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Abstract

It is increasingly recognised that respondents to choice experiments
employ heuristics such as attribute non-attendance (ANA) to simplify
the choice tasks. This paper develops an econometric model which
incorporates preference heterogeneity among respondents with di¤er-
ent attribute processing strategies and allows the ANA probabilities
to depend on the respondents� stated non-attendance. We �nd evi-
dence that stated ANA is a useful indicator of the prevalence of non-
attendance in the data. Contrary to previous papers in the literature
we �nd that willingness to pay estimates derived from models which
account for ANA are similar to the standard logit estimates.
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1 Introduction

Over the past decades the Discrete Choice Experiment (DCE) has become a

popular tool for non-market valuation in several �elds of applied economics.

The methodology behind choice experiments is rapidly evolving and substan-

tial progress has been made in recent years in terms of both experimental

design and data analysis. As part of these developments much e¤ort has been

devoted to studying the use of heuristics, or simpli�ed decision rules, among

respondents to choice experiments (see Hensher, 2010, for a review). One

of the heuristics that has been identi�ed in the literature is the tendency to

ignore one or more of the attributes in the experiment, a phenomenon that

has been labelled attribute non-attendance (ANA). Following the important

contribution by Hensher et al. (2005) several papers have found evidence of

ANA in a variety of �elds including transportation (Hensher, 2006; Hensher

and Greene, 2010), environment (Campbell et al., 2008; Carlsson et al., 2010)

and health (Ryan et al., 2009; Hole 2011a). There is also a growing stock of

evidence suggesting that attribute non-attendance may lead to biased coe¢-

cient estimates, and hence biased estimates of willingness to pay, if it is not

taken account of at the data analysis stage.

Various methods have been proposed in the literature for identifying at-

tribute non-attendance. One approach is to ask the respondents directly

whether they ignored any of the attributes when making their choices and if

so, which attributes (�Stated ANA�). This can either be done after the choice

experiment has been completed, or after each individual choice to allow for

the fact that the attribute processing rule may change over the choice se-

quence (Scarpa et al., 2010)1. Another approach is to use an econometric

model which makes it possible to estimate the probability of attribute non-

attendance without the use of supplementary data (�Inferred ANA�). The

type of model used has typically been a form of latent class model, where

the classes represent di¤erent attribute processing strategies (Scarpa et al.,

2009; Hensher and Greene, 2010; Campbell et al., 2011).2

1 It should be noted that asking after each choice could itself change the processing
rule.

2A third approach which is not pursued in this paper is to use a qualitative �think aloud�
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The stated ANA approach has been criticised on the grounds that respon-

dents may not be fully aware of the attribute processing rule they applied

when making their choices, which would imply some degree of misreport-

ing. Cambell and Lorimer (2009) and Hess and Hensher (2010) have found

that when attribute coe¢cients are estimated separately for self-reported �at-

tenders� and �non-attenders� the coe¢cients for the latter group tend to be

signi�cantly di¤erent from zero. Models in which the coe¢cients are forced

to equal zero for the �non-attenders�, a common approach in the early lit-

erature on ANA, are therefore likely to be mis-speci�ed. Moreover, it is

potentially problematic to include the stated ANA variables as explanatory

variables in the utility function as they may be endogenous. For example, a

respondent with a stronger than average preference for a particular attribute

may be more likely to report having ignored one or more of the other at-

tributes in the choice set. Unless the preference heterogeneity is accounted

for in the model the stated ANA variables will be correlated with the error

term which may lead to bias. This suggests that modelling ANA probabilis-

tically is preferable, but the question remains whether data on stated ANA

can be used to improve the performance of the probabilistic model. That is

the focus of the current paper.

