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1 Introduction

Loss aversion and the probability weighting function (PWF), introduced to decision theory

in original prospect theory (Kahneman and Tversky, 1979), are —alongside the much older

concept of risk aversion, introduced in Bernoulli (1738/1954) — three central concepts in

decision theory. The PWF, in particular, plays a central role in two of the most promi-

nent alternatives to expected utility: rank-dependent expected utility (RDEU), introduced

in Quiggin (1982), and prospect theory (PT), introduced in (Tversky and Kahneman, 1992).

RDEU, for instance, preserves standard axioms of rationality, such as monotonicity, transi-

tivity, and stochastic dominance, yet offers an account of many of the well-known violations

of expected utility theory, including Allais’ paradoxes, the common ratio effect, and the

preference reversal effect (see, e.g., Quiggin, 1985; Karni and Safra, 1987; Segal, 1987).1

How to interpret the shape of the PWF? In themselves, RDEU and PT offer no guide to

this question, for the PWF is taken as a primitive. Different from this interpretation, this

paper shall explore an idea, implicit in some recent models, that the PWF is not itself a

primitive, but is instead a concept that derives from a set more basic and interpretable prim-

itives.2 Barseghyan et al. (2018), for instance, “build”the PWF from (i) gain-loss emotions

arising from stochastic reference dependence, à la Kőszegi and Rabin (2006, 2007); and (ii)

preferences over probability distributions, à la Quiggin (1982). An important limitation of

this approach, however, is that these two building blocks cannot be identified separately

(Barseghyan et al., 2018).

To (at least partially) overcome this problem of identification, and gain further insights into
1For axiomatizations of RDEU see Abdellaoui (2002) and the references therein. For further motivations

for RDEU see Weber and Kirsner (1997).
2The case for the elements of models of decisionmaking to have plausible psychological interpretations is

made in Wakker (2010). Dekel and Lipman (2010) argue that the “story”of a model is relevant and may
provide a reason for preferring one model to another, even if two models predict the same choices. Absent
of a plausible psychological interpretation, in the words of Diecidue and Wakker (2001, p. 281), the PWF
risks being merely a “technical tool”with “no intuitive or empirical content.”
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how the PWF may derive from more basic and interpretable primitives, this paper proposes

introducing additional insights from the economics and psychology literature on preferences

over probability distributions. The two insights we propose are:

1. Optimism/pessimism: I characterize preferences over probability distributions in terms

of an individual dispositional preference for either optimism or pessimism. An optimist

places greater focus on the realization of favorable outcomes —the more favorable the

outcome, the greater the subjective weight placed on it —whereas a pessimist does the

opposite. As well as appearing in decision theory, the role of a dispositional preference

for optimism/pessimism features importantly in the literature on health economics

(e.g., Kubzansky et al., 2004; Rozanski et al., 2019), life satisfaction (Piper, 2022),

social comparisons (Menon et al., 2009), and stock market participation (Grevenbrock,

2020).

A dispositional preference for optimism/pessimism can be further motivated by a se-

ries of experiments, Lopes (1984, 1987, 1990), in which participants choose between

pairs of lotteries with very similar expected values, but in which the distribution of

outcomes around the mean differs. Consistent with the notions of optimism and pes-

simism, Lopez accounts for her findings by arguing that individuals possess a stable

dispositional tendency towards placing greater emphasis on different ends of the dis-

tribution of payoffs. Pessimists consistently place greater emphasis on outcomes at the

low (“security”) end of the distribution, while optimists consistently place greater em-

phasis at the high (“potential”) end of the distribution. The maximin and maximax

models of decisionmaking under ignorance (Arrow and Hurwicz, 1972) are extreme

cases of optimism/pessimism, where all the weight goes to the worst or best outcome,

respectively. Dillenberger et al. (2017) propose a way to integrate optimism/pessimism

into expected utility theory. Further contributions that allow for optimism and pes-
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simism in the broad sense defined here include Hey (1984), the security/potential level

model of Cohen (1992), and the neo—additive expected utility model of Chateauneuf

et al. (2007). While the latter two models emphasize the attention paid to extreme

outcomes, optimism and pessimism have also been observed for non-extreme outcomes

(see, e.g., Wu and Gonzalez, 1996). The piecewise linear RDEU model of Webb (2017)

allows for this more general possibility.

2. Perception of small probabilities: People encounter diffi culty perceiving small probabil-

ities correctly, and different decisionmakers typically treat small probabilities in one of

two very different ways: either they massively overweight small probabilities, or they

all but ignore them. This bimodal pattern of behavior is observed across subjects in a

range of insurance experiments (see, e.g., Slovic et al., 1977; McClelland et al., 1993;

Botzen and van den Bergh, 2012), with many people willing to pay large (actuarially

unfair) amounts to avoid rare risky events, but many others wishing to pay nothing for

decreasing the level of risk. Ungemach et al. (2009) also report experimental evidence

consistent with both under- and over-weighting of small probabilities. This dichotomy

in the perception of small probabilities was, to our knowledge, first brought to the

attention of economists in original prospect theory (Kahneman and Tversky, 1979),

wherein the authors decline to specify the shape of the PWF over extreme proba-

bilities for this reason. The incumbent challenges posed by low-probability events

for economic policymaking are explored in, e.g., Camerer and Kunreuther (1989) and

Kunreuther et al. (2001).

Utilizing the these two insights, I characterize the underlying preference profiles of opti-

mism/pessimism and loss aversion/tolerance that may be inferred from particular shapes of

the PWF, and that imply particular shapes of the PWF. I also characterize the underlying
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preference profile that —under concave utility —is equivalent to risk aversion, in the sense of

aversion to mean preserving spreads. Abundant experimental evidence is consistent with an

inverse-S shaped PWF (see, e.g., Table 1 in Booij et al. (2010) for a summary).3 A striking

finding in this context is that loss aversion is necessary to observe an inverse-S PWF, and

also necessary to observe risk aversion. Specifically, an inverse-S PWF maps uniquely to

loss aversion and optimism, while risk aversion is equivalent to loss aversion and pessimism

(assuming concave utility). In this way I relate three of the most central features of de-

cisionmaking: the loss aversion, risk aversion, and the inverse-S PWF. In particular, loss

aversion emerges as a “primitive”concept that underlies more “complex”concepts, such as

risk aversion and the inverse-S PWF.

