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1 Introduction

Economists agree that sustainable growth, and low and stable inflation constitute two

of the fundamental objectives of the policymakers. A reason behind this conviction is

that high and unstable inflation leads to an increase in inflation uncertainty distorting

the efficient allocation of resources. To that end Friedman (1977) emphasizes that i) an

increase in inflation raises inflation uncertainty;1 and that ii) high uncertainty, distorting

the information content of prices, hinders the efficient allocation of resources. Along

these lines, Beaudry et al. (2001) argue that during periods of high inflation volatility

managers would be unable to detect profitable investment opportunities as it is harder

to extract information about the relative prices of goods. Furthermore, during periods

of high uncertainty, external funds become prohibitively expensive due to heightened

asymmetric information problems causing managers to delay or cancel fixed investment

projects. Lower investment, in turn, impedes output growth.

More recently, using structural models, several researchers have begun to examine

the channels through which uncertainty could affect real variables. For instance, Bloom

(2009) shows that macro uncertainty shocks cause a rapid drop and rebound in aggre-

gate output and employment as firms temporarily pause their investment and hiring.

Fernández-Villaverde et al. (2011) show that fiscal volatility shocks reduce output, con-

sumption, investment, and hours worked drop on impact and stay low for several quar-

ters.2 Basu and Bundick (2012), using a non-competitive one-sector model with counter-

cyclical markups, show that in response to an uncertainty shock output, consumption,

investment, and hours worked falls. Nakata (2012) using a standard New Keynesian

model finds that an increase in the variance of shocks to the discount factor process

reduces consumption, inflation, and output. Mumtaz and Theodoridis (2014) find that

supply side uncertainty shocks lead to lower output due to precautionary savings. Yet,

other researchers, for instance Bachmann and Bayer (2009), point out that risk might

1A vast empirical literature provides support for this hypothesis. See for instance Caglayan et al.
(2008) and the references therein.

2Also see Primiceri (2005) who discusses the persistence of uncertainty regimes.
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not be important to generate business cycle fluctuations.

While it is important to examine the uncertainty effects on real variables within the

context of structural models, it is equally important to recognize that ignorance of the

underlying nonlinearities in the data will lead to biased conclusions. Especially, if the

relationship between explanatory variables and the independent variable were to change

as the state of the economy varies, linear models would yield biased coefficient estimates

and standard errors.3 Given this particular shortcoming, some researchers have recently

begun to implement stochastic volatility models within the context of structural models

to examine the impact of uncertainty on real variables.4 This approach, although attrac-

tive, as Fernández-Villaverade and Rubio-Ramı́rez (2013) point out, in cases where the

underlying process has discrete jumps, SV model will anticipate the changes by showing

changes in volatility before they happen. This result is due to the fact that estimation

methods favor small rather than large changes in the data. Hence, in cases where data

present regime shifts, it is advisable to use other approaches which are designed to capture

such changes in the data.

In this study, recognizing the presence of regime shifts in inflation and output growth

series, we examine the effects of inflation on output growth by implementing a Markov

regime switching approach. To pursue our examination, we follow a two step approach.

In the first stage we implement a Markov regime switching GARCH model to obtain a

proxy for inflation uncertainty. In the second stage, we examine the level and the volatil-

ity effects of inflation on output growth using a Markov regime switching framework.

One other advantage of this approach is that the model determines the regime switches

endogenously. In our investigation, we scrutinize the growth rates of both monthly in-

dustrial production and quarterly gross domestic product data for the US. Our findings

based on both industrial production and GDP growth rates provide evidence that the

impact of inflation uncertainty on industrial production growth is not only significant

3Evans and Wachtel (1993) infer that models which do not account for regime changes in the inflation
process underestimate not only the extent of uncertainty but also the uncertainty effects on economic
growth.

4See for instance Fernández-Villaverade and Rubio-Ramı́rez (2013) and the references therein.
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and negative but also it is regime dependent.5 This is an important finding as it requires

the policymakers to consider the state of the economy prior to pursuing a certain pol-

icy action. For instance, policy tools that can be successfully used change substantially

depending whether the economy is in a deflationary or an inflationary phase.

We also examine an extended model where we estimate inflation and growth rate series

simultaneously as we consider the possibility of endogeneity that may emerge between

inflation, inflation uncertainty and output growth. To estimate this model we implement a

Markov switching model with instrumental variables (MRS-IV) as suggested by Spagnolo

et al. (2005). This model also provides firm evidence that the volatility effects of inflation

on output growth is regime dependent. Overall, our investigation provides firm evidence

that the impact of uncertainty on output growth is negative and significant during the

low growth regime yet although the effect is negative it is not significant during the high

growth regime. Last but not the least, we examine the sensitivity of our results to the

lag structure of the variables in the model and obtain similar observations. The analysis

covers the 1960-2012 period.

The remainder of the paper is organized as follows. Section 2 provides a brief summary

of the empirical literature. Section 3 presents the Markov switching GARCH methodol-

ogy, the empirical model and the data. Section 4 reports the empirical results and section

5 concludes the paper.