We use DCE data on doctors� prescription choices where the respondents

were asked to report which attributes they took into account after com-

pleting the experiment. Two contributions are made in this paper; �rstly,

building on the Endogenous Attribute Attendance (EAA) model described

by Hole (2011a) we develop a more �exible �full-attendance in�ated� EAA

(FAI-EAA) model which takes into account the possibility that respondents

who are di¤erent in their attribute processing strategies may also have dif-

ferent preferences for the characteristics of the alternatives. The FAI-EAA

model is found to �t the data better than both the standard logit and the

EAA model. Secondly, we allow the probability of non-attendance to depend

on the respondents� stated ANA. The �t of the EAA and FAI-EAAmodels in-

procedure to identify non-attendance (Ryan et al., 2009). The advantage of this method is
that several heuristics can be identi�ed simultaneously. A potential disadvantage is that
having to think aloud may in�uence the choice process.
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creases when stated ANA is incorporated in the models, which suggests that

the self-reported data contain useful information about the respondents� at-

tribute processing strategy. On the other hand we �nd that the self-reported

non-attenders have a positive probability of attendance, which illustrates the

usefulness of the probabilistic approach as it avoids the sharp distinction be-

tween assigning an ANA probability of zero or one based on the self-reported

data. Contrary to most papers in the literature we �nd that the willingness

to pay estimates derived from the various models are similar. This suggests

that failure to account for attribute non-attendance does not necessary lead

to substantial bias in estimates of WTP.

The paper is structured as follows. Section 2 describes the Endogenous

Attribute Attendance model and the more �exible �full attendance in�ated�

EAA model. Section 3 describes the choice experiment and section 4 presents

the modelling results. Finally, section 5 o¤ers some concluding remarks.

2 Methodology

2.1 The endogenous attribute attendance model

The endogenous attribute attendance model (Hole, 2011a) is essentially a

joint model of choice process and outcome. Such models have a long tra-

dition in the discrete choice literature (e.g. Manski, 1977; Ben-Akiva and

Swait, 1987) and recent contributions to the literature on modelling heuris-

tics include Hensher (2008) and Hess and Hensher (2011). In the EAA model

the joint probability of choosing an alternative using a particular attribute

processing strategy (APS) can be broken down into the marginal probability

of choosing the APS multiplied by the probability of choosing the alternative

conditional on the choice of APS. To be more speci�c, the respondents are

assumed to choose a subset Cq from a total of K attributes to consider when

choosing an alternative. The total number of attribute subsets is given by

Q = 2K , which includes the set in which all attributes are included (CQ) and

the empty set in which the respondents discard all the information about the

alternatives (C1). The former corresponds to the conventional assumption
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that the decision-makers make use of all the available information on the

alternatives when making a choice while the latter implies that the choice

process in the second stage is random. Conditional on the choice of attribute

subset Cq the utility that individual n derives from choosing alternative i on

choice occasion t is given by Unit =
P

q
xknit

k + "nit where xknit represents

the value of attribute k relating to alternative i on choice occasion t, k is

the preference weight given to that attribute and "nit is a random term which

is assumed to be IID extreme value.

Given these assumptions the probability that decision-maker n chooses

alternative j on choice occasion t conditional on the choice of attribute subset

Cq is given by the logit formula (McFadden, 1974):

Pr(choicent = j Cq) =
exp(

P
q
xknjt

k)
PJ

j=1 exp(
P

q
xknjt

k)
(1)

The probability that decision-maker n takes attribute k into account is spec-

i�ed as exp( kzn)= [1 + exp( kzn)], where zn is a vector of individual-level

observed characteristics and k is a vector of parameters to be estimated.

This probability can be speci�ed to depend on the respondents� stated ANA

by including a dummy variable for having reported to ignore attribute k in

zn. This approach makes it possible to incorporate the information on stated

ANA in the model, but in a way that avoids the sharp distinction of assigning

a non-attendance probability of one or zero which is inappropriate unless all

respondents are fully aware of their attribute processing strategy. We can

then test whether the modelled ANA probabilities are higher for the self-

reported �non-attenders�, as would be expected if stated ANA carries useful

information about the true probability of attending to an attribute.