As well as explaining an inverse-S PWF, the model also maps preference profiles to a range

of other shapes of PWF observed commonly in the experimental literature. Decisionmakers

exhibiting evidence of a strictly convex PWF are relatively plentiful: for instance, 83 out of

124 subjects in the experiment of Qiu and Steiger (2011, p. 195) exhibit this shape of PWF,

which is also observed in the individual level results of Gonzalez and Wu (1999, Fig. 6). A

strictly convex PWF is also estimated as the median outcome of a range of experiments (e.g.,

Goeree et al., 2002; Harrison et al., 2010; van de Kuilen and Wakker, 2011; Krawczyk, 2015)

and, albeit under strong structural identifying assumptions, in the field study of Jullien and

Salanié (2000). Moreover, in a typical experiment, at least a minority of subjects exhibit

choices consistent with an S-shaped or strictly concave PWF (see, e.g., Hey and Orme, 1994;

Birnbaum and Chavez, 1997; Humphrey and Verschoor, 2004; Blavatskyy, 2010).

The plan of the paper is as follows. Section 3 develops the model, and Section 4 examines

the preference inferences that can be drawn from the model in respect of risk aversion and

the PWF, including for a simple parameterization of preferences for optimism/pessimism.
3For complementary evidence from non-laboratory environments see, e.g., Polkovnichenko and Zhao

(2013), Rieger et al. (2017), and the references therein.

4



In Section 5 I show that the results from the basic model extend to a PT representation

featuring differential probability weighting over (absolute) gain and loss outcomes in mixed

lotteries. In particular, the unique preference inference required for the PWF to be inverse-

S in both the gain and loss domains is loss aversion coupled with optimism. Section 6

concludes. All proofs are contained in Appendix B, and Figure 1 appears at the very rear.

2 Related Literature

In this section I briefly discuss some of the literature that is broadly related to the present

contribution. The paper adds to a literature on the representation of risk preferences under

RDEU (Chew et al., 1987; Röell, 1987). In particular, whereas risk preferences are a property

solely of the second derivative of utility under expected utility theory, they also depend on

the second derivative of the PWF under RDEU. As I do not take the PWF to be a primitive,

risk preferences arise in the present framework according to how the underlying primitives

of the model map into the second derivative of the PWF.

The paper also connects to an existing literature seeking to understand the shape of the

PWF. Tversky and Kahneman (1992) propose that people become less sensitive to changes

in probability the further it lies from a reference point (diminishing sensitivity). If, in

the probability domain, the two end points {0, 1} serve as reference points this principle

of diminishing sensitivity makes increments near the end points of the probability scale

loom larger than increments near the middle of the scale. Relative to this explanation, an

advantage of the present contribution is that it can explain many widely observed shapes of

PWF in addition to the inverse-S PWF. Gonzalez andWu (1999) characterize PWFs by their

level (elevation) and curvature. They interpret the curvature of the PWF as reflecting the

ability of an individual to discriminate between probabilities, and the elevation as reflecting

how attracted an individual is to the chance domain of prospects. Elevation is, however,
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typically intertwined with curvature, except for some special forms of the PWF (Abdellaoui

et al., 2010).

The role of gain-loss preferences in probability weighting is explored in the prior contributions

of Brandstätter et al. (2002) and Walther (2003). Brandstätter et al. (2002) propose a form

of PWF in which, e.g., overweighting arises when expected elation from gains outweighs

expected disappointment from losses. Walther (2003) modifies expected utility theory to

allow for temporary emotional reactions (elation or disappointment) in response to resolution

of uncertainty, resulting in a form of probability weighting similar, but not identical, to

RDEU. In a related approach, Wang (2021) replaces objective probabilities with attention

weights that reflect the salience of outcomes. The author obtains an RDEU representation

with a flexible form of PWF, but the representation is only for the special case of binary

lotteries. Relatedly, the disappointment aversion models of Bell (1985) and Gul (1991)

also admit an RDEU representation, but only for binary lotteries (see, e.g., Abdellaoui and

Bleichrodt, 2007). Moreover, in these two studies, the resulting PWF cannot take an inverse-

S shape.

Kilka and Weber (2001) argue that probability weighting may be explained partly as a

response to ambiguity over the likelihood of events. While important, this consideration does

not explain evidence of probability weighting in settings where the objective probabilities of

events are known (the case we consider here). Last, different from other approaches, decision

by sampling (Stewart et al., 2006, 2015) proposes that the shape of the PWF derives from a

tendency toward ordinal comparisons of probabilities. Thus, the shape of the PWF reflects

the shape of the cumulative distribution of the probabilities contained within the lotteries

under consideration. Recent evidence casts doubt on the decision by sampling explanation,

however (Alempaki et al., 2019).
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3 Model

I consider a model of decisionmaking under risk that admits a RDEU representation in

which both preferences over probability distributions and the effects of stochastic reference

dependence are nested within a single composite PWF. In particular, the model exploits

the equivalence between Kőszegi and Rabin’s (2007) notion of choice-acclimating personal

equilibrium and a restricted version of RDEU, first documented byMasatlioglu and Raymond

(2016).

