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Abstract
We show that a novel pricing system can help resolve a series of perennial problems ev-
ident in the deregulated British urban public transport market that have compromised
economic growth, access equality and environmental ambitions. A two-stage pricing
system, with operators setting their multi-operator service ticket prices collusively in
one stage and their single-operator ticket prices independently, in the other, offers po-
tential consumer surplus, profit and welfare gains over, what we characterise as, the
‘Status Quo’. The proposed win-win pricing regime can also support a larger number of
operators and services with potential additional welfare gains. The Block Exemption
in the UK allowing collusive pricing on a limited basis is due to expire and is under
statutory review, making this is a timely contribution. We also compare the proposed
regime against a multi-operator ticketing card (MTC) scheme, permitted under the
Block Exemption, and show, whilst the MTC offers higher welfare when all regimes
provide the same number of services, the proposed regime supports a larger number
of operators in the presence of fixed costs, which can reverse the welfare ranking in
its favour. A calibration exercise indicates the market may be in the region where the
proposed regime can dominate the ‘Status Quo’ in profit, consumer surplus and wel-
fare terms and supports a larger network than the ‘Status Quo’ or MTC with further
welfare gains. The resulting higher public transport patronage may also offer further
indirect benefits via reduced pollution, congestion and accidents. Furthermore, by im-
proving transport efficiency it may help improve city density, especially in Britain’s
second-tier cities which do not tend to benefit from extensive public transit rail and
underground networks, with associated agglomeration effects contributing to the cur-
rent leveling-up priority. Given the salience amongst developed countries of the private
aspect of urban public transport in Britain, along with an unresolved private vs public
debate, this issue is of potential interest to urban planners and policymakers beyond
the UK.
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1 Introduction
A common feature of urban public transport systems around the world is the dual existence of
services across different modes and/or operators which (i) have a rival or substitute function,
but (ii) can also be used in combination and hence have a complementary function. It is
well known that in networks with such dual characteristics, independent setting of prices
can lead to inefficient equilibrium outcomes, potentially worse than monopoly (e.g., see
Economides and Salop, 1992; Socorro and Viecens, 2013; van der Weijde et al., 2013; Clark
et al., 2014). Examples in urban public transport arise when Origin-Destination (O − D)
journeys can be undertaken in two or more component parts (say an x journey followed by
a y journey), with different operators within a mode, and/or across modes, providing rival
services for these components that can also be used interchangeably to some extent. For
instance, a bus and tram operator might each provide return-trip travel between points A
and B (e.g., x is the outward, A to B, part and y is the return, B to A, part). Passengers
can make their entire O −D journey with a Single Operator (SO), e.g., taking both x and
y components using the bus. However, the outward bus x component can also be combined
with a return tram y component, and vice versa, creating a Multi-Operator (MO) journey.
Where such SO and MO journeys are available, theory suggests (e.g., see McHardy, 2022,
henceforthM22) that independent and simultaneous price-setting will result, amongst other
things, in elevatedMO ticket prices and sub-optimal quantities. We refer to this free-market,
independent price-setting, scenario as the ‘Status Quo’ regime (henceforth, SQ), employing
it as a stylised representation of current market conditions.

The deregulated urban public transport network in Britain is an example of a market
where distortions of the sort outlined above appear to be in evidence. For instance, TAS
(2020) report that whilst the availability of MO tickets extends to around three quarters of
services, their prices can be significantly higher than for SO tickets. Indeed, the Department
for Transport (2013, p. 43) cites examples of MO prices exceeding SO levels by up to
40%. Issues around MO prices on urban public transport in the UK are also explicitly
recognised in Department for Transport (2021). This report emphasises the importance for
achieving environmental commitments and enhancing mobility, jobs and economic growth of
an efficient, well-functioning, urban public transport system. But it also recognises ongoing
large-scale failure of the market to deliver towards these ends. It focuses on the urban bus
sector, with its relative flexibility (e.g., infrastructure), cost advantages and potential for
innovative developments, alongside better integration and coordination with other urban
transport modes, as the key channels through which the malaise in urban public transport
can be addressed. Organisational change and innovation, amongst other things, are identified
as the means of driving the reversal in declining urban bus patronage and elevating bus as
the go-to option for urban travel.1 But it also identifies poor integration and coordination
across urban transport services and modes, in particular with regard to MO ticketing, as
limiting factors in the functioning of the market.

Whilst private provision of urban public transport is not uncommon across the developing
1Whilst there is evidence of large gains from provision of urban public transport in terms of reducing

car externalities (e.g., see Adler and van Ommeren, 2016), there is also evidence to suggest some public
transport modes might be more effective than others at achieving gains (e.g., see Winston and Maheshri,
2007, who find U.S. urban rail to be potentially damaging to social welfare).
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world (e.g., see Gwilliam, 2001), amongst developed economies Britain stands out with
widespread private service operation. With the debate on the relative merits of private
versus public provision of urban public transportation being far from one-sided (e.g., see
Gagnepain et al., 2011), the case of Britain’s deregulated services continues to draw interest
from around the world with developments therein promising potentially rich new evidence
for the pro and anti columns of either side of the debate. Given the prominence of the
British bus sector in this debate, as well as among proposed solutions to ongoing urban
transport problems, we briefly review the British bus deregulation story highlighting key
themes and potential barriers to the development of a well-functioning market. It is against
this backdrop that we will set out the contribution of this paper.

Deregulation of the British local bus sector outside of London in 1986, under The Local
Transport Act (1985), split networks into ‘supported’ and ‘commercial’ services. The former
introduced competition via competitive tendering which aimed at helping drive down costs,
including via the replacement of less effective operators, within a framework with local
authority support. Commercial services, on the other hand, were open to unsupported, free-
market, competition. Competition in tendered services lasted relatively well, but despite
some early intense competition within commercial networks it was not well sustained. There
have been tangible benefits of deregulation in terms of innovation and competition. By 2000,
across the whole sector, real-terms unit costs per bus-km had fallen by around 45% (e.g., see
White, 2019). However, a number of failings have long been identified, for instance White
(2010) cites, amongst these, the inability to coordinate ticketing to the detriment of the user,
in particular the large-scale collapse in MO ticketing, and insufficient passenger volumes to
support multiple operators coexisting in networks, limiting the scope for competition.

Limited interest amongst operators for MO ticketing had been identified from early on
after deregulation (e.g., see Office of Fair Trading, 2009) with the Competition Commission
(2011) explicitly recommending the need to make greater use of MO tickets. What use of
MO ticketing there had been following the original deregulation was compromised by the
terms of 1998 Competition Act with operators fearing falling foul of competition law in un-
dertaking coordination arrangements on MO tickets. Whilst efforts were made to stimulate
MO ticket use, notably the Public Transport Ticketing Scheme Block Exemption (Competi-
tion Commission, 2001), henceforth Block Exemption, and Competition Commission (2011)
recommendations, MO ticket prices have remained relatively expensive.2 Despite more re-
cent policy changes supporting greater opportunities for coordination (e.g., the Bus Services
Act, 2017), MO ticket use has not adequately improved (e.g., see Department for Transport,
2021).

Central to the plans for a well-functioning urban transport market are tackling a set of
perennial problems that have broadly frustrated the industry in Britain (outside of London)

2Note, alternative explanations for observations of high prices and ineffective levels of price competition
in the urban British bus market include the relative attraction of frequency or timetabling competition (e.g.,
see Mackie et al., 1995; Ellis and Silva, 1998; Gomez-Lobo, 2007). These studies tend to abstract away
from the network aspect of the market and multi-stage O−D travel and, in assuming first-takes-all, do not
account for price competition in the context of more advanced information systems alerting passengers to
potential short waits for a known lower fare. In this paper we demonstrate the importance of the network
aspect of the market in driving up prices especially on MO tickets and with profit-harming impacts of SQ
pricing which provides incentives to avoid direct competition (e.g., see M22).