Assuming that the ANA probabilities are independent over attributes the

probability of choosing attribute subset Cq is given by:

HnCq =
Y

q

exp( kzn)

1 + exp( kzn)

Y
k=Cq

1

1 + exp( kzn)
(2)

Combining equations (1) and (2) the unconditional probability of the ob-

4



served sequence of choices is

PEAAn =
XQ

q=1
HnCq

YT

t=1

YJ

j=1
Pr(choicent = j Cq)

ynjt (3)

where ynjt is equal to one if individual n choses alternative j on choice occa-

sion t and zero otherwise.

The model is estimated by maximising the log-likelihood function:

LLEAA =
XN

n=1
lnPEAAn (4)

It should be noted that it is not possible to identify k if
k = 0. In other

words, if the preference weight given to attribute k is zero it is not possible

to estimate the probability of attending to this attribute. This does not turn

out to be an issue in the current application. While the structure of the EAA

model is relatively simple Hole (2011b) found that it outperformed a very

�exible parametric mixed logit model in terms of goodness of �t in a study

of patients� choice of general practitioner appointment.

2.2 The �full attendance in�ated� EAA model

In this subsection we propose an extension to the EAA model which has a

more �exible structure for modelling the probability of taking all attributes

into account in the choice process. We call this model the �full attendance

in�ated� EAA model (FAI-EAA). In the full attendance in�ated model the

unconditional probability of the observed sequence of choices is given by

P FAI EAA
n =

exp( )

1 + exp( )
PLOGITn +

1

1 + exp( )
PEAAn (5)

where is a parameter to be estimated, PEAAn is given in equation (3) and

PLOGITn =
YT

t=1

YJ

j=1

"
exp(

P
k x

k
njt

k)
PJ

j=1 exp(
P

k x
k
njt

k)

#ynjt

In other words the FAI-EAA model is a mixture between a standard con-

ditional logit model and the EAA model. The logit part of the model can
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be interpreted as representing respondents who attend to all the attributes,

while the EAA part represents respondents who potentially ignore one or

more of the attributes. As in the standard EAA model the probability of

attribute attendance in the latter group is modelled as a function of a vec-

tor of observable characteristics zn, which may include a dummy for stated

non-attendance.

The parameter measures the degree of �full attendance� in�ation, or

the degree to which respondents attend to all attributes in excess of the

EAA probability of full attendance (HnCQ). Higher values of imply that

more respondents belong to the logit part of the model, as the probability of

belonging to this group is given by exp( )=(1 + exp( )):

Respondents who are di¤erent in terms of their attribute processing strate-

gies may also have di¤erent preferences for the characteristics of the alterna-

tives. The FAI-EAA model can capture this type of preference heterogeneity

as the attribute coe¢cients in the logit and EAA parts of the model, k

and k, are allowed to di¤er. This is an important extension of the EAA

model in light of the recent literature which suggests that models which fail

to allow for preference heterogeneity among �attenders� may confound non-

attendance with weak preferences (Alemu et al., 2011; Hess et al., 2011).

In other words, it may be that some respondents have weaker preferences

for an attribute than others, and unless this is captured in the model these

respondents may be incorrectly categorised as �non-attenders�.

The FAI-EAA model is estimated by maximising the log-likelihood func-

tion:

LLFAI EAA =
XN

n=1
lnPFAI EAA

n (6)

Although the FAI-EAA model nests the logit and EAA models, the null

hypotheses are at the boundary of the parameter space which complicates

the use of likelihood ratio tests (McLachlan and Peel, 2000).3 For simplicity

3The FAI-EAA model becomes the logit model when = and the EAA model
when = , in which case either the k ( = ) or k ( = ) parameters are
unidenti�ed. Likewise, it can be seen from equation (2) that the EAA model becomes the
logit model when HnCQ = 1 and HnCq = 0 q = Q, which implies that k = k.
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we therefore base the comparison of the goodness of �t of the models on the

Akaike and Schwarz information criteria.

