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Abstract

This paper provides an assessment of a range of alternative estimators for fixed-

effects ordered models in the context of estimating the relationship between sub-

jective well-being and commuting behaviour. In contrast to previous papers in the

literature we find no evidence that longer commutes are associated with lower lev-

els of subjective well-being, in general. From a methodological point of view our

results support earlier findings that linear and ordered fixed-effects models of life

satisfaction give similar results. However, we argue that ordered models are more

appropriate as they are theoretically preferable, straightforward to implement and

lead to easily interpretable results.
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1 Introduction

Measures of subjective well-being are increasingly used as a proxy for individual welfare

in applied economics. Summaries and overviews of this rapidly expanding literature in-

clude: Frey and Stutzer (2002a), Frey and Stutzer (2002b), Layard (2005), Kahneman

and Krueger (2006), Di Tella and MacCulloch (2006), Clark et al. (2008), Dolan et al.

(2008), Stutzer and Frey (2010) and MacKerron (2011). Survey respondents are typically

asked a question like ‘How satisfied are you with your life overall?’ and asked to give a

response on a Likert scale with the lowest and highest values corresponding to ‘Not sat-

isfied’ and ‘Completely satisfied’, respectively. Econometrically this raises the question

of how to model this type of data. Since well-being as a proxy for individual welfare or

utility is strictly speaking an ordinal rather than a cardinal measure - a 1-point increase

from 2 to 3 on the well-being scale may not imply the same increase in well-being as an

increase from 6 to 7, for example - the standard econometric approach would be to use

an ordered logit or probit model. However, in an influential paper, Ferrer-i-Carbonell

and Frijters (2004) compare the results from a linear fixed-effects (FE) model, and thus

implicitly treating well-being as a cardinal measure, with those from their FE ordered

logit specification, and find that they obtain similar results. An equivalent finding has

been documented by Frey and Stutzer (2000). This has led authors in several subse-

quent studies to analyse their data using linear models (e.g. Stutzer and Frey, 2008),

presumably because linear FE models are considered to be more straightforward to im-

plement in practice and lead to more easily interpretable results than ordered FE models.

More recently, however, Baetschmann et al. (2011) have shown that the FE ordered logit

estimator used in the Ferrer-i-Carbonell and Frijters (2004) comparison is, in fact, incon-

sistent. Hence, the similarity between the linear FE and the ordered FE results is not

particularly informative.

In this paper we revisit the debate surrounding the appropriate methodology for mod-

elling subjective well-being data in the context of the relationship between commuting

and well-being. According to microeconomic theory, individuals would not choose to

have a longer commute unless they were compensated for it in some way, either in the

form of improved job characteristics (including pay) or better housing prospects (Stutzer

and Frey, 2008). Even if commuting in itself is detrimental to well-being we would

therefore not expect individuals with longer commutes to report lower levels of life sat-

isfaction. As far as we are aware, Stutzer and Frey (2008) and Roberts et al. (2011)

are the only previous papers that attempt to test this hypothesis by modelling the re-

lationship between commuting and subjective well-being. Using data from the German

Socio-Economic Panel (GSOEP), Stutzer and Frey (2008) estimate linear FE models in
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which satisfaction with life overall (measured on a scale from 1 to 10) is specified as a

function of commuting time and a set of control variables. The authors find that a one

standard deviation (18 minutes) increase in commuting time lowers reported satisfaction

with life overall by 0.086. To put this estimate into context Stutzer and Frey (2008)

report that it is equivalent to about 1/8 of the effect on well-being of becoming unem-

ployed. The authors conclude that commuting is a stressful activity which does not pay

off, a result which they refer to as the ‘commuting paradox’ as it does not correspond to

the predictions from microeconomic theory.

Using data from the first 14 waves of the British Household Panel Survey (BHPS),

Roberts et al. (2011) model the relationship between well-being, commuting times and

other personal and household characteristics. Well-being is measured by the GHQ (Gen-

eral Health Questionnaire) score, which is derived as the sum of the responses to 12

questions related to mental health. Using linear FE models, the authors find that longer

commutes are associated with lower levels of subjective well-being among women but not

among men. They suggest that this is likely to be a result of women having greater re-

sponsibilities for day-to-day household tasks, such as childcare and housework, and that

this makes them more sensitive to longer commuting times. The authors of both papers

acknowledge that the dependent variable in their models is categorical, but justify the

use of a linear model based on the findings in the study by Ferrer-i-Carbonell and Frijters

(2004).

Using data from the British Household Panel Survey, we compare the results from

linear FE models and ordered logit models with and without fixed-effects. We find that

while the results from the pooled ordered logit models suggest that there is a nega-

tive relationship between longer commutes and reported satisfaction with life overall,

no such relationship is found in the (linear and ordered) FE models. This confirms

Ferrer-i-Carbonell and Frijters’ finding that the results from linear and ordered models of

subjective well-being are qualitatively similar once unobservable individual fixed-effects

are controlled for. We also find that the choice of estimator for the fixed-effects ordered

logit model has little qualitative impact on the results. However, unlike Stutzer and

Frey (2008) and Roberts et al. (2011) we do not find evidence that commuting is related

to lower levels of subjective well-being, in general. This suggests that the relationship

between well-being and commuting times may depend on differences in culture (the UK

vs. Germany) and the choice of well-being measure (overall life satisfaction vs. the GHQ

score).