3



since deregulation. Three of particular interest are: (i) the large-scale failure to establish
effective use ofMO ticketing including relatively highMO prices, (ii) the failure of incentives
to stimulate provision of more extensive network coverage (geographic and temporal), (iii)
inadequate profit incentives to sustain rival operators, and, likely related to these, (iv) the
failure to sustain significant advances in passenger usage.

In this paper we develop a pricing structure which we show can help resolve all four
of these issues across urban public transport networks. In particular, we show that under
the novel pricing system proposed here, lower equilibrium prices, especially MO ones, can
obtain relative to SQ as defined above, making it more attractive towards resolving problem
(i).3 However, it is also shown that, with prices under SQ potentially above even monopoly
levels onMO services, the reduction in prices under the proposed system can drive, not only
consumer surplus gains, but also profit, and, therefore, unambiguous welfare gains. Higher
service profitability, of course, makes services, including marginal ones, more viable and
incentivises wider and/or denser network provision helping resolve problem (ii) as well as
helping support the co-existence of more competitors towards mitigating problem (iii). Of
course, lower prices and wider and/or denser network provision should provide impetus for
increased patronage, addressing problem (iv). In addition, the analysis reveals the potential
merits of trying to achieve better connectivity of existing services including across modes
under the SQ pricing regime. However, by raising operator profitability the new pricing
system may well incentivise better integration between existing operators who might be
deterred from integrating under SQ.4

The novel pricing system involves a two-stage price-setting process with operators collud-
ing in one stage on their MO component prices whilst setting their SO prices independently
in another stage.5 The reader might be concerned that such a scheme would face immediate
opposition on anti-competitive grounds, yet, in the UK, such a scheme would potentially be
allowed under the Block Exemption. Indeed, this is a timely piece as the Block Exemption is
due to expire in 2026 and is currently under statutory review. Under this legislation collusion
amongst operators is permitted on Multi-operator Ticket Cards (MTCs) and additionally
under certain conditions, that we will introduce formally later, which we argue might en-
compass the proposed new pricing system. We employ the n-operator transport network
model due to M22, which allows us to capture both substitute and complementary service
strategic interaction effects in a differentiated, multi-operator market setting. The M22
model provides an n-operator extension of an Economides and Salop (1992)-type network
model, where the latter restricts n to two.6 The Economides and Salop (1992) model has had

3The pricing structure is first proposed in a two-operator setting in the unpublished work McHardy et al.
(2012).

4It is well known, and is also evident in this paper, that in a transport network, better connecting
services can damage profit under independent price setting, potentially making some services nonviable
(e.g., see Bataille and Steinmetz, 2013).

5Lin (2004) and McHardy and Trotter (2006), amongst others, also consider network effects in the airline
sector under a two-stage pricing system, however, in the former case, the leader-follower roles are taken by
one or other of two airlines, and in the latter, airport pricing is the leader with airlines playing follower. In
contrast, here all operators are setting prices in each stage, with the stages separating the pricing of different
ticket types.

6Economides and Salop (1991) solve an n-firm version of the Economides and Salop (1992) 2-firm model
of parallel vertical integration. However, it is important to note that the pricing structure is not directly
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widespread application in the transport literature, either directly or in studies which can be
nested within it (e.g., see Shy, 1996; Lin, 2004; Mantin, 2012; Bataille and Steinmetz, 2013;
Silva and Verhoef, 2013; van den Berg, 2013; Clark et al., 2014; D’Alfonso et al., 2016; van
den Berg et al., 2022). We adopt the M22 Independence regime as our stylised model of the
SQ free-market outcome. In this regime all operators set all their prices (their SO price and
the price for their component of any MO services which they are involved with providing)
independently and simultaneously. We explore pricing and service provision incentives under
SQ and the proposed new pricing system, examining the equilibrium outcomes and implica-
tions for profit, consumer surplus and welfare. We also study the relative performance of the
new pricing system against the MTC and explore the potential for the former to support
a larger/denser network than SQ and the MTC with associated potential further welfare
benefits.

The following Section introduces the theoretical model. Section 3 introduces the stylised
SQ model and Monopoly and sets out the basis for the poor performance of the former
regime based onM22. A stylisedMTC is also introduced. Section 4 introduces the proposed
pricing system and explores how this can help alter incentive structures in the market to
resolve the problems identified above. Section 5 analyses the potential for different regimes
to support the co-existence of different numbers of rival operators with associated welfare
effects. Section 6 concludes.

2 Network Model
We envisage an urban public transport network with n operators providing SO and MO
services based on the n-operator framework in M22. Each operator i (i = 1, ..., n) provides
two services, xi and yi, which are differentiated across operators by space and/or time.
Combinations of xi and yj take passengers from origin, Oi, to destination, Dj, (i, j = 1, ..., n).
Figure 1 depicts the simple case with two operators (n = 2).

For instance, in the case of round-trip travel, transport origins (O1 and O2) and destina-
tions (D1 and D2) might be the same geographical location but x1 and y1 represent outward
and return journeys via some interim destination, I, using operator 1 and, x1 and y2, the
same geographical journey but with the return journey provided by operator 2 at a different
time to y1. Alternatively, urban transport origins and destinations might be geographically
distinct. Suppose a passenger, whose home is situated at a point between O1 and O2, wishes
to travel to a destination located between D1 and D2 via the city centre, I. All else being
equal, if their home is close to O1 and the final destination close to D2, then of the four
alternative (substitute) journey plans available via the city centre, they might prefer to use
combination {x1, y2}.

Clearly, the x and y journeys are complementary components of a composite O − D
service. Piecing together all x and y components gives rise to N ≡ n2 differentiated, sub-

comparable to that used here and in M22. In particular, in Economides and Salop (1991), SO prices are
made up of a firms’ two MO component prices, whereas, in transport settings, it is often the case that an
operator’s SO price is set independently of its component MO prices. Indeed, the latter has tended to be
the convention in the transport literature (e.g., see Flores-Fillol and Moner-Colonques, 2011; van den Berg
et al., 2022). Hence, pricing here is akin to that in Economides (1993).
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Figure 1: Two Operator Origin-Destination Urban Transport Network

stitute, O −D services. For later convenience it is useful to identify each substitute service
combination {xi, yj}, where (i, j = 1, ..., n), with a distinct number t = 1, ..., N . Let Pij be
the total ticket price for O −D travel using service combination {xi, yj}. Hence, the ticket
price for SO travel under operator i is Pii, and for the MO case, Pij = pij + qij (i 6= j),
where pij (qij) is the ticket price of operator i’s x-component (operator j’s y-component) of
the {xi, yj} journey. Where convenient, and interpretation is clear from context, we use P
and Px (Q and Qx) to indicate SO and MO prices (quantities) respectively.7

For simplicity we assume away costs for the most part. First, with most interest resting on
price, profit, consumer surplus and welfare ratios across regimes, with the focus on whether
these are above, below or equal to unity (but with little interest in the size of the of deviation
from unity), results can easily be seen to be entirely neutral to the introduction of constant
marginal costs, a standard assumption for urban public transport (e.g., see Clark et al.,
2014), and which has empirical support (e.g., see Jørgensen and Preston, 2003). Second,
it is straightforward to show that in the case of non-zero constant marginal costs that are
common across all operators, but differ across components x and y, equilibrium O−D prices
are unaffected by changes in the distribution of costs between x and y (where the composite
cost remains constant). Hence, zero constant marginal cost follows with no further loss of
generality. Third, with the structure of an O−D journey taken as common and fixed across
all journeys (i.e., interchange and route lengths are common for all services and under all
scenarios), including these will not affect where ratios of variables across regimes are equal
to, below or above unity, permitting their exclusion without loss of generality. However, in
Section 5, where different regimes are compared under different numbers of service operators,
we employ a non-zero fixed cost, which, in analysis elsewhere, is zero.