2 A Brief Review of the Literature

A review of the empirical literature shows that the impact of inflation uncertainty on

output growth depends on the approach that one uses to construct measures of uncer-

tainty. For example, Davis and Kanago (1996), and Holland (1988) who use survey based

uncertainty measures report that inflation uncertainty affects real economic activities

negatively. Although this approach is appealing, survey based uncertainty measures may

5Also see Caggiano et al. (2014) and Alessandri and Mumtaz (2014) along similar conclusions.
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not gauge the true level of uncertainty for it may contain sizable measurement errors (see,

for example, Bound et al. (2001)).

Due to its simplicity, researchers have also used the standard deviation or moving

standard deviation of the inflation series as a proxy for inflation uncertainty. Findings

based on this uncertainty measure are mixed as well. For instance, while Barro (1996)

and Clark (1997) fail to provide any significant effects of inflation uncertainty on growth,

Judson and Orphanides (1999) stress that inflation and inflation uncertainty are both

significantly and negatively correlated with output growth. One major problem with

this approach is that it imposes equal weights on all past observations and gives rise to

substantial serial correlation in the summary measure.

Separately, researchers have been implementing two alternative approaches to esti-

mate and forecast the volatility in macroeconomic time series. The first route is to utilize

a variant of the GARCH methodology (see, for instance, Engle (1982) and Bollerslev

(1986)) and the other one is to implement a variant of the Stochastic Volatility (SV)

model (see, for instance, Taylor (1986)). Because the SV model is free from the re-

strictions that an ARCH/GARCH model imposes on the data, one may be tempted to

use it because the in-sample fit and forecasts obtained from this model are better in

comparison to that from the GARCH methodology.6 Separately, Fernández-Villaverade

and Rubio-Ramı́rez (2013) argue that the use of SV models provide the researcher with

an extra degree of freedom for it allows two shocks whereas the GARCH model allows

a single shock to drive the level and volatility dynamics. In this context although SV

modeling is preferred when a structural model is constructed, in time series analysis,

GARCH approach is often utilized as the GARCH parameters can easily be estimated

using maximum likelihood methods.7

When we examine the literature, we see that several researchers including Fountas,

Ioannidis and Karanasos (2004), Fountas, Karanasos, and Kim (2006) and Bhar and

6See Franses et al. (2008) and the references there in.
7Some researchers also indicate that there are no notable differences between the models in terms of

sample fit and forecasting (see Lehar et al. (2002)).
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Mallick (2010) have initially used univariate ARCH/GARCH models to construct a mea-

sure of inflation uncertainty, and, in the second step, they have shown that inflation

uncertainty has a negative impact on economic growth. To avoid the two stage mod-

eling approach several other researchers, including Jansen (1989), Elder (2004), Mallik

and Chowdury (2011), have implemented bivariate or multivariate (G)ARCH-M or E-

GARCH-M models and shown that inflation uncertainty exerts a negative impact on

output growth.8

One common weakness of the methodologies discussed above is that none of them

considers the presence of regime shifts of the underlying series. In this context, despite its

many attractive aspects, ARCH/GARCH methodology is also open to critique because

this methodology, in general, assumes a certain economic structure and disregard the

potential structural instabilities induced by regime changes. To that end Hamilton and

Susmel (1994) and Gray (1996) argue that when regime shifts are overlooked, GARCH

models may overstate the persistence in conditional variance.9 At this juncture, although

one may be tempted to use stochastic volatility models, if the real process were to have

discrete jumps, then the SV model will anticipate the changes by showing changes in

volatility before they happen.10 This is because SV estimators favor a sequence of smaller

changes over time rather than a jump in the data. To that end Diebold (1986) also

shows that ignoring abrupt shifts, SV model may severely bias estimates towards non-

stationarities and invalidate inferences.

In this study, we use a two step approach. In the first stage we follow Gray (1996) and

compute an inflation uncertainty measure using the Generalized Markov regime switching

GARCH methodology. In the second stage, we estimate our Markov switching model to

examine the impact of inflation uncertainty on output growth.11 Our approach, allows

8The two stage approach could lead to biased coefficient and standard error estimates if the underlying
uncertainty measure is gauged with errors.

9Also see Giordani and Söderlind (2003) who argue that when the underlying series exhibit regime
shifts, GARCH models would understate the level of uncertainty.

10See Fernández-Villaverade and Rubio-Ramı́rez (2013).
11Regime switching models have been extensively used in the literature to examine the behavior of

macroeconomic series. This class of models were introduced by Goldfeld and Quandt (1973) which later
led to the Markov switching models as suggested by Hamilton (1989).
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us to isolate the impact of inflation uncertainty on output growth.12

3 Data and Econometric Methodology

To empirically analyze the link between inflation uncertainty and output growth, we use

monthly consumer price index (CPI) and monthly seasonally adjusted industrial produc-

tion index (IPI) for the United States. Data are obtained from the International Financial

Statistics of the International Monetary Fund and span the period 1960:01–2012:12. We

also examine the association between output growth and inflation uncertainty using quar-

terly real GDP and CPI series.