The paper is structured as follows: section two describes the econometric methodology,

section three presents the data used in the analysis and section four presents the modelling

results. Section five concludes.
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2 Methodology

In this section we briefly review various estimators for the FE ordered logit model that

have been suggested in the literature1. Our starting point is a latent variable model:

y∗it = x′itβ + αi + εit, i = 1, ..., N t = 1, ..., T (1)

where y∗it is a latent measure of the well-being of individual i in period t, xit is a (L× 1)

vector of observable characteristics related to well-being and β is a (L × 1) vector of

coefficients to be estimated. αi is a time-invariant unobserved component which may be

correlated with xit and εit is a white noise error term. We observe yit which is related to

y∗it as follows

yit = k if µk < y∗it ≤ µk+1, k = 1, ..., K (2)

The threshold parameters, µk, are assumed to be strictly increasing in k (µk < µk+1

∀k) with µ1 = −∞ and µK+1 = ∞. Assuming that εit is IID logistic the probability of

observing outcome k for individual i at time t is

Pr(yit = k|xit, αi) = Λ(µk+1 − x′itβ − αi)− Λ(µk − x′itβ − αi) (3)

where Λ(·) denotes the logistic cumulative distribution function. As explained by Baetschmann

et al. (2011), there are two problems with direct maximum likelihood estimation of this

expression. The first is that only the difference between the thresholds and the fixed-

effect αik = µk − αi can be identified. The second is that under fixed-T asymptotics αik

cannot be estimated consistently due to the incidental parameter problem (Neyman and

Scott, 1948). This unfortunately also affects the estimates of β, and it has been found

that the bias can be substantial in short panels (Greene, 2004).

Winkelmann and Winkelmann (1998) suggest that a way of getting around this prob-

lem is to collapse yit to a binary variable and use Chamberlain’s estimator for fixed

effects binary logit models. Following Baetschmann et al. (2011) we define a variable

dkit = I(yit ≥ k) where I(·) is the indicator function and k is a cutoff value. In other words,

dkit is equal to one if yit is greater than or equal to the chosen cutoff value and zero oth-

erwise. The probability of observing a particular sequence of outcomes dki = (dki1, ..., d
k
iT )

conditional on the number of ones in the sequence is given by

Pr(dki |
T∑
t=1

dkit = ai) =
exp(

∑T
t=1 d

k
itx
′
itβ)∑

li∈Bi
exp(

∑T
t=1 litx

′
itβ)

(4)

1For simplicity we omit some technical details and focus on what we believe are the most important
practical issues. We refer interested readers to the comprehensive review by Baetschmann et al. (2011).
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where lit is either zero or one, li = (li1, ..., liT ) and Bi is the set of all possible li vectors

with the same number of ones as dki . Chamberlain (1980) shows that maximizing the con-

ditional log-likelihood LLk =
∑N

i=1 ln
[
Pr(dki |

∑T
t=1 d

k
it = ai)

]
gives a consistent estimate

of β.

While in principle any cutoff 2 ≤ k ≤ K can be used in the estimation it is important

to note that individuals with constant dkit do not contribute to the likelihood2. This

implies that any particular choice of cutoff is likely to lead to some observations being

discarded and the question is then whether we can do better than choosing a single cutoff.

We will review three alternative estimators that have been proposed in the literature: the

Das and Van Soest (1999) estimator, the ‘Blow-up and Cluster’ estimator (Baetschmann

et al., 2011) and the Ferrer-i-Carbonell and Frijters (2004) estimator.

2.1 The Das and Van Soest (DvS) estimator

Since the estimator of β at any cutoff (β̂k) is consistent, Das and Van Soest (1999)

proposed estimating the model using all K − 1 cutoffs and combine the estimates in a

second step. The efficient combination weights the estimates by their variance so that

β̂DvS = arg min
b

(β̂2′ − b′, ..., β̂K′ − b′)Ω̂−1(β̂2′ − b′, ..., β̂K′ − b′)′ (5)

where Ω̂−1 is an estimate of the variance-covariance matrix of the coefficients. The solu-

tion to this problem is

β̂DvS = (H ′Ω̂−1H)−1H ′Ω̂−1(β̂2′, ..., β̂K′)′ (6)

where H is a matrix of K − 1 stacked identity matrices of dimension L. The variance-

covariance matrix of β̂DvS is given by

V ar(β̂DvS) = (H ′Ω̂−1H)−1 (7)

Appendix A.1 presents code for implementing the DvS estimator in Stata.

The drawback of the DvS estimator is that in many real settings some cutoff values are

going to lead to very small estimation samples. This may lead to convergence problems

and/or imprecise estimates of the variance-covariance matrix Ω̂−1, and it may therefore be

necessary to use only some of the possible cutoffs when implementing the DvS estimator

in practice.

2This is because Pr(dki = 1|
∑T

t=1 d
k
it = T ) = Pr(dki = 0|

∑T
t=1 d

k
it = 0) = 1.
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2.2 The ‘Blow-up and Cluster’ (BUC estimator)

Baetschmann et al. (2011) have recently suggested an alternative to the DvS estima-

tor which avoids the problem of small sample sizes associated with some cutoff values.