Following M22, let differentiation be captured by the following quasi-linear utility func-
tion which has the property of consumer surplus increasing in the size of network (at given

7Hence, P = Pii and Px = Pij where i 6= j.
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prices) such that it captures the added benefits of variety as the network grows with n:8

U(Q,M0) = α
N∑
t

Qt −
1
2

[
N∑
t

Q2
t + 2γ

N∑
t

∑
r>t

QtQr

]
+M0 (r 6= t = 1, ..., N) (1)

where Qt is the demand for O − D service combination with index, t, Q is the N -vector
of these service quantities, γ ∈ [0, 1] represents the degree of substitution between the dif-
ferentiated services with perfect substitutes (independent services) under γ = 1 (γ = 0)
and M0 is expenditure on other goods.9 Selecting a utility function which allows additional
differentiated services to increase consumer surplus at a given price is likely of importance
in the current urban transport modelling setting where a more extensive network would be
expected to raise consumer surplus not redistribute a fixed surplus. Hence, increasing n
in this network will increase consumer surplus directly through the utility function, which
values variety, but may also do so indirectly by stimulating competition and reducing prices.

Constrained optimisation yields the linear demands for SO andMO services, respectively:

Qii = a− bPii + d

(pij + qij) +
∑
k 6=i

Pkk +
∑
k 6=i,j

(pik + qik) +
∑
k 6=i

(pki + qki) +
∑
k 6=m,i

∑
m6=i

(pmk + qmk)


(2)

Qij = a− b (pij + qij) + d

Pii +
∑
k 6=i

Pkk +
∑
k 6=i,j

(pik + qik) +
∑
k 6=i

(pki + qki) +
∑
k 6=m,i

∑
m 6=i

(pmk + qmk)


where:

a ≡ α

(1 + γ(N − 1)) , b ≡ 1 + γ(N − 2)
(1− γ)(1 + γ(N − 1)) , d ≡ γ

(1− γ)(1 + γ(N − 1)) (3)

Calculating utility in this N -service setting is aided by the symmetry of the model, and
follows from the use of combinatorics, as set out in M22, such that utility under regime R
can be written:

UR(Q,M0) = α(nQR+n(n−1)QR
x )−1

2
[
n(QR)2 + n(n− 1)(QR

x )2
]
−γ

[
X(QR)2 + Y (QR

x )2 + ZQRQR
x

]
+M0

(4)
where X = n(n−1)

2 , Y = n(n−1)[n(n−1)−1]
2 , and, Z = n2(n− 1).

Let πR denote total profit across the network under regime R, hence consumer surplus,
S, and welfare, W , under regime R are given by:

SR = UR −M0 −MR, WR = SR + πR (5)

where MR = ∑
t P

R
t Q

R
t (t = 1, ..., N) is the total expenditure across the urban transport

network.
For simplicity we employ the following assumption defining the relevant parameter set

for the analysis which follows.
8According to Choné and Linnemer (2020) this as a Spence (1976)-type utility function, as employed in

a range of industrial and transport studies (e.g., see Hackner, 2000; Silva and Verhoef, 2013), and given it is
specified here in an N -dimensional version, recommend citing Shubik and Levitan (1980).

9As we capture complementary interrelationships in the network explicitly in the design of O−D journeys,
for simplicity we rule out negative values of γ which imply complementarity between O −D services.

7



Assumption 1. (i) γ ∈ (0, 1), (ii) n ≥ 2, and (iii) gross substitutes: b > (n2 − 1)d.

Assumption 1(i) eliminates the uninteresting case of fully independent services, avoids
some discontinuity of equilibria at γ = 1, and, facilitates simpler statements of results and
proofs. Assumption 1(ii) recognises that the model loses essential aspects of interaction
in the network making it uninteresting for analysis for n < 2 whilst offering substantially
greater analytical complexity in some scenarios. Assumption 1(iii) requires that under an
equal increase in the prices of all O − D services, the demand for each service is reduced.
Henceforth, for all stated results we should interpret the relevant range as determined under
Assumption 1.

3 The ‘Status Quo’ (SQ) Problem & the MTC
In this Section we draw on M22 to introduce two benchmark regimes: Monopoly and SQ.
We envisage the SQ model as a stylised representation of the current conditions in the free-
market urban transport setting in Britain (outside London) under deregulation. Analysis of
these regimes helps illustrate, not only the potential for the SQ regime to perform poorly in
welfare terms, but also indicate the drivers of this performance. On the one hand, this helps
motivate the case for policy alternatives but also provides the SQ as a benchmark against
which we can measure the performance of our novel pricing system, in particular the extent
to which it might help resolve performance issues under SQ, shortcomings which appear to
match those identified in the Introduction afflicting the British deregulated urban transport
sector.

Under Monopoly, a single operator runs all N services and solves the problem:10

max
{P }

π = PtQt +
∑
r 6=t

PrQr − nF, (r 6= t = 1, ..., N) (6)

where P is an N -vector of all O −D fares across the N services. The resulting equilibrium
has a single, common, O −D price across all services:

PM = α

2 (7)

Under SQ (equivalent to the ‘Independence’ regime in M22) each operator i solves the
following problem:

max
{Pii,pij ,qji}

πi = PiiQii +
∑
j 6=i

pijQij +
∑
j 6=i

qjiQji − F (j 6= i = 1, ..., n) (8)

where pij and qji are (n − 1)-vectors of operator i’s MO component prices. The resulting
equilibrium SO and MO prices are, respectively:

P SQ = 3α(1− γ)
6 + γ(2n2 − 3n− 5) , P SQ

x = 4α(1− γ)
6 + γ(2n2 − 3n− 5) (9)

10Whilst there are N services across the network, there are only n fixed costs - one associated with the
provision of each {x, y} pair.
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Analysis of these equilibria in M22 reveals the following insights. First, Monopoly, as
expected, is strictly more profitable, but also dominates the SQ regime in terms of both con-
sumer surplus and welfare below some critical thresholds of substitutability. These thresholds
are falling, reducing the parameter set over which Monopoly dominates in consumer surplus
and welfare terms, as the number of services increases. To understand what is driving this,
note that under the SQ regime, neither of the strategic externalities present in the network
are internalised. That is, externalities associated with substitute aspects of the network are
at play, which impact prices with downward pressure: the relationship between O−D prices
is strategic complements with increasing differences. However, the externalities associated
with the complementary aspects are also present under SQ, and these act on the MO prices
in an upward direction: the relationship between prices of component xi and yj (i 6= j) is
strategic substitutes with decreasing differences. Under Monopoly, both externality types
are internalised. The result is that under SQ, SO prices, via the rival externalities, are
lower than the Monopoly level, whilst the MO prices, which exhibit the complementary ser-
vice externalities, are above Monopoly levels if the services are not sufficiently differentiated
(substitutability is not too high).11

M22 also considers the relative performance of a multi-operator ticketing scheme per-
mitted under the Block Exemption. This exercise derives an equilibrium for a stylised repre-
sentation of one of the ticketing options allowed under the Block Exemption, the MTC, as
introduced earlier, in line with the Competition Commission’s recommended pricing frame-
work (see Department for Transport, 2013, pp.22):

PMTC = “Average or median single fares x Estimated [typical] ticket usage x Passenger
discount for purchasing a multi-journey ticket”

(10)
In brief, this involves the operators being able to collude on MO prices, setting them at
some discounted level of the weighted average of the SO prices on the network.12 Note
however, this pricing framework is a recommendation, rather than compulsory, as stressed
in the Block Exemption guidance (see Competition and Markets Authority, 2016, footnote
33 p. 30), and indeed, engagement with an MTC, is itself, also optional.