3.1 Preferences over Probability Distributions

Let X be a lottery taking values on a finite subset of the real numbers, {x1, . . . , xn}, ordered

such that x1 < x2 < . . . < xn, n ≥ 2. Each outcome xi occurs with probability pi ∈ [0, 1],∑n
j=1 pj = 1. In the tradition of rank-dependent probability weighting, as proposed in

Quiggin (1982), the decisionmaker weighs each outcome xi by the decision weight φi, given

by

φi = π

(
n∑
j=i

pj

)
− π

(
n∑

j=i+1

pj

)
i ∈ {1, . . . , n} . (1)

where π : [0, 1] 7→ [0, 1] is a continuous and strictly increasing weighting function satisfying

π(0) = 0 and π(1) = 1. I suppose π(p) is twice differentiable everywhere, except possibly at

the endpoints p ∈ {0, 1}.

As discussed at the outset, the shape of π(p) plausibly relates to the psychological notions of

optimism/pessimism over probability distributions (Quiggin, 1982). The idea is described in

full in Yaari (1987) and Diecidue andWakker (2001), among other studies, and is axiomatized

in Wakker (2001). In essence, an optimistic decisionmaker tends to believe that the risk

in a gamble will resolve favorably for them. According, if a given outcome is increased,

so as to become more favorable to the decisionmaker, they place greater focus upon it.
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This necessarily entails —as the decision weights in (1) sum to unity —that the remaining

outcomes receive less focus. By contrast, a pessimist tends to believe that randomness will

realize against them, the opposite of an optimist. Wakker (1994) demonstrates that these

notions of optimism/pessimism imply the behavioral notions of mixture aversion/tolerance.

A decisionmaker is mixture averse if, given two lotteries over which they are indifferent, they

prefer these lotteries to any mixture of them (believing that the extra risk entailed in the

mixed lottery will not be favorable to them). Chew et al. (1987) establish that, alongside

the second derivative of the utility function, the notion of optimism (pessimism) is required

to ensure risk seekingness (risk aversion) in the rank-dependent framework.

An interpretation of π(p) in terms of optimism/pessimism necessarily places restrictions on

its possible shape. Formally, optimism corresponds to the situation in which an improvement

in the ranking position of outcome xi (by lowering the probability
∑n

j=i+1 pj of receiving a

better outcome) increases its decision weight φi. It is equivalent to requiring π (p) to be

concave. Similarly, pessimism is equivalent to requiring π (p) to be convex. I therefore

assume the following:

A0. For all p ∈ (0, 1), either (i) π′′ (p) ≤ 0 (“optimism”); or (ii) π′′ (p) ≥ 0 (“pes-

simism”).

A second feature I capture in π(p) is the dichotomous nature of preferences over small prob-

abilities. As discussed in the Introduction, some decisionmakers massively overweight small

probabilities, implying limp↓0w (p) /p = limp↓0w
′ (p) = +∞, while others all but ignore them,

implying limp↓0w
′ (p) = 0. Consistent with this point, all the widely-employed functionals in

the literature on probability weighting (e.g., Goldstein and Einhorn, 1987; Tversky and Kah-

neman, 1992; Prelec, 1998) are consistent with either limp↓0w
′ (p) = +∞ or limp↓0w

′ (p) = 0,

depending on the values taken by auxiliary parameters.4 I therefore assume the following:
4For example, Goldstein and Einhorn (1987) propose w (p) = δpγ/ [δpγ + [1− p]γ ], δ > 0; Tver-

8



A1. limp↓0 π
′ (p) ∈ {0,+∞}.

3.2 Stochastic Reference Dependence

Following Kőszegi and Rabin (2006), the utility of an outcome x is judged both in absolute

and relative to a reference lottery R:

u (x|R) = v (x) + ∆ (x|R) . (2)

The first term in (2), v (x), is absolute utility. As is conventional, v is an increasing and

concave function, unique up to a positive affi ne transformation. The second term, ∆ (x|R),

measures “gain-loss utility.”5

Gain-loss utility ∆ (x|R) is specified to reflect the idea that an outcome x is compared to

every outcome that might occur in the reference lottery. Let the reference lottery be a random

variable taking values {r1, . . . , rm}, ordered such that r1 < r2 < . . . < rm. Each outcome ri

occurs with probability qi ∈ [0, 1],
∑n

j=1 qj = 1. As preferences over optimism/pessimism, as

described by π (p), apply to both the choice and reference lotteries, ∆ (x|R) writes as

∆ (x|R) =
m∑
j=1

φjµ (v (x)− v (rj)) , (3)

where the function µ is Kőszegi-Rabin’s “universal gain-loss function.”As in many contexts,

I adopt a piecewise-linear specification for µ:

sky and Kahneman (1992) propose w (p) = pγ/ [pγ + [1− p]γ ]
1/γ ; and Prelec (1998) proposes w (p) =

exp (− [− log p]
γ
). Each of these functionals satisfies limp↓0 w

′ (p) = +∞ for γ < 1 and satisfies limp↓0 w
′ (p) =

0 for γ > 1.
5Kőszegi and Rabin (2006) include in u (x|R) a parameter η > 0 that weighs the strength of the gain-loss

utility component, so u (x|R) = v (x) + η∆ (x|R). In this case, results must be discussed in the quantity Λ
≡ ηλ, variously referred to as the behavioral or de facto coeffi cient of loss aversion. To discuss results in
terms of λ (rather than Λ), as is common in the literature, the specification in (2) may be thought of as
adopting the identifying assumption η = 1.
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µ (z) =

{
z if z ≥ 0;
[1 + λ] z otherwise;

λ ∈ (−1, 1) . (4)

When λ > 0 the specification of µ in (4) captures the psychological concept of loss aversion,

according to which losses loom larger than equivalent gains (Kahneman and Tversky, 1979).

Loss neutrality is implied when λ = 0, while λ < 0 indicates loss tolerant preferences. The

restriction λ ∈ (−1, 1) ensures that choices satisfy first-order stochastic dominance (Masatli-

oglu and Raymond, 2016). Note that the Kőszegi-Rabin (expectation-based) formulation

of loss aversion differs from the (status-quo-based) formulation of Kahneman and Tversky

(1979) in that it is defined relative to an endogenous reference lottery, rather than to a fixed

reference outcome. Although attempts to measure expectation-based loss aversion in the

framework of (2)-(4) are in their infancy, Goette et al. (2018) report two such estimates of

λ, both of which are positive. The wider literature on characterizing gain-loss preferences,

broadly defined, also finds much evidence of loss averse decisionmakers, but also of het-

erogeneity, with some decisionmakers showing evidence of loss tolerant preferences (Brown

et al., forthcoming).