Essentially the BUC estimator involves estimating the model using all K − 1 cutoffs si-

multaneously, imposing the restriction that β2 = β3 = · · · = βK . In practice this can

be done by creating a dataset where each individual is repeated K − 1 times, each time

using a different cutoff to collapse the dependent variable. The model is then estimated

on the expanded sample using the standard Chamberlain approach. Since some individ-

uals contribute to several terms in the log-likelihood function it is necessary to adjust the

standard errors for clustering at the level of the respondent, hence the name ‘Blow-up

and Cluster’ (Baetschmann et al., 2011). Appendix A.2 presents code for implementing

the BUC estimator in Stata with an example using simulated data3.

2.3 The Ferrer-i-Carbonell and Frijters (FF) estimator

An alternative estimator to the ones described above was proposed by Ferrer-i-Carbonell

and Frijters (2004). Their estimator involves identifying an optimal cutoff for each in-

dividual, where the optimal cutoff is the value which minimises the (individual) Hessian

matrix at a preliminary estimate of β. Many applied papers have instead used a computa-

tionally simpler rule for choosing the cutoff, such as the individual-level mean or median

of yit (e.g. Booth and Van Ours (2008), Booth and Van Ours (2009), Kassenboehmer and

Haisken-DeNew (2009), Jones and Schurer (2011)). Baetschmann et al. (2011) show that

FF-type estimators are in general inconsistent since the choice of cutoff is endogenous.

In a simulation experiment they find that the bias in the FF estimates can in some cases

be substantial, while the DvS and BUC estimators generally perform well4. Code for

implementing the Ferrer-i-Carbonell and Frijters (2004) estimator in Stata is available

from the authors on request.

3Baetschmann et al. (2011) also present Stata code for estimating the BUC model, but we have found
that their code can inadvertently drop observations from the estimation sample in some circumstances.
The root of the problem is that a new individual ID variable is generated by multiplying the original ID
by 100 and adding a small number. Since the new ID variable is stored as a ‘long’ and the maximum
value for longs is 2,147,483,620 in Stata, any individual with an original ID greater than 21474836 will
drop out of the sample as their new ID will be set to ‘missing’. This is an issue of practical importance
using the original ID variable in the BHPS data - in our estimation sample a substantial proportion of
respondents are incorrectly dropped when using the code by Baetschmann et al.

4As expected the DvS estimator performs less well in situations where some cutoffs are associated
with very small sample sizes.
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3 Data

This paper uses data from waves 6 to 18 (1996-2008) of the British Household Panel

Survey (BHPS), a nationally representative panel survey conducted by the Institute for

Economic and Social Research. The households in the sample are re-interviewed on an

annual basis and by wave 18 (2008), about 16,000 individuals participated in the survey.

Waves 6 to 18 were chosen as they represent the only waves for which data on overall life

satisfaction are available (although no data are available for wave 11 (2001) when the life

satisfaction question was omitted from the survey questionnaire).

We restrict the sample to include only respondents of working age, defined to be

individuals between the ages of 17 and 65 inclusive. Similarly only people who respond

that they are employed are retained in the sample. Self-employed respondents are not

included, since they are more likely to work from home and generally have different

commuting patterns to employees (Roberts et al., 2011).

As our dependent variables we use data from the following two questions: ‘How

dissatisfied or satisfied are you with your life overall’ and ‘How dissatisfied or satisfied

are you with the way you spend your leisure time’. Respondents are asked to give a

response on a seven-point scale, where the lowest value (1) is labelled ‘Not Satisfied at

all’ and the highest value (7) is labelled ‘Completely Satisfied’.5 Figures 1 and 2 present

the distribution of the satisfaction with life overall and satisfaction with leisure time

variables using data from all 12 waves available. It can be seen from the figure that the

distribution of the overall life satisfaction data is highly skewed, with the majority of the

responses at the top end of the distribution. This is a common finding in the literature

on subjective well-being (Dolan et al., 2008). The distribution of the satisfaction with

leisure time data is less skewed, but again the majority of respondents report relatively

high values.

[Figure 1 and Figure 2 about here]

As a robustness check, and to be consistent with Roberts et al. (2011), we also use

the GHQ score as an alternative dependent variable in our analysis. The GHQ score is

derived as the sum of the responses to 12 questions related to mental health each scored

on a 4 point scale (from 0 to 3), where a high value represents a low level of mental

health. In our analysis the score has been reversed so that a higher score represents

5From wave 12 (2002) onwards the number 4 on the satisfaction scale was labelled ‘Not satis-
fied/dissatisfied’, while it was unlabelled in earlier waves. Conti and Pudney (2011) find evidence that
whether or not textual labels are assigned to values can have an impact on the results. As a robust-
ness check we have therefore run the analysis in the paper on both the full (1996-2008) sample and the
2002-2008 sub-sample. As the results are very similar we only report the full-sample analysis.
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better well-being. The distribution of the GHQ score using data from all 12 waves is

shown in Figure 3.