We later undertake comparisons between the new pricing system and a stylised MTC,
which we now outline here. Operators are envisaged to set their SO prices knowing that the
MO price will be set at a discount δ of the weighted average of the SO prices across the
market. For simplicity, we consider the case where the discount is zero, and hence the MO
price will be the weighted average of the SO prices, which, given symmetry will mean SO

11Note, whilst O−D services (service components) are substitutes (complements) their prices are related
as strategic complements (substitutes) with increasing (decreasing) differences.

12The stylised MTC in M22 assumes away any benefits arising from reduced transactions costs under the
MTC e.g., only one ticket is needed to be bought instead of multiple tickets over time. It also takes the
limiting case where the estimated average number of journeys is one, whilst the Block Exemption requires
at least three. However, as the model does not accommodate associated flexibility and transactions cost
advantages of the multi-journey aspect of the ticket, this restriction is without further loss of generality.
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and MO prices are the same at equilibrium.13 Operator i solves the problem:14

max
{Pii}

πi = PiiQii + (n− 1)PxQx − F

where the x subscript denotes an MO variable, as set out earlier. From M22, imposing a
zero discount, the equilibrium SO andMO prices under theMTC are the same, hence there
is a single price:

PMTC = α(1− γ)(2n− 1)
2(2n− 1)(1− γ) + n2γ(n− 1) (11)

from which it is immediately apparent that PMTC lies strictly below the Monopoly price in
the relevant range.

Given the above discussion about undesirable upward pressure, for operators and pas-
sengers, on MO prices under SQ, this MTC has a clear potential attraction. The MTC
pricing framework puts controls on theMO price, which under SQ can exceed the Monopoly
level to the detriment of profit and consumer surplus. However, in their analysis M22 show
that whilst the MTC helps improve consumer surplus and welfare relative to SQ, it can be
damaging in terms of profitability. This potentially helps to explain why it is that in practice
MO ticketing has not enjoyed more widespread use, at least under the recommended pricing
framework of Eq. (10). If Eq. (10) held then this would not fit the evidence, cited earlier,
of MO prices exceeding SO levels.

Finally, M22 undertake a calibration exercise and demonstrate that applying long-run
own price elasticity of demand estimates to the SQmodel results in it indicating required lev-
els of substitutability around the region where potentially, (i) SQ under-performs Monopoly,
and, (ii) theMTC is less attractive in profit terms than SQ, again perhaps helping to explain
its apparent limited take-up in the form of Eq. (10). The remainder of the paper applies
the M22 framework to the new pricing system which we solve and analyse to see the extent
to which it might help resolve the issues around the poor performance of the SQ regime but
might also help improve on the MTC.

4 Two-Stage Pricing with Collusion
We now introduce a two-stage model of price setting in which operators are permitted to col-
lude in setting prices on their MO tickets in one stage but independently set their SO ticket
prices in the other stage. We consider two alternative interpretations of the pricing system
and denote them according to the period in which prices are set collusively. Hence, regime
C1 (C2), has operators colluding to setting MO prices in period 1 (2).15 As we have noted,

13It is straightforward to show that profit is decreasing in the size of the discount in theMTC calculation.
Given the issue of interest around the MTC here is a paucity of evidence supporting the willingness of
operators to join an MTC which sets prices in line with Competition Commission recommendations, we
focus attention on the most profitable interpretation, a zero discount.

14Under symmetry, with each operator sharing equally the revenue from each of the 2(n− 1) MO services
they contribute toward, total revenue for an operator from their MO patronage is 1

2 [2(n− 1)]PxQx.
15Note, it is straightforward to see (and prove) that the equilibrium under C2 is identical mathematically

to the outcome under which all prices are set simultaneously, with MO prices set collusively and SO prices
independently. In practice, however, the latter is not likely to be an appealing prospect as maintaining the
integrity of independent SO pricing would appear problematic.
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in Britain transport operators are already allowed to discuss and agree prices on MTCs
under the Block Exemption (e.g., see Competition and Markets Authority, 2016, point 4.32
pp. 32), but also, potentially more widely, if in so doing, they satisfy four conditions of
the Competition Act (1998) (Competition Commission, 1998) Section 9(1), which may well
apply here:16 (i) efficiency gains, e.g., through reduced transactions costs or provision of ad-
ditional services, (ii) no elimination of competition, (iii) a fair share for consumers, envisaged
under the MTC, for instance, as the agreed MTC price being discounted relative to SO
prices, and, (iv) that outcomes must not create restrictions beyond what is needed to bring
the associated benefits of ticketing arrangements. Hence, collusion required to achieve ‘good’
MO outcomes must not leak anti-competitiveness into other aspects of decision-making.17

We will later review the new regimes in terms of their outcomes against each of the above
conditions.

The motivation for the proposed pricing structure comes from the earlier recognition that
the elevation ofMO prices under SQ is driven by decreasing differences across operators’MO
price components: collusive pricing on these components would result in lower, not higher
prices. This strategic externality is internalised under Monopoly, but, of course, Monopoly
also suffers from internalising the strategic complements (increasing differences) externality
across the rival service prices which would result in SO prices being lower without collusion.
It will be important to understand how increasing the number of operators in this context
works in terms of whether it emphasises one effect over the other (strategic substitute versus
strategic complement) and hence increasing n favours the performance of SQ or the collusive
models. In particular, note that whilst an increase in n under SQ increases the number of
rival O − D services by 2n − 1, it also raises the number of complementary interactions
within MO price setting by 2(n− 1). The former adds to downwards pressure on prices and
the latter, upward pressure. Under the collusive models, with all the MO prices being set
jointly, the addition of an operator adds nothing to the complementary service externality
(and associated upward pressure on prices), but has a significantly muted impact on rival
strategic interaction, relative to SQ, adding just one new rival service where price is set
independently. A priori, it is not obvious how the zero externality across complementary
services and muted rival externality under collusion will play against the large increases
in both rival and complementary service strategic interactions under SQ, and hence, how
changes in n may alter the relative prices under the different regimes.

4.1 Stage 1 Collusion
Beginning with regime C1, the operators at stage one of the game will collude to set theMO
price for the network, Px.18 At stage two, each operator will independently set their SO price
taking Px as given. Solving by backward induction involves finding the profit maximising
selection of SO fares that operators will set at stage two taking Px as given. Hence, operator

16See Competition and Markets Authority (2016), which provides guidance on these conditions.
17The guidance also states that routes covered by operators participating in an MTC should not be too

similar (see Competition and Markets Authority, 2016, point 3.16 pp. 14).
18Given the symmetry of the model this is a single price, common across all MO services.
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i solves the problem:19

max
{Pii}

πi = PiiQii + (n− 1)PxQx − F (12)

yielding the following first-order condition:

Qii − bPii + (n− 1)dPx = 0 (13)

The operators, jointly optimising profit at stage one, will identify the equilibrium SO
price as a function of Px associated with Eq. (13), which given symmetry (Pii = Pjj ∀i, j =
1, ..., n) is:20

P (Px) = a+ d(n2 − 1)Px
2b− d(n− 1) (14)

The associated optimising stage-two response of operators in their setting of SO prices, to
a change in Px, is then:

A ≡ ∂P (Px)
∂Px

= d(n2 − 1)
2b− d(n− 1) (15)

The problem the operators collectively solve at stage one is then:21

max
{Px}

π = nP (Px)Q+ n(n− 1)PxQx − nF (16)

Deriving the first-order condition, employing Eq. (15), and then recognising symmetry (i.e.
Pii = Pjj ∀i, j = 1, ..., n), we have:

AQ+ [d(n− 1)(n+A)− bA]P + (n− 1)Qx + (n− 1)[d(nA+ n(n− 1)− 1)− b]Px = 0 (17)

Solving Eqs. (14) and (17) simultaneously results in the following equilibrium SO and MO
prices in the model with collusion at stage one:

PC1 = 1
∇
α(1− γ)(2 + γ(n2 + n− 4)), PC1

x = 1
∇

2α(1− γ)(1 + γ(n2 − 2)) (18)

where ∇ ≡ 4 + γ(4n2 − 12) + γ2(n+ 1)(n2 − 7n+ 8).
Lemma 1. The MO price under regime C1 is strictly lower than the Monopoly level in the
relevant range: PC1

x < PM .

