and how frequently were they measured.  

D5. Include a summary of subsequent treatments received in both/all arms of 

the trial, including which subsequent treatments were received, the 

number and proportion of patients that received subsequent treatments, 

and when subsequent treatments were received.* 

D6. Describe which switches do not represent standard treatment pathways 

in the NHS in England and Wales.* 

D7. Describe and justify the type of switches that adjustments have been 

made for.*  

 

Method selection 

M1. State whether the chosen adjustment approach, including all model fitting 

steps, was prespecified; if not, explain how the final method and model 

was selected. 
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IPCW 

IPCW1. Provide a statement around the plausibility of the no unmeasured 

confounders assumption (this can include a relevant DAG for selection of 

variables).* 

IPCW2. Provide summary statistics for each variable included in the switching 

model by treatment arm and switch status to assess the plausibility of the 

positivity assumption.* 

IPCW3. State whether unstabilised or stabilised weights were used. 

IPCW4. Detail the statistical procedure used to calculate weights (e.g. pooled 

logistic regression, Cox model). 

IPCW5. State the portion of data used in the switch model including time-varying 

predictors (e.g. post-progression data only). 

IPCW6. Describe the extent of, and the method used to address, missing data on 

predictors in the switch model(s). 

IPCW7. Present parameter estimates and associated measures of precision from 

the switch model(s). 

IPCW8. Summarise the distribution of weights and state whether values were 

truncated. 

IPCW9. Detail the final outcomes model (i.e. the model fitted to the weighted 

dataset to estimate the treatment effect, or to model survival), including 

the estimation method (e.g. robust variance estimation) and the baseline 

variables adjusted for. 

IPCW10. Report on sensitivity analyses showing the robustness of treatment effect 

estimates and survival extrapolations to violations of key assumptions. 

Estimated treatment effects and survival extrapolations, AIC, BIC and 

maximum and minimum switch weights should be compared for versions 

of the models with different numbers of cubic splines, functional forms, 

and alternative definitions of categorical variables derived from 

continuous variables. If weights were truncated, there must be some 

sensitivity analysis around the truncation percentiles, including a 

comparison with no truncation.*  
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RPSFTM 

RPSFTM1. Provide a statement around the plausibility of the common treatment 

effect assumption.* 

RPSFTM2. State and justify the structural model assumed (e.g. as treated, ever 

treated). 

RPSFTM3. State the metric used for g-estimation (e.g. log-rank test), including 

baseline variables for adjustment where applicable. 

RPSFTM4. State the grid-search or interval bisection algorithm used for g- 

estimation. 

RPSFTM5. Plot g-estimation results to show that the estimation process has 

worked well. 

RPSFTM6. Present the estimated time ratio (or acceleration factor) and its 

confidence interval. 

RPSFTM7. Compare counterfactual survival times between randomised groups in 

a Kaplan-Meier plot. 

RPSFTM8. Detail the model fitted to the adjusted dataset, including the method 

used to calculate confidence intervals around the estimated treatment 

effect and/or survival extrapolation (e.g. retain ITT p-value, 

bootstrapping) and baseline variables adjusted for. 

RPSFTM9. Present results both with and without re-censoring applied. 

RPSFTM10. Report on sensitivity analyses showing the robustness of treatment 

effect estimates and survival extrapolations to violations of key 

assumptions. Sensitivity analysis around the common treatment effect 

assumption should be included. 

 

IPE 

IPE1. Provide a statement around the plausibility of the common treatment 

effect assumption.* 

IPE2. State and justify the structural model assumed (e.g. as treated, ever 

treated).* 

IPE3. State the parametric model used and consider its appropriateness.* 

IPE4. Present the estimated time ratio (or acceleration factor) and its 

confidence interval.* 
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IPE5. Compare counterfactual survival times between randomised groups in a 

Kaplan-Meier plot.* 

IPE6. Detail the model fitted to the adjusted dataset, including the method used 

to calculate confidence intervals around the estimated treatment effect 

and/or survival extrapolation (e.g. retain ITT p-value, bootstrapping) and 

baseline variables adjusted for.* 

IPE7. Present results both with and without re-censoring applied.* 

IPE8. Report on sensitivity analyses showing the robustness of treatment effect 

estimates and survival extrapolations to violations of key assumptions. 