We measure output growth (yt) by the first difference of the log of industrial produc-

tion index
[
yt = log

(
IPIt
IPIt−1

)]
. Similarly, we compute the inflation rate (πt) as the first

difference of the log of consumer price index
[
πt = log

(
CPIt
CPIt−1

)]
. We check for the pres-

ence of GARCH effects in the inflation series by applying the Lagrange Multiplier test.

This test reveals significant GARCH effects in the inflation series. We then estimate a

simple GARCH(1,1) model for inflation. As the sum of ARCH and GARCH terms from

this model is very close to one, we suspect that the effects of past shocks on current

variance is very strong; i.e. the persistence of volatility shocks is high. In this context,

Gray (1996) points out that the high volatility persistence may be due to regime shifts

in the conditional variance and suggests the use of a model that allows for regime shifts

in the data.

Regime shifts in macroeconomic series have been noted earlier by several researchers.

To our knowledge, Kim and Nelson (1999) and McConnel and Perez-Quiris (2000) are

some of the early studies which report reduction of volatility in the US output. A sub-

sequent study by Stock and Watson (2002) provides further evidence of a widespread

volatility decline in macroeconomic series in the US. In particular, since mid-80s, we

12To our knowledge Neanidis and Savva (2013) is the only study that examines the linkages between
output and inflation accounting for regime changes within the context of a bivariate smooth transition
EGARCH-M model. However, although they use a single step approach, their model is subjected to an
identification problem.
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observe that volatility measures for employment growth, inflation, consumption and sec-

toral output have declined sharply with respect to the 70s. For our case, we test for

the presence of regime shifts in both inflation and output growth series as we implement

Hansen (1992, 1996) tests. In addition, we examine the AIC (Akaike information crite-

ria), Bayesian information criterion (BIC) and three-pattern method (TPM) as suggested

by Psaradakis and Spagnolo (2003). These tests suggest in favor of structural break in

inflation and output growth series.

3.1 Modeling Inflation Uncertainty Effects on Output Growth

To model the uncertainty effects of inflation on output growth, we implement the following

model which accounts for regime changes in the data:

yt = φ0i +
m∑
j=1

βjiyt−j +
k∑
j=1

ϕjiπt−j + δ0iσ̂πt−1 + ξt, (1)

ξt | Ωt−1 ∼ N
(
0, σ2

0i

)
, i = 1, 2

where yt is the growth rate of output at time t and σ̂πt−1 is the first lag of inflation

uncertainty.13 The model also includes lagged inflation rate and the lagged dependent

variable to control for the level effects of inflation and the persistence of output growth.

We allow all coefficients of Equation (1), which are indexed by i, to vary over the high

and low growth regimes. The error term, ξt, is assumed to be conditionally normal with

mean zero and variance σ2
0i, which is subject to regime shifts. The key coefficients of

interest are those associated with inflation uncertainty (δ01 and δ02).

13The model includes the lagged uncertainty to avoid the endogeneity problem.
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3.2 Measuring Inflation Uncertainty: Markov Switching GARCH

Approach

To generate a proxy for inflation uncertainty, we implement the Markov switching GARCH

methodology as proposed in Gray (1996). In their earlier work Cai (1994) and Hamilton

and Susmell (1994) argue against the use of regime switching GARCH methodology be-

cause the model at any point in time depends directly on the unobserved state St and

indirectly on the history of {St} (i.e., {St−1, St−2,...,S1}). Gray (1996) solves the path

dependence problem as described in equation (2) below. In this model, the conditional

mean of inflation follows an AR(p) process:

πit = θ0i +

p∑
j=1

θjiπt−j + εt, (2)

and

πit | Ωt−1 ∼


N
(
θ01 +

∑p
j=1 θj1πt−j, h1t

)
w/probability p1t,

N
(
θ02 +

∑p
j=1 θj2πt−j, h2t

)
w/probability 1− p1t

εt | Ωt−1 ∼ N (0, hit) .

where i indicates the regime (i = 1, 2), πt represents the inflation process and ht denotes

the conditional variance of inflation. Conditional on the information set available at time

t−1 (Ωt−1), p1t = Pr (St = 1 | Ωt−1) is the probability that the unobserved state variable

St is in regime 1.

Following Hamilton (1989), regime switches are assumed to be directed by a first-order
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Markov process with fixed transition probabilities:14

Pr [St = 1 | St−1 = 1] = P11,

P r [St = 2 | St−1 = 1] = 1− P11,

P r [St = 2 | St−1 = 2] = P22,

P r [St = 1 | St−1 = 2] = 1− P22.

(3)

The conditional variances from the two regimes can be aggregated based on regime prob-

abilities. Note that the aggregate conditional variance is not path dependent and it can

be used to compute the conditional variance at the next period. The conditional variance,

which follows a GARCH(1,1) process, can be expressed as:

hit = α0i + α1iε
2
t−1 + α2iht−1 (4)

where

εt−1 = πt−1 − [p1t−1µ1t−1 + (1− p1t−1)µ2t−1] ,

µit−1 = θ0i +

p∑
j=1

θjiπt−j−1

and

ht−1 = p1t−1
(
µ2
1t−1 + h1t−1

)
+ (1− p1t−1)

(
µ2
2t−1 + h2t−1

)
−

[p1t−1µ1t−1 + (1− p1t−1)µ2t−1]
2 .