Hence, trivially, we have established the positive observation, that unlike the case of SQ,
incidences of prices on MO services exceeding monopoly levels do not arise under C1.

Interior solutions for QC1
x require γ to not be too high as, with very close substitutes, PC1

slightly below PC1
x drives QC1

x to zero. Interior solutions require γ < γ̃(n) ≡ n2−3+
√
n4−2n+1

3n2−n−4 ,
where QC1

x = 0 at γ̃(n). All Figures illustrating hypothetical realisations of C1 variables
are right-truncated at the point MO quantities reach zero. Note, we will later see, under a
calibration exercise, that real-world elasticity estimates suggest the market may be operating
at levels of substitutability (well) below γ̃(n).

19As before, given symmetry, an individual operator receives half the fare revenue for each of the 2(n− 1)
MO services it provides components for.

20This gives rise to the closed-loop solution to the two-stage game (e.g., see Fudenberg and Tirole, 1991, pp.
132). Note, the same outcome ensues if we don’t recognise symmetry at this stage, but is more cumbersome.

21Again, we assume operators share MO revenues on a pro rata basis, which given symmetry means equal
shares.
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4.2 Stage 2 Collusion
We now consider the reverse scenario where, in the first stage operators independently select
their SO prices knowing they will jointly maximise profit, setting MO prices, Px, collusively
in the second stage, taking as given the first-stage SO prices.

Solving by backward induction, at stage two the operators collectively solve the following
problem:

max
{Px}

π = PiiQii +
∑
j 6=i

PjjQjj + n(n− 1)PxQx − nF (i 6= j = 1, ..., n) (19)

giving rise to the first-order condition:

dn(n− 1)
Pii +

∑
j 6=i

Pjj

 + n(n− 1)[Qx + Px(d(n2 − 1)− b)] = 0 (20)

Hence, operator i at stage one will factor in that a change in its SO price will have the
following impact:

B ≡ ∂Px
∂Pii

= d

b− d(n(n− 1)− 1) (21)

At stage one the operators independently solve the following problem, taking B as given:

max
{Pii}

πi = PiiQii + (n− 1)PxQx − F (22)

The first-order condition for operator i, using Eq. (21), yields;

Qii−Pii[b− dB(n(n− 1))]− (n− 1)Px[bB − d− dB(n(n− 1)− 1)] + (n− 1)BQx = 0 (23)

Recognising symmetry (i.e., Pii = Pjj ∀i, j = 1, ..., n) and solving Eqs. (20) and (23)
simultaneously, the equilibrium SO andMO ticket prices under regime C2 are, respectively:

PC2 = 1
∆α(1− γ)(2 + γ(n2 + 2n− 3)), PC2

x = 1
∆α(1− γ)(2 + γ(2n2 + n− 3)) (24)

where ∆ ≡ 2(1 + γ(n2 − 1))(2 + γ(n− 3)).

4.3 Analysis and Findings
Having recognised a key source of the problem under SQ is via the MO price distortion,
we now explore the pricing outcomes under the collusive regimes. For the remainder of this
subsection we assume fixed costs are zero. We begin by comparing the performance of the
two new regimes using Eqs. (18) and (24).

Proposition 1. (i) C2 is a strictly lower price regime than C1: PC1 > PC2, PC1
x > PC2

x .
(ii) Within each collusive price regime MO prices are strictly greater than their equivalent
SO prices: PC1

x > PC1, PC2
x > PC2.

Proposition 1 leads to the following observation.
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Corollary 1. The collusive regimes do not produce price outcomes in line with the UK Com-
petition Commission’s recommended MTC pricing framework which would require PMTC ≡
PR
x < PR (R ∈ {C1, C2}).

Hence, given the freedom to collude on MO prices under the MTC, firms might not be
incentivised to adopt the recommended pricing structure which explicitly has the MO price
at a discount of the SO prices. Further, from Lemma 1 and Proposition 1, it follows that:

Corollary 2. All equilibrium prices under regimes C1 and C2 are strictly below the monopoly
level in the relevant range: PC1, PC1

x , PC2, PC2
x ∈ (0, PM).

We are now ready to discuss Proposition 1, where both MO and SO prices are unam-
biguously lower under stage 2 collusion than under stage 1 collusion. A priori, one might
have expected this result. Given that the two-stage regime C2 is mathematically equivalent
to simultaneous (i) independent SO pricing with (ii) collusive MO pricing, it can’t be the
case that under this regime operators are able to exploit any potential for the two-stage
process to combat downward pressures on prices via externalities across substitute services.
Given both collusive regimes internalise externalities across complementary services, then
we would not expect any prices above the Monopoly level (as confirmed in Corollary 2),
though these are the driver of the above Monopoly MO prices under SQ. Hence, if there is
any leverage in the two-stage set-up to combat competitive downward forces on prices, we
would expect this to play out in regime C1 with both prices higher, and therefore closer to
Monopoly levels, than C2 equivalents. What is happening here is that when the operators
collude at stage one, they are able to exploit that the prices they set are taken as given by
the independent SO price setters at stage two, and can therefore control the environment in
which this happens. They do this by minimising the damage of the independent stage-two
decision-making via exploitation of the operators’ stage-two best response functions, akin
to von Stackelberg (1934). Of course, whichever the stage in which the MO prices are set
collusively, those prices are higher than corresponding SO prices. This means that, given the
opportunity to collude on MO prices, with collusion at stage one or stage two, the operators
would not choose to set MO prices at or below SO prices (Lemma 1), as recommended by
the Competition Commission in Eq. (10). This perhaps offers some insight into why the
evidence appears to suggest operators are not opting to adopt Eq. (10) when setting MO
prices.

Comparison of Eqs (9), (18) and (24) gives rise to the following Proposition about equi-
librium prices under the different regimes.

Proposition 2. (i) For n = 2, C2 prices are everywhere lower than their SQ equivalents:
PC2|n=2 < P SQ|n=2 and PC2

x |n=2 < P SQ
x |n=2, otherwise, (ii) collusive regime prices are

lower than their SQ equivalents below critical thresholds of substitutability which are strictly
decreasing in n: PR < P SQ and PR

x < P SQ
x , for γ < γR1 , where ∂γR1 /∂n < 0 (R ∈ {C1, C2}),

and, (iii) for any given n, the substitutability threshold for C1 is strictly lower than for C2:
γC1

1 < γC2
1 .