A key insight of Kőszegi and Rabin (2006) is to interpret the reference lottery R as the deci-

sionmaker’s expectation over the lottery X. In their choice-acclimating personal equilibrium

(Kőszegi and Rabin, 2007) they argue that if a decisionmaker commits to a lottery X well

in advance of the resolution of uncertainty, then by the time the uncertainty is resolved the

decisionmaker will have come to expect the lottery X. Hence, R coincides with X. Under

this interpretation of R, (2) becomes

u (xi|X) = v (xi) +
i∑

j=1

φj [v (xi)− v (xj)]− [1 + λ]
n∑
j=i

φj [v (xj)− v (xi)] . (5)
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3.3 Rank-Dependent Representation

Evaluating u (xi|X) in (5) over all outcomes in the choice lottery X gives the ex ante evalu-

ation of the lottery as

U(X|X) =
n∑
i=1

φiu (xi|X) .

To admit a RDEU representation, there must be a valid weighting function w : [0, 1] 7→ [0, 1]

such that U(X|X) writes in the form

U(X|X) =
n∑
i=1

ωiv (xi) ,

where

ωi = w

(
n∑
j=i

pj

)
− w

(
n∑

j=i+1

pj

)
.

I term the function w the composite PWF. It combines information concerning both the

decisionmaker’s preferences over probability distributions and for loss aversion/tolerance:

Lemma 1 (Barseghyan et al., 2018) U(X|X) admits a RDEU representation with a com-

posite PWF, w (p), of the form

w (p) = π (p)− λ [1− π (p)]π (p) . (6)

Lemma 1 breaks down the composite PWF into two terms. The first, π (p), captures pref-

erences over probability distributions (risk). The second term, λ [1− π (p)]π (p), captures

gain-loss preferences. When gain-loss preferences are symmetric (i.e., loss neutral) this term

is zero, and otherwise takes the sign of λ. As such, this term captures the effect due to

asymmetric gain-loss preferences. Under (6), greater salience of losses, as measured by λ,

reduces the elevation of the composite PWF (∂w (p) /∂λ < 0 for all p ∈ (0, 1)), as does

an increase in pessimism, in the sense of a convex transformation of π (p). A decrease in
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the salience of losses and an increase in optimism instead both increase the elevation of

the composite PWF.6 In respect of small probabilities, the following Lemma shows that the

composite PWF w (p) has identical properties to that of π (p).

Lemma 2 The composite PWF satisfies limp↓0w
′ (p) ∈ {0,+∞}.

The proof of Lemma 2 is straightforward, relying on the exact proportionality between w′ (p)

and π′ (p) for small probabilities.

Despite the formal equivalence between the model presented here and RDEU, there are two

important distinctions in the underlying intuition. To facilitate a discussion of these points,

let “classical”RDEU refer to the special case of (6) with λ = 0, such that w (p) = π (p).

First, in the classical case, the equivalence of w (p) and π (p) implies that the PWF is a

primitive of the model. When λ 6= 0, however, w (p) is a derived concept, distinct from

the primitive π (p). Second, in classical RDEU, preferences consist of two independent and

clearly separate components: (i) sensitivity towards outcomes, modeled through utility, and

(ii) sensitivity towards risk, modelled through a PWF. This generalizes expected utility

theory, where preferences are captured solely through utility. To these two components of

classical RDEU the present model adds a third component: sensitivity to gains and losses,

modelled through stochastic reference dependence. This point is important for the way

behavior relates to the underlying features of preferences: behavior must be understood

as arising from the simultaneous interplay of multiple components within the model. For

example, under expected utility, diminishing marginal utility is necessary and suffi cient for

aversion to mean preserving spreads (Rothschild and Stiglitz, 1970). This behavioral link

is preserved in classical RDEU only when also π′′ ≥ 0, i.e., the decisionmaker is pessimistic

6The models of Masatlioglu and Raymond (2016), Delquié and Cillo (2006), and quadratic utility (Chew
et al., 1991) may be seen as special cases of (6) when π (p) = p. Expected utility is the special case in which
π (p) = p and λ = 0.
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(Chew et al., 1987). In Section 4 we shall show that, in the present framework, preferences

towards losses also mediate this behavioral link.

4 Preference Inferences from the Composite PWF

In this section I explore the implications of the model developed in Section 3 for risk aversion

and the shape of the PWF.

4.1 Risk Preferences

A connection between pessimism and risk aversion under RDEU has been understood since

Chew et al. (1987): the former is necessary for the latter when utility is concave. Building

on this finding, in this section I establish that, in the present framework, loss aversion also

connects to risk aversion. A decisionmaker displays risk aversion if, given any two lotteries

X and Y , where Y differs from X by a mean-preserving spread, the decisionmaker prefers

X to Y .

Proposition 1 Under the model of Section 3, the decisionmaker is risk averse if and only

if they are loss averse and pessimistic.