[Figure 3 about here]

The BHPS includes information on both commuting time and the mode of transport

used for commuting trips6. The respondents are asked ‘How long does it usually take

you to get to work each day, door to door?’. The answer is recorded in minutes and

corresponds to a one-way commute. The respondents are then asked ‘And what usually

is your main means of travel to work?’. The response is coded as one of the following al-

ternatives: car driver, car passenger, rail, underground, bus, motor bike, bicycle, walking

and other. Figure 4 presents the distribution of the commuting time variable using data

from all 12 waves.

[Figure 4 about here]

In addition to commuting time, which is the main explanatory variable of interest

in our analysis, we control for a range of factors that have been found to be related to

subjective well-being in previous work. These include age, hours worked, real household

income (at 2008 prices), marital status, number of children in the household, a dummy

for saving regularly and a dummy for having a university degree. As a sensitivity test we

also interact commuting time with gender and commuting mode to investigate whether

the impact of an increase in commuting time on well-being varies by gender and mode of

transport.

[Table 1 about here]

Table 1 provides summary statistics for the dependent and independent variables. It

can be seen that the average daily commute is about 24 minutes (one way) and that most

people drive a car to work. The average age in the sample is 39, about three quarters are

married or cohabiting and the average number of children in the household is 0.7. About

half of the sample make regular savings, 18% have a university degree and the average

real monthly household income is £3,900.

6The BHPS does not have data on commuting distance, but commuting time may in any case be
argued to be more closely related to the opportunity cost of commuting than the distance travelled
(Stutzer and Frey, 2008) and is therefore a more relevant variable in this context.
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4 Results

4.1 Satisfaction with life overall

Table 2 presents the results from the models of satisfaction with life overall7 8 9. It

can be seen that while the coefficient for commuting time is negative and significant in

the pooled ordered logit model (Pooled OL), it is insignificant in all the fixed-effects

specifications. In line with Blanchflower and Oswald (2008) amongst others, we find

that satisfaction is U-shaped in age, with a minimum at around 54 years of age in the

ordered FE specifications. Other significant variables include: (log) real household income

(implying diminishing marginal utility of income), whether the respondent is married or

cohabiting and whether he/she makes regular savings. These results are consistent with

previous findings in the literature (Dolan et al., 2008, Wong et al., 2006).

[Table 2 about here]

The insignificant commuting time coefficient in the FE models contrasts with the

findings by Stutzer and Frey (2008) and Roberts et al. (2011) who find that increases in

commuting time are associated with lower levels of subjective well-being. Since Roberts

et al. also use data from the BHPS but a different measure of subjective well-being (the

GHQ score), we can test whether it is the choice of well-being measure that is driving

the difference in the results. To do this we re-run our analysis using the GHQ score as

the dependent variable instead of overall life satisfaction.

The results are reported in Table 3. We find no evidence of a negative relationship

between commuting times and the GHQ measure of well-being in our sample, but when

we re-run the analysis using data from waves 1-14 of the BHPS (the sample used by

Roberts et. al) we are able to replicate their result that longer commuting times are

associated with lower levels of well-being. We also find that when we interact the com-

muting time variable with a dummy for being female this is found to be negative and

significant in both samples, which supports Roberts et. al’s finding that longer com-

mutes are associated with lower levels of subjective well-being among women. We also

attempted to include this interaction in the life satisfaction models, but it was found to

7We ‘Winsorise’ the commuting time, hours worked and monthly household income data at the 99th
centiles given the extreme upper values for these variables. Similar results to those presented in the paper
are obtained if we simply trim the sample at the 99th centiles for these three variables, or Winsorise or
trim at the 95th centile (results available on request).

8We used 4, 5, 6 and 7 as the satisfaction cutoff-values in the DvS models as very few respondents
report lower levels of life satisfaction than 4. This is the reason why the reported sample size for the
DvS model is somewhat smaller than for the other models.

9For comparison we ran the pooled ordered logit model on the same sample as the fixed effects
models, i.e. excluding those respondents who reported the same level of satisfaction in all waves.
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be insignificant. This illustrates that different measures of subjective well-being may lead

to different conclusions regarding policy relevant variables.

[Table 3 about here]

Stutzer and Frey (2008) use a very similar measure of well-being to ours, i.e. self-

reported satisfaction with life overall. In this case the different findings may be due to

cultural differences between the UK and Germany, although we concede that this is a

somewhat speculative explanation10. What is clear, however, is that the ‘commuting

paradox’ documented by Stutzer and Frey (2008) does not hold in general, as we find no

evidence of a negative impact of commuting times on life satisfaction in our application.

In line with Ferrer-i-Carbonell and Frijters (2004) we find that the results from the

linear and ordered FE models are quite similar (in that the variables have the same signs

and significance, the quadratic in age has a similar minimum point etc.), considering the

different assumptions underlying these models. This finding contributes to the stock of

evidence suggesting that a linear FE model is an acceptable substitute for an ordered

FE model in the context of modelling life satisfaction. However, this result needs to be

tested on a case-by-case basis as there is no guarantee that it holds in general.