The non-negativity of ht for all t, is ensured by a set of assumptions that α0i ≥ 0,

α1i ≥ 0 and α2i ≥ 0. Note that all parameters of the conditional variance of inflation are

state-dependent. Furthermore, as in the case of a single-regime GARCH(1,1) model, the

necessary condition for stationarity is that α1i + α2i < 1.

14For instance, if the economy is in the first state at time t− 1 (St−1 = 1), P11 denotes the probability
of switching to the first state at time t (St = 1).
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To estimate the model, we use the maximum likelihood methodology:

L =
T∑
t=1

log

[
p1t

1√
2Πh1t

exp

{
−(πt − µ1t)

2

2h1t

}
+ (1− p1t)

1√
2Πh2t

exp

{
−(πt − µ2t)

2

2h2t

}]
,

where the regime probability p1t follows a simple nonlinear recursive system:

p1t = P11

[
f1t−1p1t−1

f1t−1p1t−1 + f2t−1 (1− p1t−1)

]
+

(1− P22)

[
f2t−1 (1− p1t−1)

f1t−1p1t−1 + f2t−1 (1− p1t−1)

]
.

(5)

Assuming conditional normality, the conditional distribution of inflation, fit where i =

1, 2, takes the form:

fit = f (πt | St = i,Ωt−1) =
1√

2Πhit
exp

{
−(πt − µit)2

2hit

}
.

We use the conditional variance of the inflation process obtained from the above procedure

as a proxy for inflation uncertainty.

It should be noted that the inflation uncertainty measure used in the second stage

regression is a generated regressor. Pagan (1984) and Pagan and Ullah (1988) argue that

a generated regressor gauges the true unobserved regressor with error. They indicate

that the use of a generated regressor measured with error leads to biased coefficient and

standard error estimates. Pagan and Ullah (1988) continue to state that the standard

instrumental variable approach may not be valid when the endogenous variable is a

function of the entire history of the available data. For such cases, they suggest testing

the validity of the underlying assumptions of the model that is used to generate the

uncertainty proxy and then use the lags of this proxy as an instrument.15 We follow this

suggestion and check whether the model we use to generate the uncertainty measure is

well specified. After ascertaining that it is the case, we continue with our investigation.16

15Several researchers implement a similar approach to examine the uncertainty effects on real economic
activities. For instance see Ruge-Murcia (2003), Baum et al. (2010) and Caglayan et al. (2013).

16Specification test results are available upon request from the authors. These tests show that the
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Insert Table 1 about here

Table 1 reports the maximum likelihood estimates of the Markov Switching GARCH(1,1)

model for inflation where the mean inflation rate is modeled as an AR(1) process.17 Re-

sults show that the coefficients of the conditional mean are highly significant for both

regimes. In State 1, the implied monthly inflation rate is around 0.13 per cent and in

State 2, that the rate is around 0.52 per cent. Thus, State 1 is identified as the low

inflation regime and State 2 is recognized as the high inflation regime.

When we inspect the conditional variance of inflation over the two regimes we observe

that all parameter estimates are highly significant. Within each regime the GARCH

process is stationary as α1i + α2i < 1. Low inflation regime is more sensitive to recent

shocks (i.e. α11 > α12). Moreover, high inflation regime has higher persistence to shocks

than low inflation regime (i.e. α22 > α21). This means that the impact of shocks does not

die quickly in the high inflation regime. The estimates of the transition probabilities P11

and P22 (i.e.(1− P12)) are 0.987 and 0.987, respectively, and these estimates suggest the

presence of strong persistence of high and low regimes. Within regime persistence of the

conditional variance, the sum of the coefficients of ARCH and GARCH terms (α1i +α2i),

are 0.622 in State 1 and 0.981 in State 2. A single regime GARCH model would not

capture these subtleties.

Figure 1 plots the derived uncertainty measure (IU) along with industrial production

growth (IPG) and inflation (INF). The figure shows that inflation and its volatility tend

to move together. We also present in Table 2 the periods during which the US economy

went through recessionary episodes as announced by the NBER. We see that during the

period of our investigation the US has gone through eight recessionary episodes which

are shaded in the figure.18

Insert Figure 1 and

models are well specified.
17The model choice is based on the SIC criteria.
18NBER defines an economic recession as: ‘a significant decline in economic activity spread across the

country, lasting more than a few months, normally visible in real GDP growth, real personal income,
employment (non-farm payrolls), industrial production, and wholesale-retail sales’.
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Insert Table 2 about here

To develop a sense to what extent our inflation uncertainty measure relates to the

readily available series in the literature, we do the following exercise. We first examine the

correlation between our uncertainty measure with the standard deviation of the inflation

forecasts based on the University of Michigan inflation expectation series. We find that

the correlation is 29% and it is significant at a 1% significance level. We also compute

the correlation of our uncertainty proxy with the CBOE Volatility Index (VIX), which

is considered as the financial crises index.19 Although the correlation coefficient is low

at 18%, it is significant at the 5% level. Positive and significant correlations between

our uncertainty measure and the two readily available alternatives can be taken as an

independent observation that our measure successfully captures the uncertainty in the

US price index. Low correlation could be explained by the fact that we allow for regime

shifts in computing the inflation uncertainty measure whereas the other two measures do

not.