3 The choice experiment

A randomly drawn sample of Norwegian general practitioners and hospital

consultants were electronically invited to participate in a choice experiment

designed to establish the relative importance of di¤erent criteria when pre-

scribing medicines. Out of the 2172 invited participants 571 responded, im-

plying a response rate of 26%. In the experiment the doctors were asked

to indicate which of two alternative medicines they would prescribe for a

hypothetical patient. An example choice task is given in �gure 1.

[Figure 1 around here]

The medicines were constructed as bundles of �ve attributes with be-

tween two and four levels. The attributes and their corresponding levels are

presented in table 1.

[Table 1 around here]

The identi�cation of the attributes in the design and their levels was based

on interviews with doctors and medical researchers; see Carlsen et al. (2011)

for more details about the survey development. Twenty four choice sets were

constructed using a D-optimality algorithm based on a standard logit model

with the coe¢cients set to zero (Carlsson and Martinsson, 2003). To avoid

exhausting the respondents the 24 choice sets were randomly divided into two

blocks so that each doctor made 12 choices. Considering that it takes around

10 minutes to answer the whole questionnaire and that the respondents to a

pilot study did not �nd the task too burdensome, it was concluded that 12

was a manageable number of choices.

After completing the choice experiment the doctors were asked to state

whether they ignored one or more attributes when making their choices.4

4The wording of the question was �When you made your choices, were there any
factors/attributes you chose not to take account of?�. The attributes were listed in the
same order as in the choice experiment.
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Table 2 reports the self-reported attribute non-attendance frequencies for

the 571 respondents in the sample. Only 9% of the doctors reported not

attending to the e¤ectiveness of the medication when making their choices

while 16% reported that they did not take the preferences of the patients into

account. A somewhat larger proportion (23-25%) reported that they ignored

the information regarding costs (overall/patient costs) and 26% ignored the

�Physician�s experience� attribute.

[Table 2 around here]

4 Results

4.1 Benchmark models

Table 3 presents the results of a standard logit model (model 1), an endoge-

nous attribute attendance model (model 2) and a �full attendance in�ated�

EAA model (model 3). In the standard logit model the respondents are im-

plicitly assumed to attend to all the attributes in the experiment, while the

EAA and FAI-EAA models relax this assumption. The ANA probabilities

are speci�ed to be �xed across respondents (zn = 1) but this assumption will

be relaxed in the next section. The attribute coe¢cients in all the models

are found to be signi�cant and have the expected signs. In particular we �nd

that higher costs (for both the patients and society) reduce the likelihood of

a doctor prescribing a medicine, while a medicine with higher e¢cacy is more

likely to be chosen. Doctors are also more likely to prescribe medicines with

which they have a positive experience (in terms of patient outcomes) and

those which the patients prefer. We will discuss the relative importance of

the attributes in section 4.3 which presents the willingness to pay estimates

derived from the di¤erent models.

[Table 3 around here]

It can be seen from the table that the goodness of �t of the EAA and

FAI-EAA models is substantially better than that of the logit model. The
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FAI-EAA model has the best �t, which re�ects the more �exible structure of

this model for modelling the probability of taking all attributes into account

in the choice process. As explained in section 2 the FAI-EAA model also has

the advantage that it can incorporate some degree of preference heterogeneity.

Table 4 reports the estimated ANA probabilities for each attribute based

on models 2 and 3. The ANA probabilities based on model 2 are somewhat

higher than those based on model 3 which are more in line with the stated

ANA frequencies reported in table 2. The biggest di¤erence between the

stated and inferred probabilities is for the �patient costs� attribute which a

quarter of respondents reported to have ignored compared to estimated ANA

probabilities of 0.01 (EAA) and 0.11 (FAI-EAA). While we cannot be certain

about the reason for this discrepancy, one possible explanation is that the

doctors in their stated ANA response want to signal that patient costs are

not the main concern when choosing which medicine to prescribe. When

they make their choices, however, it seems like most doctors do in fact take

this attribute into account. While this may be taken as evidence that stated

ANA should be viewed with caution we will see in the next section that the

stated and inferred ANA approaches are complementary.