Proposition 1 clarifies that, in the present framework, loss aversion is necessary for risk

aversion. To understand this result intuitively, recall that, under classical RDEU (λ = 0)

with diminishing marginal utility, w′′ ≥ 0 is necessary and suffi cient for risk aversion (Chew

et al., 1987). As it will also hold that the sign of w′′ is the sign of π′′, risk aversion manifests

in classical RDEU if and only if the decisionmaker is pessimistic (π′′ ≥ 0). In the present

model, however, the sign of w′′ need not be the sign of π′′ when λ 6= 0. Instead, the shape of

the composite PWF will reflect not only preferences over probability distributions, but also

preferences over gains and losses. Accordingly, π′′ ≥ 0 must be accompanied by λ > 0 to

ensure w′′ ≥ 0 in this case.
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4.2 Probability Weighting

I now analyze the possible shapes of the composite PWF in (6), and relate these shapes to the

underlying preferences for optimism/pessimism and loss aversion/tolerance. The common

forms of the PWF observed experimentally, i.e., inverse-S, S-shaped, concave, and convex, are

distinguished in the model with respect to the properties of their first and second derivatives

as in Table 1:

lim
p↓0

w′ (p) lim
p↓0

w′′ (p) lim
p↓0

w′′ (1− p)
Inverse-S +∞ < 0 > 0
S 0 > 0 < 0
Concave +∞ ≤ 0 ≤ 0
Convex 0 ≥ 0 ≥ 0

Table 1: Properties of w′ (p) and w′′ (p) for different shapes of the composite PWF

In interpreting the first column of Table 1, note that, for small probabilities, w′ (p) measures

the extent of probability under- or over-weighting. Specifically, by L’Hôpital’s rule,

lim
p↓0

w′ (p) = lim
p↓0

w (p)

p
.

Accordingly, limp↓0w
′ (p) > 1 (limp↓0w

′ (p) < 1) should be interpreted as implying the over-

weighting (under-weighting) of small probabilities. The second two columns in Table 1 relate

to the second derivative. For the concave and convex shapes of PWF, w′′ (p) cannot switch

sign on p ∈ (0, 1), whereas for the inverse-S and S-shapes w′′ (p) must switch sign on this

interval. In particular, for the inverse-S (S) shape, w′′ (p) < 0 (w′′ (p) > 0) at low p, switching

to w′′ (p) > 0 (w′′ (p) < 0) at high p.

As discussed in the Introduction, if one is unwilling to impose any further interpretation

upon π(p) other than as an arbitrary weighting function, then observing a decisionmaker’s
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(composite) PWF does not, in general, permit the separate identification of λ and π(p).

When giving additional interpretation, the strongest set of restrictions one might lay on π(p)

would be those suffi cient to generate full preference inference, i.e., an invertible mapping from

every w (p) to a pair {λ, π(p)}. This would, however, come at the price of greatly limiting the

flexibility the model. Weaker sets of restrictions would retain greater flexibility, but allow

only partial inference —for instance, relating each w (p) to a set of possible {λ, π(p)}. The

restrictions embodied in assumptions A0 and A1 are of this second type. They acknowledge

the flexibility-inference trade-off in that the model is suffi ciently flexible as to be able to

predict all the the common shapes of PWF observed in empirical and experimental studies,

and yet suffi ciently specific as to permit some (albeit not full) preference inference.

Proposition 2 The composite PWF w (p) in (6) admits the following preference inferences:

If w (p) is

(i) inverse-S, then the decisionmaker is loss averse and optimistic;

(ii) S-shaped, then the decisionmaker is loss tolerant and pessimistic;

(iii) concave, then the decisionmaker is optimistic;

(iv) convex, then the decisionmaker is pessimistic.

Part (i) of Proposition 2 associates the inverse-S PWF to a unique underlying preference

profile: to observe this shape of PWF loss aversion is a prerequisite feature of preferences.

Alongside loss aversion, an inverse-S decisionmaker must also be optimistic. No other un-

derlying psychology is consistent with an inverse-S PWF. Together, Propositions 1 and 2

reveal that loss aversion lies behind both risk aversion and the inverse-S PWF. That is, loss

aversion appears to unite two central, and apparently disjoint, phenomena.
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Note that the ability of the model to generate an inverse-S PWF relies both on opti-

mism/pessimism preferences and gain-loss preferences. On their own, the optimism/pessimism

preferences in A0 cannot generate an inverse-S shape for w (p). If one allows in (6) for opti-

mism/pessimism without asymmetric gain-loss preferences (by setting λ = 0 as in classical

RDEU) then w (p) = π (p). An inverse-S shape for w (p) is ruled out as π (p) cannot take

an inverse-S shape under A0.7 Also, on their own, gain-loss preferences are also inconsistent

with an inverse-S shape for w (p). When allowing for gain-loss preferences without opti-

mism/pessimism (by setting π (p) = p) the composite PWF reduces to the linear-quadratic

form w (p) = {1− λ [1− p]} p. In this case, the sign of w′′ (p) is the sign of λ, so again the

composite PWF cannot be inverse-S.

The remaining parts of Proposition 2 associate other commonly observed shapes of PWF

to preference profiles. An S-shaped PWF is associated uniquely with loss tolerance and

pessimism, while concave and convex PWFs are consistent both with loss aversion and loss

tolerance.

What inference is possible in the opposite direction to Proposition 2, i.e., from {λ, π(p)} to

the shape of w (p)?

Corollary 1 The preference profile {λ, π(p)} admits the following inferences for the com-

posite PWF w (p) in (6): If the decisionmaker is

(i) loss averse, then w (p) cannot be S-shaped;

(ii) loss tolerant, then w (p) cannot be inverse-S shaped;

7Only under what Neilson (2003, p. 181) describes as a “rather strange pattern of optimism and pes-
simism”in which a decisionmaker may be at once both optimistic and pessimistic with respect to different
outcomes in the same gamble, can the inverse-S PWF be explained in terms of optimism and pessimism
alone. Such a pattern is inconsistent with optimism/pessimism being stable individual traits, as suggested
by experimental evidence, and is therefore ruled out by assumption A0.
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(iii) optimistic, then w (p) cannot be convex or S-shaped;

(iv) pessimistic, then w (p) cannot be concave or inverse-S shaped.

According to Corollary 1, certain shapes of the composite PWF are ruled out for particular

preference profiles. In particular, pessimism is incompatible with the inverse-S PWF.