Hence, outside the special case under C2 with n = 2, where prices are everywhere strictly
lower than under SQ, both collusive pricing regimes do offer lower SO and MO prices than
SQ for sufficiently low levels of substitutability. The critical levels of substitutability are
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strictly more restrictive for the regime with collusion at stage one than at stage two. Both
thresholds become more constraining with higher numbers of operators, lowering the avail-
able levels of product differentiation which support collusive prices being lower than their
SQ equivalents. Relating the role of substitutability to our earlier discussion, recall, under
collusion, the externality across complementary services is internalised but the number of
rival service prices being set is muted, relative to SQ. The lower prices under collusion
result when (i) the benefits of colluding on MO prices, internalising the damaging external-
ity across complementary services, outweighs (ii) the anti-competitive effects of collusion,
through the smaller number of rival prices being set independently. For sufficiently low lev-
els of substitutability the rival substitute effects, placing downward pressure across the n2

prices under SQ, (ii) , which are muted under collusion, are of relatively less importance
than the complementary effects that are eliminated under collusion, (i), resulting in lower
prices under the latter. Similar reasoning applies to the case of an increase in the number
of operators for a given level of substitutability. The pro-competitive effects of adding an
extra operator under SQ with 2n− 1 more independently priced substitutes relative to only
one more under collusion, need to be dampened by lower levels of substitutability for prices
under collusion to remain below SQ levels.

Figure 2: Prices and Total Quantities under C1 and C2 relative to SQ

(a) SO Prices (b) MO Prices (c) Aggregate Quantities

n = 2, n = 3, n = 4, n = 5, Blue=C1, Red=C2

Figure 2 illustrates price and aggregate quantity ratios under collusion relative to SQ
for n ∈ {2, 3, 4, 5}. Amongst other things, this reveals the broad range of substitutability
values for which MO prices are improved by the two-stage pricing system, relative to SQ,
especially for low n and under second-stage collusion. Indeed, the collusive regimes yield
lower prices and higher quantities than SQ at low levels of substitutability in the region in
which the latter under performs relative to Monopoly (see M22). It is also important to
note the role of increasing n in making SQ relatively attractive, especially in the case of
comparisons with the first-stage collusion regime. However, in the Introduction, we reported
the argument that a lack of operators in the British deregulated bus market is due, in part,
to the inability for the market to sustain larger operator numbers. Hence, if it is not possible
to incentivise an increased number of operators from inadequately low levels under SQ, then
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there is an argument for employing one of the collusive regimes, an issue we return to in the
following section.

Having observed, in Corollary 1, that profit-maximising operators with the option to col-
lude onMO prices do not appear to select prices according to the Competition Commissions
recommendations, Eq. (10), we now turn to an explicit analysis of price comparisons across
these regimes. Whilst it would appear likely that collusive MO prices are higher than the
MTC levels, it is not clear where relative SO prices sit across the regimes. This is because
constraints placed on the MO price under the MTC may incentivise higher SO prices.
Proposition 3. Under the collusive regimes R ∈ {C1, C2}: (i) MO prices are strictly
greater than the MTC price in the relevant range: PR

x > PMTC, and, (ii) SO prices are
strictly lower than the MTC price below a threshold contour γR2 , with γC1

2 < γC2
2 , and the

thresholds are strictly decreasing in n: ∂γR2 /∂n < 0.
The reasoning here is similar to that discussed above in relation to the comparison be-

tween the collusive regimes and SQ, if a little more straightforward. In this case there are
no externalities across complementary aspects of services in any regime, and the number of
independently set prices is the same in each case, n. Indeed, prices across these regimes are
also all strictly below the Monopoly level in the relevant range. Given this, firms are going
to want to push prices withing this system higher, closer to PM . From Proposition 3, it is
clear that the collusive regimes are better at achieving this on MO prices than under the
MTC, as these are the prices they are allowed to collude on. The only mechanism for upward
pressure on prices under the MTC is via higher SO prices. Hence, across the regimes, the
role of SO prices in achieving higher network prices lies much more with the MTC than the
collusive regimes. However, whilst an individual operator raising their SO price under the
MTC has an upward impact on the MO price and profit on their MO component services,
it penalises their SO profits given rival operators’ SO prices are now lower. At higher levels
of substitutability or with higher numbers of firms the latter effect is relatively dominant and
the SO price channel for raising prices under the MTC is weak: SO prices are driven below
levels on the collusive regimes. On the other hand, if substitutability and the number of
rival operators is sufficiently low, the incentives support higher SO prices under the MTC.

We now turn to how the price differences across the regimes manifest in terms of profit,
consumer surplus and welfare outcomes.
Proposition 4. Whilst collusive pricing regime C1 is (i) strictly superior to C2 in terms of
profit: πC1 > πC2, it is strictly inferior to C2 in terms of (ii) consumer surplus: SC2 > SC1,
and (iii) welfare: WC2 > WC1.

Hence, as we anticipated, based on the ability of operators to influence SO prices under
stage-one collusion, regime C1 is a higher profit and lower welfare regime than C2. How-
ever, note that higher profitability might facilitate supporting a larger/denser network with
potential associated welfare gains. We return to this point in the following Section.

Turning to profit comparisons across SQ and the collusive regimes we present the follow-
ing Proposition.
Proposition 5. (i) Profit under C1 is strictly (weakly) greater than under SQ for γ 6= γC1

1
(γ = γC1

1 ). (ii) Profit under C2 is strictly greater than under SQ for γC2
3 > γ > γC2

1 . (iii)
The key substitutability thresholds are ordered as follows: γC2

3 < γC1
1 < γC2

1 .
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Hence, C1 weakly dominates SQ for profit, whilst profit under C2 falls below SQ levels
between two contours (the interval between the solid and dashed cyan contours in Figure 3
representing γC2

3 and γC2
1 , respectively), but otherwise C2 is more profitable than SQ, too.

The following Proposition sets out the corresponding analysis for consumer surplus and
welfare across the regimes.

Proposition 6. Under the collusive regimes R ∈ {C1, C2}: consumer surplus and welfare
are strictly greater than under SQ below some substitutability threshold (K ∈ {S,W}):

KC1 > KSQ for γ < γC1
1

KC2 > KSQ for γ < γC2
1

Combining Propositions 5 and 6 yields the following result.

Corollary 3. (i) The collusive regimes offer a win-win opportunity relative to SQ, with
higher profit, consumer surplus and welfare, below some substitutability threshold (K ∈
{S,W}):

KC1 > KSQ, for γ < γC1
1

KC2 > KSQ, for γ < γC2
3

(ii) The win-win substitutability threshold is more restrictive for C2 then C1: γC2
3 < γC1

1

Hence, the lower prices under collusion relative to SQ, for sufficiently low levels of sub-
stitutability, translate into, not only higher consumer surplus, but also profit and therefore
welfare. Regime C1 is more robust to higher levels of substitutability in terms of this win-
win outcome, relative to SQ, whilst C2 offers consumer surplus and welfare gains over SQ
for a wider range of substitutability than C1. Increasing the number of operators reduces
the scope of the win-win outcome. Hence, if it is not possible to accommodate higher n
under SQ and γ is below γC2

3 , then either of the collusive models will improve profit and
consumer surplus and the regulating body might choose between the two based on whether
emphasis is particularly on enhancing consumer surplus (C2) or enhancing profit (C1), with
the latter perhaps to incentivise an increase in the number of operators and services. If it is
thought that γ is below γC1

1 , but might not be below γC2
3 , then C1 would be the safe bet to

ensure win-win gains. However, in such circumstances, if consumer surplus gains are sought
over profit incentives, then C2 might be selected as it ensures higher consumer surplus and
welfare but profit may be lower than under SQ.