[Table 4 around here]

4.2 Models with stated ANA dummies

In this section we relax the assumption that the attribute attendance prob-

abilities are �xed across respondents by including stated ANA dummies as

explanatory variables in the �rst-stage of the EAA and FAI-EAA models.

The results are reported in table 5. By comparing models 4 and 5 with

the benchmark models (2 and 3) we can see that the inclusion of the ANA

dummies increases the goodness of �t of the models substantially. We also

�nd that the FAI-EAA model continues to �t the data better than the EAA

model.

[Table 5 around here]
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Table 6 reports the predicted attribute non-attendance probabilities based

on models 4 and 5 for self-reported attribute �attenders� and �non-attenders�,

respectively. It can be seen that the ANA probability is consistently higher

for the self reported non-attenders and that the di¤erence is signi�cant for

all attributes in the FAI-EAA model5. This suggests that the doctors are

aware of their attribute processing strategies, at least to a certain extent,

and that the stated ANA contains some useful information. On the other

hand, while the di¤erence in probabilities is marked, there is still a positive

probability of attribute attendance among the self-reported non-attenders

which suggests that there is some misreporting in the data. This con�rms

previous suspicions in the literature that data on stated ANA should be used

with some caution.

[Table 6 around here]

It should be acknowledged that including the stated ANA dummies in the

models may be problematic if these variables are endogenous, i.e. related to

unobservable factors that determine the outcome. The fact that the attribute

coe¢cients in the EAA and FAI-EAA models with and without the stated

ANA variables are very similar can be taken as evidence that endogeneity

bias is not an issue in the present study. Moreover, including the stated ANA

dummies allows us to model the relationship between stated and inferred

ANA. This is a unique feature of our study which would not have been

possible otherwise.

4.3 Willingness to pay estimates

Tables 7 and 8 present the willingness to pay estimates derived from models

1-5. These are estimates of how large increases in societal costs the doctors

are willing to accept in exchange for an improvement in an attribute rather

than willingness to pay in the usual sense6, as the doctors do not pay for the

5 In the EAA model the di¤erence is signi�cant for all attributes except e¤ectiveness
and patient costs.

6See Carlsen et al. 2011 for a discussion of this issue. Carlsen et al. use the terminology
�willingness to impose societal costs�.
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prescriptions out of their own budget. We use the more familiar WTP termi-

nology here as our focus is on the di¤erence between the estimation methods.

Given the di¤erences in model speci�cation and underlying assumptions the

WTP estimates are remarkably similar across models, although the EAA and

FAI-EAA estimates are generally somewhat lower than those derived from

the standard logit model. There is a big di¤erence in WTP between the

logit and EAA parts of the FAI-EAA models, which illustrates this model�s

capacity to capture preference heterogeneity in the data. The respondents

belonging to the logit group (�the full attenders�) are found to have much

larger WTP than the respondents belonging to the EAA group, which in

part re�ects the greater sensitivity to cost in the latter group. The mean

WTP estimates derived from the FAI-EAA models are very similar to the

EAA estimates.

[Tables 7 and 8 around here]

The respondents are willing to pay the largest amount for an increase

in e¤ectiveness from 60% to 90%, with estimates ranging from 38,870 NOK

(model 3) to 46,190 NOK (model 1)7. The second most highly valued at-

tribute is patient preference, followed by the physician�s experience with the

medicine. Doctors are willing to pay the lowest amount for a reduction

in patient costs, which may re�ect the fact that the co-payments generally

constitute a relatively small share of the total cost of the medicines in the

experiment.8 There are no di¤erences between the models in terms of the

ranking of the attributes according to their WTP.