<Figure 1 here —see p. 29>

An illustration of the findings of Propositions 1 and 2, as well as Corollary 1, is given in Figure

1 (see p. 29) for a simple choice of optimism-pessimism function: π (p) = p1+γ, γ > −1,

γ 6= 0. The parameter γ may be considered as an index of pessimism: γ < 0 corresponds to

optimism while γ > 0 corresponds to pessimism. Figure 1 shows the preference combinations

that induce each shape of composite PWF in Table 1, while the set of preference combinations

that induce risk aversion is the gray-shaded area. It is seen that an inverse-S PWF arises for

loss aversion and optimism when the former preference is suffi ciently strong and the latter

preference is suffi ciently weak. Preference combinations associated with risk aversion are

distinct from those associated with an inverse-S PWF, for a decisionmaker with an inverse-S

PWF will be amenable to some mean-preserving spreads. An S-shaped PWF is associated

with suffi ciently strong loss tolerance and suffi ciently weak pessimism. A convex PWF, which

is observed in experimental data relatively frequently, requires pessimism, so occurs only in

the left-half of Figure 1. This shape of PWF, however, is compatible with suffi ciently weak

loss aversion or outright loss tolerance. Similarly, a concave PWF requires optimism, but is

compatible with both loss aversion and loss tolerance. In this way, a preference interpretation

may be given to the commonly observed shapes of PWF.
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5 Probability Weighting of Absolute Losses

The widely utilized PT model of Tversky and Kahneman (1992) allows that decisionmakers

may weight probabilities attached to negative outcomes in lotteries (absolute losses) differ-

ently from those attached to positive outcomes (absolute gains).8 Thus, it posits separate

PWFs for gains (w+) and losses (w−). The model of section 3 can readily be adapted

to yield this feature: one merely duplicates the analysis across the separate gain and loss

domains. PT, however, also posits that, different from the model of section 3, the optimism-

pessimism function over absolute losses is formed with respect to the cumulative, rather

than decumulative, distribution. In the terminology of Diecidue and Wakker (2001), use of

the cumulative distribution is the bad-news transformation, in the sense that the decision-

maker’s optimism-pessimism function is formed with consideration to outcomes worse than

the realized outcome. Similarly, the use of the decumulative distribution is referred to as the

good-news transformation. This section explicates the implications of this difference between

models and shows that the preference inferences of the previous section extend to the PT

setting.

To permit separate composite PWFs for gains and losses, this section considers the case of

a mixed lottery X with loss component X− and gain component X+. Relegating the details

—which mostly entail duplicating each aspect of the model in section 3 across two domains

—to Appendix A, I arrive at the following representation result:

Proposition 3 U(X|X) admits a representation of the form in PT, with composite proba-

bility weighting functions {w−, w+} given by

w− (p) =
[
1− π− (1− p)

] [
1− λπ− (1− p)

]
; w+ (p) =

{
1− λ

[
1− π+ (p)

]}
π+ (p) .

8The “absolute” terminology here is intended to draw a clear distinction with expectation-based gains
and losses, where the benchmark for judging gains and losses is typically non-zero.
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The form of w+ (p) in Proposition 3 is identical to that in (6). The form of w− (p) is,

however, impacted by use of the bad-news transformation. Thus, preference consistency

across the gain and loss domains, i.e., w− (p) = w+ (p), does not hold for λ− = λ+ and

π− (p) = π+ (p). Instead, it holds for λ− = λ+ and π− (p) = 1 − π+ (1− p). Initially, this

might seem consequential for preference inference, as, for instance, if π+ (p) is concave, then

π− (p) is convex. Note, however, that — as well as changing the form of w− (p) —use of

the bad-news transformation also changes the relationship between optimism/pessimism (in

the sense of whether the decisionmaker focuses on good or bad outcomes) and the shape of

the optimism-pessimism function. As I show formally in Appendix A, under the bad-news

transformation, optimism (pessimism) is equivalent to convexity (concavity) of π− (p). Thus,

use of the bad-news transformation over absolute losses has two distinct effects. As these

effects counteract perfectly, however, I have:

Proposition 4 Under the model of Appendix A, the preference inferences in Proposition 1

(risk aversion) Proposition 2 (shape of PWF) hold for both w− (p) and w+ (p) in Proposition

3.

Proposition 4 demonstrates that the preference inferences possible in the framework of Sec-

tion 3 carry over to a PT framework. In particular, when both {w−, w+} are observed to be

inverse-S, as found commonly in the experimental literature (e.g., Tversky and Kahneman,

1992; Abdellaoui, 2000), the unique preference inference —in both the gain and loss domains

—is loss aversion coupled with optimism.

6 Conclusion

This paper explores the idea that the PWF is not itself a primitive, but is instead a concept

that derives from a set more basic and interpretable primitives. I construct different shapes

of PWF for decisionmakers who (i) exhibit stable optimistic/pessimistic preferences over
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probability distributions; (ii) either overweight or underweight small probabilities; and (iii)

exhibit gain/loss preferences that can be either loss averse or loss tolerant. These three

features of the model not only determine the shape of the PWF, but also the presence or

absence of risk aversion under diminishing marginal utility.

The key finding is that loss aversion importantly mediates both risk attitudes and the shape

of the PWF. In particular, loss aversion is necessary for risk aversion when marginal utility

is diminishing, in the sense of aversion to mean preserving spreads, and also necessary to

observe the inverse-S probability weighting function. Risk aversion is, under concave utility,

equivalent to loss aversion and pessimism, while the inverse-S probability weighting function

can arise only when the decisionmaker exhibits loss aversion and optimism. As such, I forge

a link between loss aversion, risk aversion and the inverse-S probability weighting function.

That loss aversion emerges as a primitive concept that underlies more complex concepts,

such as risk aversion and the inverse-S PWF, is consistent with ideas advanced by several

researchers that loss aversion may have evolved early in human evolution. In an environment

where humans must forage for food, a loss may result in death if certain needs are no longer

met, whereas a gain “merely”increases the chances of survival (e.g., Aktipis and Kurzban,

2004; McDermott et al., 2008). Given these asymmetric fitness consequences of equivalent

gains and losses, “organisms should be designed to be more concerned with avoiding losses

than with realizing gains”(Aktipis and Kurzban, 2004, p. 143).

