

Investigating three-dimensional localised effects of age, disease and treatment on mouse bone geometry using Principal Component Analysis

Matthew Bates¹, Stamatina Moraiti²

1 Student, Department of Computer Science

2 PhD Student, Department of Mechanical Engineering

Osteoporosis:

The prevalence and severity of bone breakages and fractures drastically increases with age. Osteoporosis leads to increased possibility of fragility fractures.

Pre-Clinical studies:

- Murine bone models are widely used.
- Osteoporosis and treatment strategies are simulated.
- Exercise is simulated by applying in-vivo mechanical loading of long
- Treatment impact on bone geometry is typically assessed as changes in averaged scalar morphometric parameters.
- However, the precision and accuracy of these studies are limited by approximations - cylindrical models.

Study Aims:

• Use Principal Component Analysis to analyze variations in mice tibia geometry.

0) Data

Data Collection:

- Mice are ovariectomized at week 14 to induce menopausal osteoporosis.
- Mice are subjected to mechanical loading at week 19.
- Right tibia is scanned through MicroCT.
- Longitudinal data of 6 treated mice, 2 ages.

1)Pre-Processing

Sample registration

Performs a rigid registration of each sample to the reference bone, resulting in an alignment of all samples.

Elastic Registration using ShIRT

- The reference image is mapped to all other image samples using elastic registration.
- The surface mesh of the reference is extracted from the binarized image.
- The deformation field is applied on the reference surface mesh.

3) Results & Conclusion

Analysis

The first 5 modes describe 97% of total variation.

Focus is on the first 5 modes, as their variations are significant.

Shows stronger variation toward proximal end of tibia. Caused by differences in growth plate placement.

Mode 2

Shows variation of tibia/fibula fusion point, as well as curvature in bone geometry.

Mode 4

Shows variations at the medial aspect of proximal diaphysis.

X axis slice

2) PCA

Decomposes variations into 11 orthogonal modes, each mode portraying a unique feature.

Modes are ordered by latent from eigen values.

Variations due to age, growth and disease are given by PCA modes.

In partnership with:

Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust Sheffield Teaching Hospitals NHS Foundation Trust Sheffield Children's NHS Foundation Trust

Conclusion

PCA modes show many variations, some artefacts of methodology, however some, significantly, are not. Variations may be linked to treatment - further investigation.