One advantage of the linear model over the ordered model is that the coefficients

in the linear model can be interpreted as marginal effects, while the coefficients in the

ordered model cannot be interpreted quantitatively since they refer to an underlying

latent variable. In fact it is not possible to calculate marginal effects based on the FE

ordered logit results at all since the fixed effects are conditioned out of the likelihood

function. However, as shown by Frey et al. (2009), Luechinger (2009), and Luechinger

and Raschky (2009) for example, the ratios of the coefficients in the ordered model can

be used to evaluate the trade-off between commuting time and income using the so-called

‘life satisfaction approach’.

To illustrate, let U = U(C, Y ), where C is commuting time and Y is income. Totally

differentiating and setting dU = 0 yields:

dY

dC
= −MUC

MUY

For our linearised specification with log income, U = βC + γlnY , this gives MUC = β,

MUY = γ/Y and hence
dY

dC
= −βY

γ

10One hypothesis we considered is that longer average commuting times may impact on social norms
which in turn could potentially make the link between commuting times and well-being less strong.
However, the average commuting time in our sample is only slightly higher than in the GSOEP sample
used by Stutzer and Frey (24 vs 22 minutes) so this is unlikely to explain the differences in the results.
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Evaluating this expression at median household income YM gives dY/dC = £1, 079 using

the BUC estimates in Column 4 of Table 2. Thus, at the median, commuters require

compensation of £1,000 of monthly household income per additional hour of (one-way)

daily commuting time. This is equivalent to around £25 per hour of commuting time11.

Since the coefficient for commuting time is imprecisely estimated we cannot reject the null

that dY/dC is equal to zero12 but this example nevertheless shows that the coefficients

in the ordered FE models can be given a useful quantitative interpretation.

We therefore suggest that researchers implement ordered FE models when assessing

the determinants of subjective well-being, rather than simply reporting the results from

linear FE regressions which has become common in the literature. Treating well-being as

an ordinal measure of individual welfare rather than assuming cardinality as is required

in the linear model is clearly preferred theoretically. And empirically, given the ease of

implementation of the BUC and DvS estimators, plus the ability to interpret the ratio

of coefficients in these specifications, means that an ordered approach can also yield

interesting and interpretable findings to the researcher.

To test the robustness of the results we ran two further set of models where we

interacted the commuting time variable with a set of dummies for commuting mode. None

of these interactions were found to be significant. We also re-ran the models including

the self-employed, adding a dummy for self-employment status to the models, but this

was not found to have a qualitative impact on the results. The latter test was carried

out to make our sample as similar as possible to that used by Stutzer and Frey (2008),

who included the self-employed in their analysis. The results from the robustness checks

are available from the authors upon request.

4.2 Satisfaction with leisure time

Table 4 presents the results from the models of satisfaction with leisure time. In contrast

to the life satisfaction results we find that the coefficient for commuting time is negative

and significant in all the specifications, suggesting that that an increase in commuting

time has a negative impact on the satisfaction with leisure time, as expected. Once again,

there is evidence of a U-shaped relationship with age (with a minimum at around 40 years

of age) and a positive relationship with making regular savings. Satisfaction with leisure

time is found to be negatively related to hours worked, household income, the number

of children in the household and being married or cohabiting. As in the life satisfaction

case the coefficients in the linear and ordered FE models generally have the same signs

11Based on 20 days per month of commuting.
12The lower and upper limit of a 95% CI calculated using the delta method is -£2,570 and £4,727,

respectively.
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and significance.

[Table 4 about here]

5 Conclusion

This paper provides an assessment of alternative estimators for the fixed-effects ordered

logit model in the context of estimating the relationship between subjective well-being and

commuting behaviour. In contrast to Stutzer and Frey (2008) we find no evidence that

longer commutes are associated with lower levels of subjective well-being as measured

by self-reported overall life satisfaction. When using the GHQ score as an alternative

measure of subjective well-being we find, in line with Roberts et al. (2011), that longer

commutes are associated with lower levels of well-being for women but not for men. Taken

as a whole these findings suggest that the ‘commuting paradox’ documented by Stutzer

and Frey (2008) does not hold in general.

While our results support earlier findings in the literature that linear and ordered

fixed-effects models of life satisfaction give similar results, we argue that ordered models

are more appropriate since they do not require the researcher to make the questionable

assumption that life satisfaction scores are cardinal. We also demonstrate that the ordered

models are straightforward to implement in practice and lead to readily interpretable

results. We therefore recommend that ordered fixed effects models are used to model life

satisfaction instead of linear models, as the latter rely on an empirical regularity that

may not always hold.

12



References

Baetschmann, G., K. Staub, and R. Winkelmann (2011). Consistent estimation of the

fixed effects ordered logit model. IZA Discussion Paper #5443 .

Blanchflower, D. and A. Oswald (2008). Is well-being u-shaped over the life cycle? Social

Science & Medicine 66 (8), 1733–1749.

Booth, A. and J. Van Ours (2008). Job satisfaction and family happiness: The part-time

work puzzle. Economic Journal 118, F77–F99.

Booth, A. and J. Van Ours (2009). Hours of work and gender identity: Does part-time

work make the family happier? Economica 76, 176–196.

Chamberlain, G. (1980). Analysis of covariance with qualitative data. Review of Economic

Studies 47 (1), 225–238.