The �nding that the WTP estimates are generally consistent across mod-

els is interesting since previous papers in this area have found large di¤erences

in WTP (Scarpa et al. 2009, Hensher and Greene 2010, Hole 2011a). This

suggests that the magnitude of the bias that arises due to failure to allow for

ANA in the model is context dependent. In the concluding remarks we o¤er

some thoughts on this issue.

7100 NOK 17 US dollars at the time of writing.
8The range of patient costs was chosen to be as realistic as possible so we consider this

a positive feature rather than a weakness of the experimental design.
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5 Concluding remarks

In this paper we have presented a set of models estimated using data from

a Discrete Choice Experiment on doctors� choice of medication. The models

include a standard logit model, the endogenous attribute attendance (EAA)

model and a new model which we call the �full-attendance in�ated� EAA

model (FAI-EAA).

We �nd that the �t of the EAA model is substantially better than that

of the standard logit model, which suggests that a signi�cant share of the

respondents did not attend to all the attributes in the experiment. Further-

more, it is found that the FAI-EAA model which allows for a more �exible

way of modelling attribute non-attendance (ANA) outperforms the EAA

model in terms of goodness of �t. Including indicators for stated ANA in

the EAA and FAI-EAA models further improves the �t of these models, and

we �nd that the self-reported �non-attenders� have higher ANA probabilities

than the �attenders�. This suggests that self-reported ANA conveys useful

information about the respondents� attribute processing strategies, which is

also supported by the fact that the predicted probabilities of non-attendance

derived from the FAI-EAA model are similar to the proportion of doctors

reporting not having attended to the attributes. On the other hand we �nd

that self-reported non-attenders have a positive probability of attending to

an attribute, which illustrates the advantage of modelling non-attendance

probabilistically.

Contrary to previous papers in the literature we do not �nd a substan-

tial di¤erence in the willingness to pay estimates across models. We suspect

that this is due to the fact that the prevalence of ANA is lower in our sam-

ple than in many other applications. Our sample consists of professionals

(doctors) who are used to making choices similar to those in the experi-

ment (prescribing medicines) on a regular basis. It is not surprising that

the prevalence of simplifying �shortcuts� is less common in this group than

among patients choosing between doctors, for example, which was the setting

in Hole (2011a). The importance of taking attribute non-attendance into ac-

count in the analysis should therefore be assessed on a case-by-case basis.
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The results presented in this paper suggest that self-reported ANA provides

a good indicator of the prevalence of non-attendance and, consequently, of

whether adjustments to the modelling procedure are required.
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Figure 1 – Example of a choice situation 

 
  

Medicine A 
 
Medicine B 

 
Benefit/effect 

 
• The best on the market, 

90% normally respond 
to this medicine 

 

 
• 60% normally respond 

to this medicine 
 

Patient costs per year • 1000 NOK 
 

• 1800 NOK 
 

Total costs per year • 50 000 NOK 
 

• 10 000 NOK 
 

Patient’s own wishes 
about medication 

• prefers this (rather than 
the other) 

 

• does not prefer this (to 
the other) 

 

Your experience with 
this medication 

• little or none 
 

• good  
 

Which medicine will 
you choose? (please 
tick) 

  

 



 
Table 1 – Attributes and levels 

 
Attributes 
& levels 

Total costs Effect Patient costs Patient 
preference 

Physician’s 
experience 

 
Level 1 

 
5000 NOK 

 
60% normally 
respond to this 
medicine 
 

 
Free 

 
Does not 
prefer this 
medicine  

 
Little or none 

Level 2 10 000 NOK 75% normally 
respond to this 
medicine 
 

1000 NOK Prefers this 
medicine 

Good 

Level 3 25 000 NOK The best on the 
market; 90% 
normally respond 
to this medicine 
 

1800 NOK   

Level 4 50 000 NOK     

 
 