4 Empirical Analysis

This section presents three sets of results based on monthly and quarterly data. Table

3 presents our first set of results based on monthly industrial production data. We then

present two additional sets of results to ascertain the validity of our initial observations.

In Table 4 results are obtained from quarterly GDP series. We also examine an extended

model where we estimate inflation and growth rates simultaneously as we consider the

possibility of endogeneity that may emerge between inflation, inflation uncertainty and

output growth. To estimate this model we adopt a Markov switching approach with

instrumental variables (MRS-IV) as suggested by Spagnolo et al. (2005). We report the

results of this model in Table 5. Last but not the least, we estimate our models allowing

19This is a relevant comparison because researchers suggest that increased inflation volatility triggers
financial crises.
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for different lag structure.20 Results from all models are similar and suggest that inflation

uncertainty has a regime dependent effect on output growth as detailed below.

4.1 Results Based on Monthly Data

Table 3 provides our basic results for the growth rate of monthly industrial production.

When we inspect the coefficient estimates of the model, we observe that the impact of

inflation uncertainty in regime one (δ01), the high growth regime, is negative (-0.070) and

significant at the 1% level. We also observe that the impact of inflation uncertainty on

output in regime two (δ02), the low growth regime, is negative (-0.178) and significant

at the 10% level. These observations suggest that the impact of inflation uncertainty on

output growth is negative and varies across the business cycle. Moreover, the magnitude

of the adverse impact of inflation uncertainty on output growth in the low growth regime

is more than twice as much as of that in the high growth regime. We confirm that,

based on the likelihood ratio test, the asymmetry of uncertainty effects on output growth

between recessions and expansions (the null hypothesis of symmetry (δ01 = δ02) is rejected

at the 1% significance level). Table 3 also shows that the impact of inflation on output

growth rate is negative and but insignificant for both regimes. These observations provide

evidence that inflation uncertainty exerts negative and asymmetric effects on output

growth over the business cycle.

To appreciate the use of Markov regime switching approach, it is useful to examine

the smoothed probabilities for State 1 (high growth regime) which we provide in Figure

2. This figure shows that the implied turning points match reasonably well with the an-

nounced NBER dates. Although the model picks up additional turning points (periods of

contraction) than those announced by the NBER, these can be explained by the presence

of rapid changes in the output growth series and do not necessarily imply that the model

is improperly specified.

Insert Figure 2 and

20Results from this last exercises are not reported to conserve space but they are available upon request.
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Insert Table 3 about here

4.2 Results Based on Quarterly Data

To verify the observations we have provided, we estimate the model using quarterly GDP

series over the period 1960:QI–2012:QIV. To carry out the analysis we aggregate monthly

inflation uncertainty series to quarterly frequency. We measure the growth rate of real

GDP in period t, Yt, as the first difference of the log of real GDP,
[
Yt = log

(
RGDPt

RGDPt−1

)]
.

Based on the AIC criteria, the model allows for three lags of the dependent variable and

one lag for the inflation series. An additional advantage of working with quarterly data

is that we can directly compare the estimated dates for low- and high-growth phases of

the economy with the business cycle dates announced by the NBER more closely.

The smoothed probability estimates for the quarterly data are shown in Figure 3.

Examining this figure, we see that the economic contractions implied by our model largely

match with those announced by the NBER dates as summarized in Table 2. Similar to

the case of monthly data, the model detects some additional turning points. Following

the censoring rule of Harding and Pagan (2002), if we assume that a complete cycle (peak

to peak or trough to trough) should last at least five quarters, these rapid movements in

the data should not be classified as a period of recession. Furthermore, inspecting the

data closely, the additional dates which the model suggests as periods of contraction can

be explained by rapid changes in output growth series. Overall, the model appears to

successfully predict the business cycle turning points in the US economy.

Insert Figure 3 about here

Table 4 reports our findings. On inspection, we find that the results for the quarterly

data are stronger compared to the case of monthly data. This may be due to the fact that

industrial production represents only a portion of the output generated in the economy

whereas GDP measures the total output generated in the country.

Insert Table 4 about here

15



Table 4 shows that during the low growth regime, inflation uncertainty has a negative

effect (δ02 = −0.344) and this effect is different from zero at the 1% significance level. We

also observe that during the high growth regime inflation uncertainty effects on growth

is negative (δ01 = −0.179) and different from zero at the 1% significance level. Ceteris

paribus, the adverse impact of inflation uncertainty on economic growth is almost 2 times

higher in recessions than that in expansions. These estimates support the view that the

impact of inflation uncertainty on output growth over the business cycle is asymmetric.