Sensitivity analysis around the common treatment effect assumption 

should be included.* 

 

Two-stage estimation (simple version) 

TSEs1. State the disease-related secondary baseline used.*  

TSEs2. State the parametric model used and consider its appropriateness.* 

TSEs3. Provide a statement around the plausibility of the no unmeasured 

confounding assumption. This can include a relevant DAG for selection 

of variables.* 

TSEs4. Provide a statement around the plausibility of the assumption of no time-

dependent confounding between secondary baseline and time of switch. 

This should include a graph illustrating the time from secondary baseline 

to switch across all switching patients.* 

TSEs5. Describe the extent of, and the method used to address, missing data on 

predictors used in the analysis.* 

TSEs6. Present the estimated time ratio (or acceleration factor) and its 

confidence interval.* 

TSEs7. Detail the model fitted to the adjusted dataset, including the method used 

to calculate confidence intervals around the estimated treatment effect 

and/or survival extrapolation (e.g. bootstrapping) and baseline variables 

adjusted for.*  

TSEs8. Present results with and without re-censoring.* 

TSEs9. Report on sensitivity analyses showing the robustness of treatment effect 

estimates and survival extrapolations to violations of key assumptions. 
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Estimated treatment effects, survival extrapolations, AIC and BIC should 

be compared for versions of the models with different parametric 

distributions and covariates included.* 

 

Two-stage estimation (g-estimation version) 

TSEg1. State the disease-related secondary baseline (if used).* 

TSEg2. Provide a statement around the plausibility of the no unmeasured 

confounding assumption. This can include a relevant DAG for selection 

of variables.* 

TSEg3. Provide a graph illustrating the time from secondary baseline to switch 

across all switching patients.* 

TSEg4. Present the switching model and counterfactual survival model used in 

the g-estimation process.* 

TSEg5. State the portion of data used in the switch model including time-varying 

predictors (e.g. post-progression data only).* 

TSEg6. Describe the extent of, and the method used to address, missing data on 

predictors in the switch model(s).* 

TSEg7. State the g-test used (e.g. Wald test, likelihood ratio test, and whether a 

sandwich variance was used with or without clustering).* 

TSEg8. State how the potential survival outcome is entered into the switching 

model (e.g. only using the event indicator, the time-to-event or censoring, 

or a combination of these).* 

TSEg9. State the grid-search or interval bisection algorithm used for g- 

estimation. 

TSEg10. Plot g-estimation results to show that the estimation process has worked 

well.* 

TSEg11. Present the estimated time ratio (or acceleration factor) and its 

confidence interval.* 

TSEg12. Detail the model fitted to the adjusted dataset, including the method used 

to calculate confidence intervals around the estimated treatment effect 

and/or survival extrapolation (e.g. bootstrapping) and baseline variables 

adjusted for.*  

TSEg13. Present results with and without re-censoring.* 
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TSEg14. Report on sensitivity analyses showing the robustness of treatment effect 

estimates and survival extrapolations to violations of key assumptions. 

Estimated treatment effects and survival extrapolations should be 

compared for versions of the models with different functional forms and 

covariates.* 

 

Other Treatment Switching Adjustment Methods 

OTS1. Provide a statement around the plausibility of the key assumptions.* 

OTS2. For methods that require the no unmeasured confounding assumption, 

provide a statement around the plausibility of the assumption together 

with a description of the covariate selection approach used – this can 

include a relevant DAG.* 

OTS3. Describe the extent of, and the method used to address, missing data on 

predictors used in the analysis.* 

OTS4. Detail models and any estimation processes used, including method of 

obtaining confidence intervals around the estimated treatment effects 

and survival extrapolations.* 

OTS5. Report details of model specifications and outputs at each stage.* 

OTS6. Provide evidence of model performance, with the approach appropriate 

to the type of analysis used (e.g. if g-estimation is used, plot g-estimation 

results; if weighting is used, present parameter estimates and associated 

measures of precision from the weighting model(s) and summarise the 

distribution of the estimated weights).* 

OTS7. Provide a visual comparison of observed and adjusted survival times.* 

OTS8. Report on sensitivity analyses showing the robustness of treatment effect 

estimates and survival extrapolations to violations of key assumptions.* 

OTS9. If external data are used to adjust for treatment switching 

recommendations OTS1-OTS8 should be followed, as should relevant 

guideline documents related to the use of matched controls and analysing 

observational data.* 

 