We now reproduce the calibration exercise in M22 which takes long-run own-price elas-
ticity of demand estimates for transport modes and fits this data to the equilibrium under
SQ with constant marginal cost, c (see M22 Appendix B for a derivation).22 This results in
contours in (γ, n)-space which the market would be on approximately, if it behaved accord-
ing to the SQ model at a given elasticity, η. Let nCALη,c (γ) (with inverse γCALη,c (n)) represent
the number of operators identified under the calibration assuming the market is operating
in line with SQ and for a given level of elasticity and constant marginal cost. In Figure

22Marginal cost relates to the cost to service providers of providing one x and one y component passenger
journey. Hence, it is the marginal cost of a single O −D trip.
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3, we reproduce the contours for the following parameter selections: (i) constant marginal
cost, c ∈ {0, α20}, and, (ii) elasticity, η ∈ {−0.6,−1}.23 Contours with η = −0.6 are blue and
those with η = −1.0 are red, and solid lines represent c = 0 whilst dash-dot lines represent
c = α

20 . These are plotted alongside the contour thresholds, γC1
1 and γC2

3 (solid pink and
cyan, respectively), below which collusive outcomes yield superior profit, consumer surplus
and welfare outcomes to SQ in (γ, n)-space. As noted earlier parameter combinations be-
tween the contours γC2

3 and γC2
1 (dashed cyan line) under C2 yield higher consumer surplus

and welfare than SQ but lower profit.

Figure 3: Calibration contours nCALη,c (γ) for η ∈ {−0.6,−1} and c ∈ {0, α20},
Collusion Regime Threshold Contours n(γC1

1 ), n(γC2
1 ) and n(γC2

3 )

(a) Wide view (b) Close-up

nCAL−0.6,0(γ), nCAL−0.6, α20
(γ), nCAL−1.0,0(γ), nCAL−1.0, α20

(γ), n(γC1
1 ), n(γC2

3 ) n(γC2
1 )

From Figure 3, under η = −1.0 and zero marginal cost, the market would be operating at
a point on the solid red line, which appears to sit, at least over some range of substitutability,
below both threshold contours giving win-win outcomes under both collusive regimes. It
is also clear that win-win outcomes are also available under non-zero costs, although the
introduction of non-zero marginal costs and less elastic demand appear to make this less
likely. However, earlier we noted that C1 may not produce interior solutions for sufficiently
high levels of substitutability. Therefore, in formally unpicking the implications of the win-
win observation in the Figure, we begin with the following Lemma.

23The selection of elasticities is based on evidence of long-run bus elasticities in the UK of around −1,
(e.g., see Paulley et al., 2006; Dunkerley et al., 2018), with the lower elasticity value corresponding to lower-
end estimates in the U.S.: e.g., Goodwin (1992), who finds long-run price elasticities for bus and rail to be
between −0.6 and −1.1.
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Lemma 2. Regime C1 (i) improves profit, consumer surplus and welfare relative to SQ
for levels of substitutability where the former produces internal solutions: γC1

1 < min γ̃(n),
and, (ii) produces interior solutions over the entire set of γ for which all four calibrations
suggest the market might be operating: min γ̃(n) > γCALη,c (n)|n=2 for η ∈ {−0.6,−1.0} and
c ∈ {0, α20}.

Hence, regime C1 produces the win-win outcome over SQ within the parameter selec-
tion consistent with interior solutions, and, none of the calibrations suggests the market is
operating at a point where the regime might not produce interior solutions.

We can now formalise the earlier observation around the win-win potential for the collu-
sive regimes.

Proposition 7. If the market is accurately charaterised by the SQ regime, marginal cost
is constant and sufficiently close to zero, and the own-price elasticity of demand is −1.0,
then implementing either collusive regime will strictly increase profit, consumer surplus and
welfare, relative to SQ.

It is straightforward to show that, even with constant marginal cost of α
20 , C1 everywhere

still offers a win-win relative to SQ with η = −1.0. The win-win is still available too,
under C2, with consumer surplus and welfare gains everywhere, although, for sufficiently low
substitutability and high n there are some parameter combinations with profit below SQ
levels. The dashed cyan line representing n(γC2

1 ), is more substantially above the η = −1.0
calibration contour than the pink n(γC1

1 ) contour, guaranteeing higher welfare and consumer
surplus under C2, but possibly not higher profit, than SQ. Indeed, even under η = −0.6
and marginal costs of γ = α

20 , there are welfare and consumer surplus gains under C2
relative to SQ as, for sufficiently high γ, n(γC2

1 ) lies above nCAL−0.6, α20
. Figure 4 reports profit,

consumer surplus and welfare for each collusive regime relative to SQ. Note that the blue
‘u’-shaped curves in Figure 4(a) are tangent to the horizontal line at 1, and in (b) and
(c) the red ‘u’-shaped curves return to meet unity only at γ = 1, which lies outside the
relevant parameter set under Assumption 1. In Figure 4(a) the red ‘u’-shaped lines sink very
slightly below unity consistent with the lower profit under C2 relative to SQ between the
two critical levels of substitutability: γC2

1 and γC2
3 . It’s apparent from the Figure that for low

levels of n the parameter set of substitutability over which collusive regimes dominate SQ
on consumer surplus and welfare is quite extensive. Indeed, as we have seen, the collusive
regimes dominate on consumer surplus and welfare grounds under the parameterisations
associated with the calibration with η = −1.0 with constant marginal cost of zero.

Turning to the comparisons of the collusive regimes with theMTC, we have the following
result.

Proposition 8. Under theMTC, consumer surplus and welfare are (profit is) strictly greater
(lower) than under the collusive regimes in the relevant range: WMTC > WR, SMTC > SR,
πMTC < πR, R ∈ {C1, C2}.

For the MTC, engagement with which is non compulsory under the Block Exemption,
consumer surplus and welfare are strictly higher than under either collusion regime but
profit is strictly lower. Contrast this with the comparison of SQ with MTC in M22, where
welfare and consumer surplus are superior under theMTC, however, profit is not everywhere
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Figure 4: Profit, Consumer Surplus and Welfare under C1 and C2 relative to
SQ

(a) Profit (b) Consumer Surplus (c) Welfare

n = 2, n = 3, n = 4, n = 5, Blue=C1, Red=C2

superior under SQ. The point remains that, despite its potential to raise consumer surplus
and revenue, the MTC, in the form recommended by the Competition Commission, does
not appear to be widely evident in practice, perhaps victim of incentive incompatibility
issues associated with operator profit under Eq. (10). However, whilst making the MTC
compulsory on the recommended model clearly offers welfare gains through lower prices, it
may harm provision in the face of fixed costs potentially having unintended consequences,
lowering the number of services and overall lowering consumer surplus and welfare.

The story does not end here though. We have seen the potential for collusive pricing
to improve welfare relative to SQ, and we have seen the capacity for it to do so through a
profit channel with consumer surplus gains as well when all regimes offer the same services.
And though the collusive regimes offer profit but not welfare gains over the MTC under
common service provision, where SQ or MTC have left a network inadequately served in
terms of network coverage or density, due to inadequate profit, the above analysis suggests
possible additional gains reachable via the collusive pricing structure in terms of its higher
profitability incentivising/sustaining a larger/denser network. We turn to this issue in the
next section. It also follows from the analysis that there are clear consumer benefits from
facilitating better connectivity on urban transport networks between existing services/modes
which is more likely to be incentive compatible under C1 and C2 than SQ or MTC where
associated profitability is higher.