Although the present contribution is a theoretical one, the predicted consistency between,

e.g., loss aversion and the inverse-S probability weighting function is one that can be tested

with experimental choice data that permits simultaneous estimation of the PWF and the

coeffi cient of loss aversion at the level of individual subjects. There also exist techniques for

direct psychometric measurement of dispositional optimism and pessimism (Herzberg et al.,

2006), and these are beginning to be reported in large-scale surveys (e.g., the Health and

20



Retirement Study). Thus, there may be scope to collect both psychometric and choice data

within an experimental study, thus permitting a full test of the theory.
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Appendix A: Probability Weighting of Losses
Here I develop a model of decisionmaking consistent with a PT representation. To permit
separate composite PWFs for (absolute) gains and losses, I develop the model for the case of
a mixed lottery X with loss component X− and gain component X+. The lottery X− takes
values

{
x−1 , x

−
2 , . . . , x

−
n− , 0

}
, n− ≥ 2, and the lottery X+ takes values

{
0, x+1 , x

+
2 , . . . , x

+
n+

}
,

n+ ≥ 2. The values taken by X− are ordered such that x−1 < x−2 < . . . < x−n− < 0, and the
values taken byX+ are ordered such that 0 < x+1 < x+2 < . . . < x+n . Outcome x

z
i , z ∈ {−,+},

occurs with probability pzi and the outcome zero occurs with probability 1−
∑nz

j=1 p
z
j .
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Decision weights are generated separately for the gain and loss components with respect to
the weighting functions πz (p), z ∈ {−,+}. Both π− (p) and π+ (p) are strictly increasing,
continuous everywhere, and twice differentiable, except possibly at p ∈ {0, 1}. Following
Tversky and Kahneman (1992), I suppose that, in the loss domain, each decision weight π−i
is formed according to the so-called bad-news transformation (Diecidue and Wakker, 2001),
which reflects the probability weight on outcomes worse than x−i . By contrast, in the gain
domain I retain the good-news transformation given in (1), which reflects the probability
weight on outcomes better than x+i . Thus,

φ−i = π−

(
i∑

j=1

p−j

)
− π−

(
i−1∑
j=1

p−j

)
i ∈
{

1, 2, . . . , n−
}
;

φ+i = π+

(
n+∑
j=i

p+j

)
− π+

(
n+∑

j=i+1

p+j

)
i ∈
{

1, 2, . . . , n+
}
.

Note that, in the loss domain, the psychological notion of optimism requires that the decision
weight φ−i increases as outcome i is improved, such that the weight on outcomes lower than
i,
∑i−1

j=1 p
−
j , increases. Thus, different from in the gain domain, optimism is associated with

φ−
′′

i ≥ 0, while pessimism is associated with φ−
′′

i ≤ 0.

Whereas the specification of reference-dependent preferences in Section 3 supposes that an
outcome is compared to every alternative outcome in X, here losses are compared only
to other losses, and gains compared only to other gains. Thus, the utility of an outcome
xzi ∈ Xz, z ∈ {−,+}, is given by

u (xzi |Xz) = v (xzi ) +
i∑

j=1

φzj
[
v (xzi )− v

(
xzj
)]
− [1 + λ]

nz∑
j=i

φzj
[
v
(
xzj
)
− v (xzi )

]
.

The ex ante evaluation of lottery X is therefore

U(X|X) =

n−∑
i=1

φ−i u
(
x−i |X−

)
+

n+∑
i=1

φ+i u
(
x+i |X+

)
. (A.1)

To admit a representation of the form in PT, it must be possible to find valid weighting
functions {w−, w+} such that U(X|X) writes as

U(X|X) =

n−∑
i=1

w− (p) v
(
x−i
)

+

n+∑
i=1

w+ (p) v
(
x+i
)
.

I demonstrate in Proposition 3 that U(X|X) can indeed be written in this form. The
restrictions placed on π− (.) and π+ (.), analogous to A0 and A1 in section 3, are:

A0′. For all p ∈ (0, 1), either
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(i) π+′′ (p) ≥ 0 or π+′′ (p) ≤ 0;

(ii) π−′′ (p) ≤ 0 or π+′′ (p) ≥ 0.

A1′. (i) limp↓0 π
+′ (p) ∈ {0,+∞}

(ii) limp↓0 π
−′ (1− p) ∈ {0,+∞}.

Assumption A0′ endows both π− and π+ with an interpretation as optimism-pessimism
functions, analogous to Assumption A0. Assumption A1′ captures perceptions of extreme
probabilities, analogous to Assumption A1.

Appendix B: Proofs
Proof of Lemma 1. See p. 13 of the online appendix to Barseghyan et al. (2018)
(https://www.aeaweb.org/content/file?id=7267).
Proof of Lemma 2. The first derivative of (6)is given in (B.1) below. Thus, limp↓0w

′ (p) =
[1− λ] limp↓0 π

′ (p). As limp↓0w
′ (p) ∝ limp↓0 π

′ (p) it follows that limp↓0w
′ (p) ∈ {0,+∞} if

and only if limp↓0 π
′ (p) ∈ {0,+∞}.