 
Table 2. Self-reported attribute non-attendance 

 
Attribute ANA percentage 
Total costs 23% 

  
Effect 9% 

  
Patient costs 25% 

  
Patient preference 16% 

  
Physician’s experience 26% 



 
Table 3. Benchmark models  

 
 Model1 

Logit 
Model 2 

EAA model 
Model 3 

FAI-EAA model 
   Logit EAA 
Total costs -0.051 -0.113 -0.060 -0.218 
 (-31.89) (-25.10) (-13.56) (-9.53) 
     
Effect 75% 0.998 1.930 1.302 2.558 
 (17.92) (16.56) (12.18) (8.63) 
     
Effect 90% 2.349 4.556 3.001 6.032 
 (32.55) (20.34) (17.98) (10.96) 
     
Patient costs 1000 NOK -0.647 -0.936 -0.831 -1.251 
 (-11.37) (-7.48) (-7.36) (-3.23) 
     
Patient costs 1800 NOK -0.722 -1.127 -0.973 -1.683 
 (-14.13) (-7.98) (-8.79) (-4.29) 
     
Preferred medicine 1.816 4.250 2.479 6.204 
 (20.11) (9.15) (12.27) (7.27) 
     
Physician has good experience  1.014 2.155 1.195 4.133 
with the medicine (24.76) (18.53) (12.83) (9.80) 
     
Lambda   -0.021 
   (-0.12) 
    
Number of respondents 571 571 571 
Number of choices 6852 6852 6852 
Log-likelihood -2693.54 -2441.51 -2390.01 
AIC 5401.08 4907.02 4820.02 
BIC 5431.51 4959.19 4906.97 
Notes: t-stats in parentheses  



 
Table 4. Estimated ANA probabilities based on EAA and FAI-EAA benchmark 

models 
 

Attribute EAA FAI-EAA 

Total costs 0.374 0.251 

 (0.025) (0.027) 

   
Effect 0.224 0.146 

 (0.025) (0.022) 

   
Patient costs  0.005 0.110 

 (0.087) (0.065) 

   
Patient preference 0.246 0.161 

 (0.054) (0.035) 

   
Physician’s experience  0.268 0.234 

 (0.035) (0.026) 
Notes: standard errors in parentheses. 



 
Table 5. EAA and FAI-EAA models with ANA dummies 

 
 Model 4 

EAA model 
Model 5 

FAI-EAA model 
  Logit EAA 

Total costs -0.112 -0.057 -0.181 
 (-24.84) (-13.39) (-11.04) 
    
Effect 75% 1.911 1.375 2.230 
 (16.90) (10.76) (9.75) 
    
Effect 90% 4.455 3.160 5.304 
 (21.12) (15.96) (12.55) 
    
Patient costs 1000 NOK -0.983 -0.793 -1.474 
 (-7.45) (-5.96) (-4.01) 
    
Patient costs 1800 NOK -1.196 -0.942 -1.794 
 (-7.96) (-7.63) (-4.66) 
    
Preferred medicine 4.405 2.472 5.663 
 (9.06) (10.28) (8.28) 
    
Physician has good experience  2.200 1.146 3.614 
with the medicine (18.80) (11.29) (10.29) 
    
Lambda  -0.377 
  (-2.35) 
   
Number of respondents 571 571 
Number of choices 6852 6852 
Log-likelihood -2367.93 -2319.90 
AIC 4769.86 4689.80 
BIC 4843.77 4798.48 
Notes: dummies for self reported non-attendance included in the first-stage model  
(not reported). t-stats in parentheses 



 
Table 6. Estimated attribute non-attendance probabilities based on EAA 

and FAI-EAA models with ANA dummies 
 
EAA FAI-EAA 

Attribute Att. Non-att. Diff. Att. Non-att. Diff. 
Total costs 0.279 0.693 0.414 0.175 0.513 0.339 

 (0.027) (0.047) (0.053) (0.027) (0.040) (0.039) 