Clark, A., P. Frijters, and M. Shields (2008). Relative income, happiness and utility:

An explanation for the easterlin paradox and other puzzles. Journal of Economic

Literature 46 (1), 95–144.

Conti, G. and S. Pudney (2011). Survey design and the analysis of satisfaction. The

Review of Economics and Statistics 93 (3), 1087–1093.

Das, M. and A. Van Soest (1999). A panel data model for subjective information on

household income growth. Journal of Economic Behavior & Organization 40 (4), 409–

426.

Di Tella, R. and R. MacCulloch (2006). Some uses of happiness data in economics.

Journal of Economic Perspectives 20 (1), 25–46.

Dolan, P., T. Peasgood, and M. White (2008). Do we really know what makes us happy?

A review of the economic literature on the factors associated with subjective well-being.

Journal of Economic Psychology 29 (1), 94–122.

Ferrer-i-Carbonell, A. and P. Frijters (2004). How important is methodology for the

estimates of the determinants of happiness? Economic Journal 114 (497), 641–659.

Frey, B., S. Luechinger, and A. Stutzer (2009). The life satisfaction approach to environ-

mental valuation. IZA Discussion Paper #4478 .

Frey, B. and A. Stutzer (2000). Happiness, economy and institutions. Economic Jour-

nal 110 (466), 918–938.

13



Frey, B. and A. Stutzer (2002a). Happiness and economics: How the economy and

institutions affect well-being. Princeton and Oxford: Princeton University Press .

Frey, B. and A. Stutzer (2002b). What can economists learn from happiness research?

Journal of Economic Literature 40 (2), 402–435.

Greene, W. (2004). The behaviour of the maximum likelihood estimator of limited depen-

dent variable models in the presence of fixed effects. The Econometrics Journal 7 (1),

98–119.

Jones, A. and M. Schurer (2011). How does heterogeneity shape the socioeconomic

gradient in health satisfaction? Journal of Applied Econometrics 26 (4), 549–579.

Kahneman, D. and A. B. Krueger (2006). Developments in the measurement of subjective

well-being. Journal of Economic Perspectives 20 (1), 3–24.

Kassenboehmer, S. and J. Haisken-DeNew (2009). You’re fired! The causal negative

effect of entry unemployment on life satisfaction. Economic Journal 119, 448–462.

Layard, R. (2005). Happiness: Lessons from a new science. New York: Penguin.

Luechinger, S. (2009). Valuing air quality using the life satisfaction approach. Economic

Journal 119 (536), 482–515.

Luechinger, S. and P. A. Raschky (2009). Valuing flood disasters using the life satisfaction

approach. Journal of Public Economics 93 (3–4), 620–633.

MacKerron, G. (2011). Happiness economics from 35,000 feet. Journal of Economic

Surveys , forthcoming.

Neyman, J. and E. Scott (1948). Consistent estimates based on partially consistent

observations. Econometrica 16 (1), 1–32.

Roberts, J., R. Hodgson, and P. Dolan (2011). ‘It’s driving her mad’: Gender differences

in the effects of commuting on psychological health. Journal of Health Economics 30 (5),

1064–1076.

Stutzer, A. and B. Frey (2008). Stress that doesn’t pay: The commuting paradox.

Scandinavian Journal of Economics 110 (2), 339–366.

Stutzer, A. and B. Frey (2010). Recent advances in the economics of individual subjective

well-being. Social Research 77 (2), 679–714.

14



Winkelmann, L. and R. Winkelmann (1998). Why are the unemployed so unhappy?

Evidence from panel data. Economica 65 (257), 1–15.

Wong, C., K. Wong, and B. Mok (2006). Subjective well-being, societal condition and so-

cial policy – The case study of a rich Chinese society. Social Indicators Research 78 (3),

405–428.

15



A Stata code

A.1 DvS code

local y y // Specify name of dependent variable after the first "y"

local x x1 x2 // Specify names of independent variables after the first "x"

local id id // Specify name of id variable after the first "id"

* Mark estimation sample

marksample touse

markout ‘touse’ ‘y’ ‘x’ ‘id’

* Run clogit for each cutoff and combine using suest

* Note that with many (most?) datasets this part of the

* code will have to be edited since not all cutoffs can

* be used to estimate the model

qui sum ‘y’ if ‘touse’

local ymax = r(max)

tempvar esample

gen ‘esample’ = 0

tempname BMAT

forvalues i = 2(1)‘ymax’ {

tempvar y‘i’

qui gen ‘y‘i’’ = ‘y’ >= ‘i’ if ‘touse’

qui clogit ‘y‘i’’ ‘x’ if ‘touse’, group(‘id’)

qui replace ‘esample’ = 1 if e(sample)

estimates store ‘y‘i’’

local suest ‘suest’ ‘y‘i’’

capture matrix ‘BMAT’ = ‘BMAT’, e(b)

if (_rc != 0) matrix ‘BMAT’ = e(b)

}

qui suest ‘suest’

* Calculate Das and Van Soest estimates

tempname VMAT A B COV

local k : word count ‘x’

matrix ‘VMAT’ = e(V)

matrix ‘A’ = J((‘ymax’-1),1,1)#I(‘k’)

matrix ‘B’ = (invsym(‘A’’*invsym(‘VMAT’)*‘A’)*‘A’’*invsym(‘VMAT’)*‘BMAT’’)’

matrix ‘COV’ = invsym(‘A’’*invsym(‘VMAT’)*‘A’)