Proof of Proposition 1. By Corollary 2 of Chew et al. (1987), risk aversion holds if and
only if v′′ ≤ 0 and w′′ ≥ 0. As v′′ ≤ 0 by assumption, proof of the proposition follows if
w′′ ≥ 0 if and only if π′ ≥ 0 (pessimism) and λ ≥ 0 (weak loss aversion). From (6), it holds
that, where well-defined:

w′ (p) = [1− λ+ 2λπ(p)]π′ (p) ; (B.1)

w′′ (p) =
w′ (p)

π′(p)
π′′(p) + 2λ [π′(p)]

2
. (B.2)

As w′ (p) /π′(p) > 0 and 2 [π′(p)]2 > 0 it follows that w′′ (p) ≥ 0 if π′ ≥ 0 and λ ≥
0. Going the other way, if λ < 0 then there exists an interval for π′′(p), 0 ≤ π′′(p) <
−2λ [π′(p)]3 /w′ (p), such that risk aversion fails. If π′′(p) < 0 then there exists an interval
for λ, − (1/2)w′ (p) π′′(p)/ [π′(p)]3 > λ ≥ 0, such that risk aversion fails. Thus, w′′ ≥ 0 if
and only if π′ ≥ 0 and λ ≥ 0.
Proof of Proposition 2. First, note that when the composite PWF is inverse-S or
S-shaped it holds that w′′ (p), given by (B.2), must switch sign at least once. Note that
the first term in (B.2) takes the sign of π′′ and the second term takes the sign of λ.
Thus, if sign (π′′) = sign (λ) then (B.2) cannot switch sign. When w (p) is inverse-S or
S-shaped, therefore, it must be that − sign (π′′) = sign (λ). Second, from (B.1), we have
limp↓0w

′ (p) = [1− λ] limp↓0 π
′ (p), so limp↓0w

′ (p) = 0 ⇔ limp↓0 π
′ (p) = 0. limp↓0 π

′ (p) = 0
is incompatible with π (p) being concave: p = 0 would then be a local maximum for π (p),
creating a contradiction as π (1) = 1 > π (0) = 0. Under A0, as π (p) is not concave it
must be convex. Moreover, as A1 precludes π (p) being linear, π (p) must be strictly convex.
Hence limp↓0w

′ (p) = 0 =⇒ π′′ (p) > 0. To go in the other direction, suppose π′′ (p) > 0.
Were limp↓0w

′ (p) = +∞ then w′ (p) is infinite for all p, which is a contradiction, as the aver-
age gradient of a probability weighting function cannot exceed one. It follows from A1 that
limp↓0w

′ (p) = 0. Taken together, the last two arguments prove limp↓0w
′ (p) = 0⇔ π′′ (p) >
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0. Similar arguments establish that limp↓0w
′ (p) = +∞⇔ π′′ (p) < 0. For the last argument

we establish that when w (p) is inverse-S it must be that limp↓0w
′ (p) = +∞. Were this

not the case then, by A1, it would hold that limp↓0w
′ (p) = 0. But then limp↓0w

′′ (p) < 0,
as required for an inverse-S shape, results in a local violation of monotonicity. By sim-
ilar arguments, when w (p) is S-shaped it must be that limp↓0w

′ (p) = 0. Putting these
arguments together, for an inverse-S composite PWF it must be that limp↓0 π

′ (p) = +∞,
which requires π′′ < 0 (optimism), and also that w′′ switches signs, which requires that
sign (λ) = − sign (π′′) > 0. Thus, an inverse-S composite PWF associates uniquely with
loss aversion and optimism (part i of the proposition). For an S-shaped composite PWF
it must be that limp↓0 π

′ (p) = 0, which requires π′′ > 0 (pessimism), and also that w′′

switches signs, which requires that sign (λ) = − sign (π′′) < 0. Hence it associates uniquely
with pessimism and loss tolerance (part ii). If w (p) is concave then it is straightforward
to use prior arguments to show that limp↓0w

′ (p) = +∞. As we have established that
limp↓0w

′ (p) = +∞ ⇔ π′′ (p) < 0 it follows that a concave composite PWF is associated
uniquely with optimism (part iii). A similar argument relates a convex composite PWF
uniquely with pessimism (part iv).
Proof of Proposition 3. The form of w+ (p) is identical to that in (6). Hence the proof
of Lemma 1 applies. From (6), if, counterfactually, the good-news transformation applied
in the loss domain then U(X|X) would admit a PT representation in the loss domain with
composite weighting function

w− (p) =
{

1− λ−
[
1− π− (p)

]}
π− (p) . (B.3)

Note that probability weighting according to the good-news weighting function π− (p) is
equivalent to probability weighting according to the bad-news weighting function 1−π− (1− p).
As the bad-news transformation holds in the loss domain, substituting π− (p) = 1−π− (1− p)
in (B.3) yields the expression for w− (p) in the proposition.
Proof of Proposition 4. The proof of the properties of w+ (p) is identical to the proof
of Proposition 2. The proof of the properties of w− (p) is also analogous to the proof of
Proposition 2. In particular, note that

w−′′ (p) = − w−′ (p)

π−′ (1− p)π
−′′(1− p) + 2λ−

[
π−′(1− p)

]2
, (B.4)

such that, for w−′′ (p) to switch sign on p ∈ (0, 1) it must be that sign (π−′′) = sign (λ).
Also, from (B.1), we have limp↓0w

−′ (p) =
[
1− λ−

]
limp↓0 π

−′ (1− p), so limp↓0w
−′ (p) =

0 ⇔ limp↓0 π
−′ (1− p) = 0. limp↓0 π

−′ (1− p) = 0 is incompatible with π− (p) being convex:
p = 1 would then be a local minimum for π− (p), creating a contradiction as π− (0) = 0 <
π− (1) = 1. Under A0′(ii), as π− (p) is not convex it must be concave (and, by A1′ (ii),
strictly concave), hence limp↓0w

−′ (p) = 0 =⇒ π−′′ (p) < 0. One can then go in the other
direction, to establish limp↓0w

′ (p) = 0 ⇔ π′′ (p) < 0. The remainder of the proof then
follows from the arguments in the proof of Proposition 2.
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Figures

Figure 1: Shapes of the composite PWF in (log (1 + γ) , λ)-space for π (p) = p1+γ. Optimism
corresponds to log (1 + γ) < 0 and pessimism to log (1 + γ) > 0. The shaded region is the
region in which risk aversion holds.
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