Based on the likelihood ratio test, the null hypothesis of symmetry (δ01 = δ02) is rejected

at the 1% significance level. Inspecting the table we also see that inflation has a negative

and significant effect on economic growth in both regimes. Furthermore, this effect is

regime dependent and the adverse effects of inflation on economic growth is higher in low

growth regimes.

4.3 Controlling for Endogeneity

In this section, we extend our model and estimate the inflation and growth rates series

simultaneously while we consider the possibility of endogeneity that may emerge between

inflation, inflation uncertainty and output growth. To estimate this model we implement a

Markov switching model with instrumental variables (MRS-IV) as suggested by Spagnolo

et al. (2005). The system of equations that we estimate takes the following form:

πt = θ0i +
L∑
j=1

θjiyt−j +
N∑
j=1

ηjiπt−j + ψiσ̂πt−1 + αiσ̂yt−1 + εt, (6)

yt = φi +
m∑
j=1

βjiyt−j +
k∑
j=0

ϕjiπ̂t−j + δiσ̂πt−1 + κiσ̂yt−1 + ξt (7)

where ξt | Ωt−1 ∼ N
(
0, σ2

ξi

)
and εt | Ωt−1 ∼ N (0, σ2

εi).

In equation (6) output growth and its volatility as well as inflation variability enters

the model with higher and single lags, respectively. Similarly, in equation (7) we introduce

inflation and inflation uncertainty with higher and single lags, respectively, while we
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control for the impact of lagged output growth uncertainty. In both equations we allow

for lagged dependent variables to allow for persistence in the data. The error terms in

equations (6) and (7) represent structural shocks and they are assumed to be uncorrelated

with each other.21

Our extended model is in the same spirit as that used by Mumtaz and Theodoridis

(2014) who impose three key assumptions that i) the shocks to the volatility and the level

are uncorrelated and ii) the variance covariance matrix of volatility shocks is diagonal and

iii) the contemporaneous interaction of the endogenous variables has a recursive struc-

ture. They carry out their investigation implementing a structural Vector Autoregressive

(SVAR) framework with stochastic volatility and estimate the dynamic interaction be-

tween the endogenous variables in the VAR and the time-varying volatility. They follow a

one step approach but their approach cannot account for the presence of regime shifts. In

contrast, we follow a two step approach and specifically examine the impact of inflation

and inflation volatility on output growth over high and low growth regimes.

Insert Table 5 about here

The results obtained for our extended model are reported in Table 5. Observing

the table we see that inflation uncertainty has a significant negative impact on output

growth in the low growth regime but it has no significant effect in the high growth regime.

Once more, the null of symmetry is rejected at the 1% level supporting the claim that

the uncertainty effects on output growth are regime dependent. Similar to our earlier

findings, inflation has a negative impact on output growth during the low growth regime

but this effect is insignificant in both regimes. When we turn to our findings for equation

(6), similar to Cukierman and Meltzer (1986) and Cukierman (1992), we see that inflation

uncertainty has a positive impact on inflation.22 We find that output growth uncertainty

has a significant impact on inflation only during the high growth regime.23

21The appendix provides further details of the model.
22Holland (1995) reports a negative association.
23Deveraux (1989) reports similar findings.
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Overall our results demonstrate the presence of significant regime-dependent asym-

metric effects of inflation uncertainty on output growth. Our findings provide evidence

that nominal uncertainty retards growth in both low-and high-growth regimes, but more

so during periods of low growth. Our results also suggest the use of linear and single

regime models inhibit the researcher from observing the differential effects of explanatory

variables over the business cycle and can lead to mixed or ambiguous conclusions.

5 Conclusion

In this paper, we examine the impact of inflation uncertainty on output growth over the

business cycle. In doing so we account for regime shifts in both output and inflation

series by implementing regime switching models as we follow a two step approach. In

particular, we utilize the Markov regime switching GARCH model suggested by Gray

(1996) to construct our uncertainty measure. Next, we examine the impact of inflation

uncertainty on output growth by implementing a Markov switching framework. The

investigation uses both monthly and quarterly data sets for the US over the period 1960–

2012.

Our findings based on the growth of industrial production show that the impact of

inflation uncertainty on industrial production growth is negative in both regimes. Fur-

thermore, we show that the impact is asymmetric and it is statistically significant. To

verify our findings, i) we carry out the analysis for quarterly GDP series, ii) impose

additional lag structure on the explanatory variables, iii) consider the possibility of en-

dogeneity that may emerge between inflation, inflation uncertainty and output growth.

In all cases, the results suggest that uncertainty exerts a negative and regime dependent

effect on output growth.

Our results demonstrate the existence of significant negative regime-dependent effects

of inflation uncertainty on output growth. Our findings are consistent and supportive of

the recent research which suggests that higher uncertainty will cause firms to postpone
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investments and hiring, leading to lower economic activity.24 It should also be noted that

higher inflation uncertainty may induce higher inflation inducing workers and firms to ask

for higher wages and prices, respectively.25 Based on our findings, we suggest that central

banks should implement policies that promote price stability.26 In particular, as the

adverse impact of uncertainty is much severe in recessions, different from the literature,

our results provide us with a firm basis to argue that during low growth periods the merits

of economic stability can be higher than previously thought. A wider investigation based

on data from other countries on the regime dependent effects of uncertainty on output

growth would further expand our knowledge.