       
Effect 0.205 0.333 0.129 0.141 0.336 0.194 

 (0.026) (0.078) (0.080) (0.025) (0.082) (0.084) 

       
Patient costs  0.002 0.243 0.240 0.098 0.326 0.228 

 (0.082) (0.145) (0.124) (0.066) (0.106) (0.095) 

       
Patient preference 0.194 0.762 0.568 0.113 0.546 0.434 

 (0.054) (0.082) (0.087) (0.034) (0.059) (0.064) 

       
Physician’s experience  0.188 0.631 0.443 0.164 0.480 0.316 

 (0.034) (0.063) (0.064) (0.028) (0.045) (0.047) 
Notes: Att. = self-reported attribute attenders, Non-att. = self-reported attribute non-attenders, 
Diff. = difference in ANA probability between the two groups. Standard errors in parentheses.  



 
Table 7. Willingness to pay - benchmark models  

 
 Model 1 

Logit 
Model 2 

EAA model 
Model 3 

FAI-EAA model 
   Logit EAA Mean 

Effect 75% 19.63 17.04 21.84 11.72 16.73 
 (17.58, 21.67) (15.26, 18.82) (18.22, 26.05) (9.50, 14.33) (14.58, 18.87) 
      
Effect 90% 46.19 40.23 50.34 27.64 38.87 
 (43.88, 48.50) (37.04, 43.42) (44.02, 58.09) (24.10, 32.04) (34.79, 42.95) 
      
Patient costs 1000 NOK -12.73 -8.26 -13.93 -5.73 -9.79 
 (-14.99, -10.47) (-10.28, -6.24) (-18.08, -10.19) (-9.48, -2.29) (-12.09, -7.48) 
      
Patient costs 1800 NOK -14.20 -9.95 -16.33 -7.71 -11.97 
 (-16.27, -12.13) (-12.18, -7.72) (-20.32, -12.74) (-11.15, -4.41) (-14.23, -9.72) 
      
Preferred medicine 35.69 37.53 41.58 28.43 34.94 
 (32.14, 39.25) (30.06, 45.00) (34.70, 49.60) (23.54, 33.25) (30.65, 39.22) 
      
Physician has good experience  19.93 19.03 20.04 18.94 19.48 
with the medicine (18.37, 21.49) (17.42, 20.65) (17.30, 23.16) (16.33, 22.01) (17.45, 21.52) 
Notes: All figures are in thousands of Norwegian kroner. 95% confidence intervals calculated using the delta method  
in parentheses  



Table 8. Willingness to pay - models with ANA dummies 
 

 Model 4 
EAA model 

Model 5 
FAI-EAA model 

  Logit EAA Mean 
Effect 75% 17.10 24.21 12.35 17.18 
 (15.30, 18.91) (19.42, 29.01) (10.05, 14.65) (15.08, 19.27) 
     
Effect 90% 39.87 55.64 29.38 40.06 
 (36.69, 43.05) (48.01, 63.28) (25.93, 32.83) (36.24, 43.89) 
     
Patient costs 1000 NOK -8.79 -13.97 -8.16 -10.52 
 (-10.93, -6.66) (-18.77, -9.17) (-11.57, -4.75) (-12.98, -8.07) 
     
Patient costs 1800 NOK -10.70 -16.58 -9.94 -12.64 
 (-13.10, -8.31) (-21.08, -12.08) (-13.28, -6.59) (-15.06, -10.23) 
     
Preferred medicine 39.42 43.52 31.36 36.31 
 (31.45, 47.39) (34.79, 52.25) (26.57, 36.16) (31.94, 40.69) 
     
Physician has good experience  19.69 20.17 20.02 20.08 
with the medicine (18.02, 21.36) (16.86, 23.48) (17.99, 22.04) (18.29, 21.87) 
Notes: All figures are in thousands of Norwegian kroner. 95% confidence intervals calculated using  
the delta method in parentheses 
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