* Tidy up matrix names and present results

matrix colnames ‘B’ = ‘x’

matrix coleq ‘B’ = :

matrix colnames ‘COV’ = ‘x’

matrix coleq ‘COV’ = :

matrix rownames ‘COV’ = ‘x’

matrix roweq ‘COV’ = :

qui cou if ‘esample’

local obs = r(N)

ereturn post ‘B’ ‘COV’, depname(‘y’) obs(‘obs’) esample(‘esample’)

ereturn display

* Calculate the number of individuals

tempvar last

bysort ‘id’: gen ‘last’ = _n==_N if e(sample)

cou if ‘last’==1
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A.2 BUC code

capture program drop bucologit

program bucologit

version 11.2

syntax varlist [if] [in], Id(varname)

preserve

marksample touse

markout ‘touse’ ‘id’

gettoken yraw x : varlist

tempvar y

qui egen int ‘y’ = group(‘yraw’)

qui keep ‘y’ ‘x’ ‘id’ ‘touse’

qui keep if ‘touse’

qui sum ‘y’

local ymax = r(max)

forvalues i = 2(1)‘ymax’ {

qui gen byte ‘yraw’‘i’ = ‘y’ >= ‘i’

}

drop ‘y’

tempvar n cut newid

qui gen long ‘n’ = _n

qui reshape long ‘yraw’, i(‘n’) j(‘cut’)

qui egen long ‘newid’ = group(‘id’ ‘cut’)

sort ‘newid’

clogit ‘yraw’ ‘x’, group(‘newid’) cluster(‘id’)

restore

end

/* Example using simulated data */

set more off

set seed 12345

* Generate simulated data

drop _all

set obs 1000

gen id = _n

gen u = 0.5*invnormal(uniform())

expand 10

sort id

matrix means = 0,0

matrix sds = 1,1

drawnorm x1 x2, mean(means) sd(sds)

replace x1 = 0.5*x1 + 0.5*u

gen e = logit(uniform())

gen y_star = x1 + 0.5*x2 + u + e

gen y = 1 if y_star < -4

replace y = 2 if y_star >= -4 & y_star < -2.5

replace y = 3 if y_star >= -2.5 & y_star < -1.5

replace y = 4 if y_star >= -1.5 & y_star < -0.5

replace y = 5 if y_star >= -0.5 & y_star < 0.5

replace y = 6 if y_star >= 0.5 & y_star < 2

replace y = 7 if y_star >= 2

*Run BUC model using the -bucologit- command

bucologit y x1 x2, i(id)

*Note: the i() option is equivalent to group() in the -clogit- syntax

*Compare results with standard ordered logit

ologit y x1 x2
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Table 1: Summary statistics

Mean SD Min Max
Satisfaction with life overall 5.18 1.12 1.00 7.00
Satisfaction with leisure time 4.41 1.45 1.00 7.00
GHQ score 25.07 5.11 0.00 36.00
Commuting time (minutes) 23.50 20.68 0.00 500.00
Age 39.02 11.38 17.00 65.00
Female 0.53 0.00 1.00
Hours worked 34.16 10.12 0.00 99.00
Monthly real household income (’000s) 3.88 2.29 0.05 96.23
Number of children in household 0.70 0.96 0.00 7.00
Married or cohabiting 0.73 0.00 1.00
Saves regularly 0.51 0.00 1.00
University degree 0.18 0.00 1.00
Car driver 0.66 0.00 1.00
Car passenger 0.07 0.00 1.00
Train 0.03 0.00 1.00
Underground 0.01 0.00 1.00
Bus 0.07 0.00 1.00
Motorbike 0.01 0.00 1.00
Bicycle 0.03 0.00 1.00
Walk 0.11 0.00 1.00
Other mode 0.01 0.00 1.00
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Table 2: Satisfaction with Life Overall

(1) (2) (3) (4) (5)
Pooled OL Linear FE DvS BUC FF

Commuting time (hours) -0.237∗∗∗ -0.0122 -0.0389 -0.0298 -0.0282
(0.039) (0.021) (0.049) (0.051) (0.045)

Age -0.104∗∗∗ -0.0399∗∗∗ -0.102∗∗∗ -0.0958∗∗∗ -0.108∗∗∗

(0.008) (0.006) (0.014) (0.014) (0.012)

Age squared / 100 0.121∗∗∗ 0.0373∗∗∗ 0.0933∗∗∗ 0.0895∗∗∗ 0.104∗∗∗

(0.010) (0.007) (0.017) (0.018) (0.014)

Hours worked -0.00529∗∗∗ -0.000744 -0.00267 -0.00162 -0.00140
(0.001) (0.001) (0.002) (0.002) (0.002)

Log of real household income 0.197∗∗∗ 0.0448∗∗∗ 0.0995∗∗∗ 0.0962∗∗∗ 0.0852∗∗∗

(0.026) (0.014) (0.031) (0.032) (0.029)