24See for example Bloom (2009).
25Workers set higher wages as an insurance against the possibility to be locked in a contractual agree-

ment to increase labour when demand is high. For the same reasoning firms will increase prices.
26For instance, according to Taş (2012), inflation targeting would lead to lower inflation uncertainty.
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Appendix

The extended Model

The structural model presented in equations (6) and (7) can be represented in the matrix

form as follows: 1 0

ϕ0i 1


 π̂t

yt

 =

 θ0i

φi

+
L∑
j=1

 ηji θji

ϕji βji


 π̂t−j

yt−j

+

 ψi αi

δi κi


 σ̂πt−1

σ̂yt−1

+

 εti

ξti


(8)

or

B0ixt = ki +
L∑
j=1

Bjixt−j + Ψiσt−1 + εt,i (9)

where

xt =

 π̂t

yt

 , k =

 θ0i

φi

 , B0i =

 1 0

ϕ0i 1

 , Ψi =

 ψi αi

δi κi

 ,
Bji =

 ηji θji

ϕji βji

 , σt−1=
 σ̂πt−1

σ̂yt−1

 and εt,i =

 εti

ξti

 .
The variance covariance matrix assumed to take the following form:

Σε,i = E(εt,iε
′
t,i) =

 σ2
εti

0

0 σ2
ξti

 (10)

If we pre-multiply (9) by the matrix B−10i , we obtain an identified reduced form model:

xt = ci +
L∑
j=1

Φjixt−j + Πiσt−1 + ut,i (11)

where

ci = B−10i k, Φji = B−10i Bji, Πi = B−10i Ψi
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and

ut,i = B−10i εt,i =

 1 0

−ϕ0i 1


 εti

ξti

 =

 εti

ξti − ϕ0iεti

 and

Πi =

 ψi αi

δi − ϕ0iψi κi − ϕ0iψiαi

 .
We impose the restriction that the first error in the reduced form model coincides with

the structural shock of inflation. Furthermore, we can recover the structural shock on

output growth as well as the spillover effect across volatilities so long as we have an

estimate of ϕ0i. We can estimate ϕ0i either by regressing ξt on εt or using the variance

covariance matrix of ut,i and εt,i:

Σu,i = E(uitu
′
it) = B−10i Σε,iB

−1′
0i

or

Σu,i =

 σ2
πti

σ2
π,yti

σ2
π,yti

σ2
yti

 =

 σ2
εti

− ϕ0iσ
2
εti

−ϕ0iσ
2
εti

σ2
ξti
− ϕ0iσ

2
εti

 (12)

where σ2
πti

is the variance of inflation, σ2
yti

is the variance of output growth and σ2
π,yti

is the

covariance between output growth and inflation. The left-hand side of Equation (12) in-

cludes three independent sources of information while the right hand-side includes three

unknown parameters of the structural model. Thus, the model is identified.27 In this

context, unlike our model, Neanidis and Savva (2013) do not impose any restrictions on

the contemporaneous interaction between inflation and output. As a result, the off diag-

onal element of their variance covariance matrix, Σu,i, incorporates the contemporaneous

impact of output growth on inflation as well as that of output growth volatility.28

27It is straightforward to show that:

σ2
πti

= σ2
εti , ϕ0i = −σπ,yti

σ2
πti

and σ2
ξti = σ2

yti − σπ,yti

28In Neanidis and Savva (2013), for each regime Σu,i contains three independent source of information
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To estimate the model one can use a recursive algorithm. The conditional probability

density function of the data wt=(yt, πt) given the state St and the history of the system

can be written as follows:

pdf(wt | wt−1, ..., w1; υ) =
1√

2πσξi
exp−1

2

(
yt − φi −

∑m
j=1 βjiyt−j −

∑k
j=0 ϕjiπ̂t−j − δiσ̂πt−1 − κiσ̂yt−1

σξi

)2


× 1√
2πσεi

exp−1

2

(
πt − θ0i −

∑L
j=1 θjiyt−j −

∑N
j=1 ηjiπt−j − ψiσ̂πt−1 − αiσ̂yt−1

σεi

)2


and four unknown parameters. This implies that their model is not identifiable.
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Figure 1: Inflation, Output Growth and Inflation Uncertainty

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
-0.050

-0.025

0.000

0.025

0.050

0.075

0.100
INF
IPG
IU

Figure 2: Smoothed Probabilities for State 1 (High Growth Regime)–Monthly Data
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Figure 3: Smoothed Probabilities for State 1 (High Growth Regime)–Quarterly Data
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Table 1: Measuring Inflation Uncertainty: The Markov Switching GARCH Model

πit = θ0i +

p∑
j=1

θjiπt−j + εt,where εt | Ωt−1 ∼ N (0, hit) ,

hit = α0i + α1iε
2
t−1 + α2iht−1 and i=1,2 are regimes.