 

We expect that improved reporting of treatment switching analyses will facilitate 

improved review of these analyses by external assessment groups and NICE 
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appraisal committees. However, to further encourage this, we make the following 

recommendation: 

 

Recommendation 9: External assessment groups and appraisal committees should 

routinely consider the issue of treatment switching. This should include a consideration 

of (i) treatment switching that occurred in the pivotal trials and whether these are 

representative of treatment pathways available in standard clinical practice; (ii) 

whether the observed treatment switches are likely to impact upon outcomes important 

for the clinical and cost-effectiveness analysis; (iii) whether adjustments have been 

made for any types of treatment switching for which adjustment is deemed 

appropriate; (iv) the case-specific validity of the methods used for any adjustments 

made. If sufficient information is not provided in the evidence submission, further 

details should be requested. 

 

We also re-iterate that the method selection advice provided by TSD 16 remains 

relevant. 

 

Recommendation 10: Refer to TSD 16[1] as well as this TSD to assist with the 

identification of adjustment methods that may be appropriate on a case-by-case basis. 

Occasionally it may be possible to rule out specific methods a priori, but in general we 

recommend that multiple treatment switching adjustment methods should be applied 

to test the sensitivity of the results to the model assumptions. Thorough justification 

should be provided if any of these methods cannot be applied. It is important that the 

data requirements for the application of methods are established at the planning stage 

of the trial, to ensure that necessary data are collected during the trial to allow 

adjustment methods to be successfully applied. 
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7. SUMMARY 

This TSD provides an update to TSD 16. In this update, we emphasise the importance 

of including planning for treatment switching adjustment analyses at the outset of any 

trial, to ensure that appropriate and sufficient data are collected during the trial to 

perform appropriate adjustment analyses. This is crucial because missing data is a 

common problem in RCTs, especially in variables measured over time, yet many of 

the adjustment methods detailed in this document rely crucially on covariate 

information being available.  

 

We aim to encourage clarity and consistency in the presentation of results and 

information supporting the analyses, by providing a detailed list of items that should 

be included alongside treatment switching adjustment analyses in submissions to 

NICE. We note that the consideration of hypothetical estimands in the ICH E9 R1 

Addendum [6] means that adjustment analyses may become more common in 

submissions made to regulatory agencies and in trial planning, which should further 

encourage consistency and transparency in the conduct and reporting of these 

analyses. 

 

TSD 16 focused on treatment switching defined as participants randomised to the 

control arm of an RCT crossing over onto the experimental treatment. In this new TSD 

we extend this to consider switching from the experimental arm onto the control 

treatment, and situations where participants in either trial arm switch onto any other 

subsequent therapies. It is appropriate to adjust for switches onto subsequent 

therapies that are not available in standard clinical practice within the jurisdiction for 

whom the analysis is undertaken. Hence, in submissions to NICE, it is relevant to 

adjust for switches to treatments that are not part of standard clinical practice in 

England and Wales at the time of the NICE appraisal. Our review of recent 

submissions to NICE has indicated that it is common for trial participants to switch 

onto ‘other’ subsequent treatments, and that this type of switching and switches from 

the control group onto the experimental treatment can occur in the same trial. This 

situation may require adjustment for two (or more) treatment effects associated with 

different types of switching. IPCW and TSE methods are capable of adjusting for 

several different types of switching within one trial without amendment to the methods, 
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and can be used to make adjustments for switches in both arms of a trial. The standard 

one-parameter RPSFTM and IPE, as described in TSD 16, are only capable of 

adjusting for switches to a non-study treatment under the assumption that the non-

study treatment has the same treatment effect as the experimental treatment 

investigated in the trial.  