Married or cohabiting 0.589∗∗∗ 0.206∗∗∗ 0.464∗∗∗ 0.466∗∗∗ 0.403∗∗∗

(0.032) (0.021) (0.047) (0.049) (0.040)

Number of children in household -0.0509∗∗∗ -0.00936 -0.0348∗ -0.0303 -0.0207
(0.015) (0.009) (0.021) (0.021) (0.018)

Saves regularly 0.299∗∗∗ 0.0886∗∗∗ 0.212∗∗∗ 0.216∗∗∗ 0.200∗∗∗

(0.022) (0.010) (0.023) (0.024) (0.023)

University degree -0.0219 0.0530 0.0975 0.126 0.175
(0.035) (0.052) (0.123) (0.128) (0.109)

Individuals 9930 9930 9863 9930 9930
Observations 62786 62786 62537 62786 62786

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3: GHQ score

(1) (2) (3) (4) (5)
Pooled OL Linear FE DvS BUC FF

Commuting time (hours) -0.0760∗∗ -0.168 -0.0650 -0.0793 -0.00470
(0.036) (0.106) (0.045) (0.049) (0.041)

Age -0.0831∗∗∗ -0.171∗∗∗ -0.0847∗∗∗ -0.0804∗∗∗ -0.0838∗∗∗

(0.007) (0.026) (0.012) (0.013) (0.011)

Age squared / 100 0.0918∗∗∗ 0.155∗∗∗ 0.0749∗∗∗ 0.0728∗∗∗ 0.0764∗∗∗

(0.009) (0.031) (0.015) (0.016) (0.013)

Hours worked 0.0113∗∗∗ -0.00800∗∗ -0.00300∗∗ -0.00385∗∗ -0.00339∗∗

(0.001) (0.003) (0.001) (0.002) (0.001)

Log of real household income 0.0892∗∗∗ 0.157∗∗ 0.0752∗∗∗ 0.0693∗∗ 0.0356
(0.022) (0.065) (0.028) (0.031) (0.026)

Married or cohabiting 0.131∗∗∗ 0.384∗∗∗ 0.116∗∗∗ 0.155∗∗∗ 0.146∗∗∗

(0.030) (0.100) (0.040) (0.044) (0.036)

Number of children in household 0.000709 0.0147 0.000870 0.00274 -0.00246
(0.013) (0.041) (0.018) (0.020) (0.017)

Saves regularly 0.170∗∗∗ 0.331∗∗∗ 0.145∗∗∗ 0.165∗∗∗ 0.126∗∗∗

(0.020) (0.047) (0.021) (0.023) (0.020)

University degree -0.00960 0.271 0.132 0.141 0.152
(0.033) (0.227) (0.095) (0.108) (0.097)

Individuals 11410 11410 11407 11410 11410
Observations 67871 67871 67860 67871 67871

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Satisfaction with Leisure Time

(1) (2) (3) (4) (5)
Pooled OL Linear FE DvS BUC FF

Commuting time (hours) -0.350∗∗∗ -0.167∗∗∗ -0.298∗∗∗ -0.284∗∗∗ -0.309∗∗∗

(0.039) (0.028) (0.049) (0.048) (0.043)

Age -0.0908∗∗∗ -0.0270∗∗∗ -0.0634∗∗∗ -0.0500∗∗∗ -0.0441∗∗∗

(0.008) (0.008) (0.014) (0.014) (0.011)

Age squared / 100 0.111∗∗∗ 0.0334∗∗∗ 0.0752∗∗∗ 0.0624∗∗∗ 0.0554∗∗∗

(0.010) (0.009) (0.017) (0.017) (0.014)

Hours worked -0.0209∗∗∗ -0.0154∗∗∗ -0.0273∗∗∗ -0.0262∗∗∗ -0.0240∗∗∗

(0.001) (0.001) (0.002) (0.002) (0.001)

Log of real household income 0.0385 -0.0536∗∗∗ -0.0885∗∗∗ -0.0888∗∗∗ -0.0805∗∗∗

(0.025) (0.018) (0.032) (0.031) (0.028)

Married or cohabiting -0.0806∗∗∗ -0.146∗∗∗ -0.209∗∗∗ -0.251∗∗∗ -0.177∗∗∗

(0.031) (0.026) (0.046) (0.045) (0.038)

Number of children in household -0.233∗∗∗ -0.146∗∗∗ -0.251∗∗∗ -0.258∗∗∗ -0.224∗∗∗

(0.014) (0.012) (0.022) (0.021) (0.017)

Saves regularly 0.198∗∗∗ 0.0374∗∗∗ 0.0707∗∗∗ 0.0679∗∗∗ 0.0708∗∗∗

(0.021) (0.012) (0.023) (0.022) (0.021)

University degree -0.218∗∗∗ 0.0633 0.159 0.127 0.135
(0.035) (0.068) (0.116) (0.118) (0.103)

Individuals 10746 10746 10239 10746 10746
Observations 66231 66231 63895 66231 66231

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 1: Distribution of Satisfaction with Life Overall
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Figure 2: Distribution of Satisfaction with Leisure Time
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Figure 3: Distribution of GHQ Score
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Figure 4: Distribution of Daily Commuting Time (one way)

Note: commuting times truncated at 120 minutes.
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