Parameter Estimate Standard Error

θ01 0.001*** 0.000
θ11 0.242*** 0.066
θ02 0.002*** 0.000
θ12 0.617*** 0.053
α01 0.000*** 0.000
α11 0.308*** 0.103
α21 0.314* 0.164
α02 0.000 0.000
α12 0.220*** 0.079
α22 0.761*** 0.090
P11 0.987*** 0.006
P12 0.013* 0.007
Log-likelihood 2920.219

Notes: *, **, *** denote significance at the 10%, 5% and 1% levels.
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Table 2: NBER Dates of Expansions and Contractions

Business Cycles Reference Dates Duration in Months
Peak Trough Contraction Expansion

April 1960(II) February 1961(I) 10 24
December 1969(IV) November 1970(IV) 11 106
November 1973(IV) March1975(I) 16 36
January 1980(I) July 1980(III) 6 58
July 1981(III) November 1982(IV) 16 12
July 1990(III) March 1991(I) 8 92
March 2001(I) November 2001(IV) 8 120
December 2007(IV) June 2009(II) 18 73

Source: National Bureau of Economic Research (NBER),
Quarterly dates are in parentheses.

Table 3: Inflation Uncertainty Effects on Output Growth: Monthly Data

yt = φ0i +

m∑
j=1

βjiyt−j +

k∑
j=1

ϕjiπt−j + δ0iσπt−1 + ξt,

ξt | Ωt−1 ∼ N
(
0, σ2

0i

)
, and i=1,2 are regimes.

Parameter Estimate Standard Error

φ01 0.002*** 0.000
β11 0.124** 0.050
β21 0.249*** 0.041
β31 0.137*** 0.043
ϕ11 -0.095 0.061
δ01 -0.070*** 0.025
φ02 0.002 0.002
β12 0.299*** 0.078
β22 -0.044 0.101
β32 0.144* 0.086
ϕ12 -0.073 0.217
δ02 -0.178* 0.107
σ01 0.005*** 0.000
σ02 0.012*** 0.001
P11 0.925*** 0.023
P12 0.292*** 0.075
Log-likelihood 2320.037

Notes: *, **, *** denote significance at the 10%, 5% and 1% levels.
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Table 4: Inflation Uncertainty Effects on Output Growth: Quarterly Data

yt = φ0i +

m∑
j=1

βjiyt−j +

k∑
j=1

ϕjiπt−j + δ0iσπt−1 + ξt,

ξt | Ωt−1 ∼ N
(
0, σ2

0i

)
, and i=1,2 are regimes.

Parameter Estimate Standard Error

φ01 0.009*** 0.001
β11 0.192*** 0.064
β21 0.145*** 0.047
β31 -0.125*** 0.054
ϕ11 -0.128** 0.061
δ01 -0.179*** 0.070
φ02 -0.007*** 0.001
β12 0.183*** 0.038
β22 0.671*** 0.044
β32 0.682*** 0.037
ϕ12 -0.466*** 0.027
δ02 -0.344*** 0.044
σ01 0.007*** 0.000
σ02 0.001*** 0.000
P11 0.946*** 0.020
P12 0.803*** 0.127
Log-likelihood 741.172

Notes: *, **, *** denote significance at the 10%, 5% and 1% levels.
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Table 5: Estimates of Parameters of the Model for Output Growth and Inflation

πt = θ0i +

L∑
j=1

θjiyt−j +

N∑
j=1

ηjiπt−j + ψiσ̂πt−1
+ αiσ̂yt−1

+ εt,

yt = φi +

m∑
j=1

βjiyt−j +

k∑
j=0

ϕjiπ̂t−j + δiσ̂πt−1 + κiσ̂yt−1 + ξt

Parameter Estimate Std. error Parameter Estimate Std. error

φ1 0.002 ** 0.001 θ01 0.001 *** 0.000
β11 0.054 0.057 θ11 0.055 ** 0.023
β21 0.265 *** 0.053 θ21 0.050 * 0.026
β31 0.154 *** 0.052 θ31 -0.009 0.032
ϕ11 -0.187 0.309 η11 0.374 *** 0.051
δ1 -0.040 0.033 ψ1 0.061 *** 0.019
κ1 0.002 0.005 α1 -0.012 *** 0.002
φ2 0.003 0.003 θ02 0.000 0.000
β12 0.320 *** 0.073 θ12 -0.037 * 0.019
β22 0.054 0.093 θ22 0.031 0.021
β32 0.112 0.086 θ32 0.014 0.035
ϕ12 -0.171 0.464 η12 0.784 *** 0.043
δ2 -0.290 *** 0.093 ψ1 0.124 *** 0.021
κ2 0.001 0.006 α2 0.000 0.001
σ1 0.005 *** 0.000 σε1 0.003 *** 0.000
σ2 0.009 *** 0.001 σε2 0.002 *** 0.000
q 0.940 *** 0.022
p 0.869 *** 0.042
Log likelihood = 5188.000

Notes: *, **, *** denote significance at the 10%, 5% and 1% levels.
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