 

Key methodological developments that have occurred since publication of TSD 16 

include; 

a. a more complex version of the TSE method, that can cope with time-dependent 

confounding.  

b. extended versions of the RPSFTM that attempt to estimate more than one 

treatment effect.  

c. enhanced capability to test the sensitivity of RPSFTM and IPE adjustment 

results to the common treatment effect assumption. 

d. new research on the impact of re-censoring. 

e. new work on covariate selection, relevant for IPCW and TSE methods. 

 

We regard (a), (c), (d) and (e) to be of particular importance: when the TSE method is 

used and there is concern that the analysis is prone to time-dependent confounding, 

the more complex version that uses g-estimation should be applied; when the 

RPSFTM or IPE methods are used, sensitivity analysis should always be conducted 

around the common treatment effect assumption; RPSFTM and TSE analyses should 

always be conducted with and without re-censoring; and details on covariate selection 

should always be provided when using IPCW or TSE methods. We would not rule out 

the use of new methods, such as those referred to in (b), but we remain concerned 

about the ability of multi-parameter RPSFTM models to successfully estimate more 

than one treatment effect. We consider sensitivity analysis around the common 

treatment effect assumption to represent a good substitute for this. 

 

7.1 AREAS FOR FURTHER RESEARCH 

 

The issue of treatment switching continues to be an important factor in a substantial 

proportion of NICE appraisals. Research into treatment switching adjustment methods 

is ongoing, and new approaches and extensions to methods continue to be developed. 
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Recent research has discussed the development of an evidence base for new 

biostatistical methods, including the use of neutral comparison studies.[63] This would 

be highly valuable in the area of treatment switching adjustment methods. Several of 

the new methods discussed in this document have not been compared to existing 

methods in simulation studies or applied analyses, and previously published 

simulation studies have not considered scenarios that include multiple switches. 

Further research in these areas could provide further insight on the performance and 

reliability of adjustment methods, and could be used to update the recommendations 

contained in this document.  

 

Additional areas of research mentioned in this TSD include: 

• For trial planning, research on calculating sample sizes for trials where 

treatment switching is expected. 

• Research on optimal model specifications for IPCW and TSE methods when 

adjustments are required for multiple types of switching (for example, whether 

treatments for which adjustments are required should be grouped together, or 

adjusted for separately) 

 

Finally, given that researchers involved in the health technology assessment process 

regularly do not have access to patient-level data from clinical trials affected by 

switching, it would be valuable to further research approaches for adjusting for 

treatment switching in situations where only summary data are available. Related to 

this, further research on methods that attempt to adjust for treatment switching using 

external data would also be valuable, especially using EHR data sources. 
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APPENDIX 

Appendix A: Methods for the systematic review of the literature to inform Section 4 of 

the TSD 

Review Question: The review aimed to identify methods that have been used to adjust 

for treatment switching since the original TSD on treatment switching (TSD 16) was 

published in 2014. 

Search strategy: The search took two approaches. Approach 1 followed the traditional 

style of systematic review and approach 2 used a Comprehensive Pearl Growing 

technique.[64, 65] 

1. Searches were performed in PubMed, Scopus and Web of Science on 

22/12/2021, using the following search terms - ("treatment switching" OR 

"treatment crossover") AND "trial" AND "adjust*" NOT "crossover trial". 

2. The base set of treatment switching methods papers were identified from the 

bibliography of TSD 16. A search was performed to identify all papers that cite 

these papers by uploading DOIs for each of these papers into CitationChaser, 

and using the forward citation chasing search function. [66] 

The results from these searches were combined and duplicates were dropped. See 

Figure A1. 

 

Inclusion and exclusion criteria: We excluded papers that were published prior to 2014, 

before the publication of TSD 16. Papers that were unpublished, applied methods as 

described in TSD 16 without extension, or methods applied to observational data were 

excluded. We included papers published in peer reviewed journals, that described new 

methods that adjust survival for treatment switching in clinical trials or extended the 

methods described in TSD 16. Eligibility was initially assessed based on abstract. Full 

texts were reviewed for those with eligible abstracts. 
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Figure A1: PRISMA flow diagram for literature search to identify switching adjustment 

methods 

 