Finally, it is well known that there are other benefits to urban public transport provision
beyond direct consumer surplus and profit e.g., reduced congestion, pollution and accidents
from attracting passengers to switch from private car to public transport. These factors are
not captured in our welfare analysis but are generally thought to be increasing in use of the
public transport mode. For instance, the sizeable externality benefits of urban public trans-
port identified in Adler and van Ommeren (2016) suggest that the potentially substantial
increases in total quantities under regimes C1 and C2, see Figure 2(c), relative to SQ under
low levels of substitutability, could well add heavily to the welfare benefits of the proposed
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pricing regimes.24 Indeed, by improving transport efficiency the proposed pricing structure
may help improve city density, especially in Britain’s second-tier cities which do not tend
to benefit from extensive public transit rail and underground networks and so are more re-
liant on bus provision, with associated agglomeration effects improving productivity (e.g.,
see Glaeser and Gottlieb, 2009) contributing to the current leveling-up priority in Britain.

5 Network Expansion with Fixed Costs
Up until now we have compared the regimes in terms of key performance indicators assuming
each regime supports the same level of service provision. However, we have also found that
profits vary across regimes, which in the presence of non-zero fixed costs may have implica-
tions for the number of services that are sustainable under each regime, with the potential
that a higher profit regime may result in a higher number of operators and services with pos-
sible additional welfare benefits. A priori, we cannot say that affording additional services
will result in higher welfare, as the utility gains associated with additional services, assumed
through our choice of utility function and potentially enhanced by increased competition,
must be offset against the additional fixed cost of the new x and y component. Of course,
in the case of regimes that are better disposed to generating profit, it is certainly not clear
the extent to which any additional surplus accruing through additional services will be ap-
propriated by the operators as profit, and so we will be interested in potential welfare gains
associated with having more services but also whether these result in gains to passengers in
terms of consumer surplus relative to the position under an alternative regime that cannot
sustain the larger network.

In order to investigate the potential of the collusive regimes to support larger networks
than the, broadly lower (strictly lower) profit, SQ (MTC) regime, we set a fixed cost such
that n operators would not be viable at the equilibrium under SQ and the MTC regimes.
Following M22 we define these prohibitive fixed costs for SQ and MTC, as, respectively:25

F SQ
n ≡ (8γn3 − 15γn2 − 2γ + 8n+ 1)(1− γ)α2n

(2γn2 − 3γn− 5γ + 6)2(γn2 − γ + 1) + ε

FMTC
n ≡ α2n(2n− 1)(γ − 1)(γn3 − γn2 − 2γn+ γ + 2n− 1)

(γn3 − γn2 − 4γn+ 2γ + 4n− 2)2(γn2 − γ + 1) + ε

(25)

where ε is an arbitrarily small, positive number. Hence, for example, under the fixed cost
per operator of FMTC

n the network cannot support n operators with pricing according to the
stylised MTC. The questions of interest are then as follows. Under these prohibitive fixed
cost scenarios, can either or both of the collusive regimes sustain n operators, and if so does
this result in welfare and consumer surplus gains relative to the, then smaller, network under
the SQ and MTC regimes?

24The idea of quantity being a focus for public policy makers is not new. Maximising passenger-miles
was adopted as a target by London Transport (see Glaister and Collings, 1978, and the references therein).
It was also put forward by Sir Peter Parker, when Chairman of British Rail, in his 1978 Haldane Lecture
(Parker, 1978).

25Recall, the stylised characterisation of the MTC here is one that includes the limiting assumption of a
zero discount for the MO price relative to the weighted average of SO prices across the network.
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Figure 5: Profit, Consumer Surplus, Welfare and Aggregate Quantities under
C1 and C2 with an n Operator Extended Network and SQ (MTC) in a n− 1
Operator Network, with all operators facing Fixed Cost, F SQ

n (FMTC
n )

(a) Profit: πR (b) Consumer Surplus:
SR

SSQ

(c) Welfare: WR−WSQ

WR (d) Aggregate Quantity:∑
t

QRt∑
t

QSQt

(e) Profit: πR (f) Consumer Surplus:
SR

SMTC

(g) Welfare: WR−WMTC

WR (h) Aggregate Quantity:∑
t

QRt∑
t

QMTCt

n = 2, n = 3, n = 4, n = 5, Blue R = C1, Red R = C2

Figures 5(a) and (e) report the profit levels under the collusive regimes (divided by
α2) with n operators facing fixed costs F SQ

n and FMTC
n , respectively, for n ∈ {2, 3, 4, 5}.

Whilst both collusive regimes can everywhere bear the prohibitive MTC fixed cost with n
operators, this is not the case for the prohibitive SQ fixed cost. In particular, the lower
profit collusive regime, C2, does become loss-making when n is small for some levels of
substitutability under F SQ

n , but broadly the prohibitive fixed costs are sustainable under the
collusive regimes with n operators. We now our turn attention to Figures 5(c) and (g) to
see the extent to which the extra operator under the collusive regimes has the potential to
generate welfare gains over the smaller SQ and MTC networks, respectively.26 The Figures
appear to show an extensive ability for the larger collusive networks to convert the additional
operator into welfare gains, especially at lower levels of substitutability and n. However, there

26Note, since profit under SQ and the MTC become zero with n− 1 operators at sufficiently low levels of
substitutability, and negative for levels of substitutability below this, the lines become discontinuous at this
point. It is straightforward to show that at all the points where these regimes have zero or negative profit
with n − 1 operators, they also have zero or negative profit with any smaller number of operators. Hence,
the market entirely fails under these regimes.
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are also areas where negative ratios (welfare is lower under the collusive regimes) result and
to understand whether these are within the range of the calibration we now undertake the
following analysis. Let γWR,T (n) be the level of substitutability which equates the welfare
under regime R ∈ {C1, C2} with regime T ∈ {SQ,MTC} with n operators in the former
and n− 1 operators in the latter and fixed cost F T

n , hence:

WR(n, F T
n , γ

W
R,T (n)) = W T (n− 1, F T

n , γ
W
R,T (n)), R ∈ {C1, C2}, T ∈ {SQ,MTC}

Table 1 reports the left-most critical values of γ for which welfare under each collusive
regime is the same as under the smaller SQ and MTC regimes, γWR,T (n) for R ∈ {C1, C2}
and T ∈ {SQ,MTC}. Levels of γ below this point guarantee welfare being higher under
the relevant collusive regime, R, than the alternative, T . In addition, the Table also reports
the levels of substitutability required under SQ for a given level of n to be consistent with
the calibration exercise, γCALη,c (n), with η ∈ {−0.6,−1.0} and zero marginal cost.

Table 1: Critical Values of γ

n γCAL
−0.6,0(n) γCAL

−1.0,0(n) γW
C1,SQ γW

C2,SQ γW
C1,MCT γW

C2,MCT

2 0.526 0.250 - - - -
3 0.274 0.118 0.506 0.957 0.325 0.680
4 0.160 0.067 0.213 0.385 0.130 0.190
5 0.103 0.043 0.111 0.157 0.063 0.079

Recall, if the market is currently behaving in line with SQ under zero or very low marginal
cost, with elasticities consistent with one our selection, η, then for a given level of n, sub-
stitutability between the services will be characterised by γCALη,c (n). Therefore, if γCALη,c (n) is
below the left-most critical value, γWR,T , for R ∈ {C1, C2} and T ∈ {SQ,MTC}, then we
have a situation where the market is operating where welfare is strictly greater under regime
R with n-operators, relative to the smaller network under regime T . We can see from the
Table that under both elasticity selections, welfare under both collusive regimes is superior
to SQ under the calibration. Whilst it is clear that for low levels of n, both collusive regimes
also dominate MTC on welfare, the shaded cells highlight cases where the larger network
harms welfare, with C1 more prone than C2 for falling short against MTC on welfare. Sim-
ilar inspection of Figures 5(b) and (f) indicate that the welfare gains available under the
collusive regimes are not driven purely by profit gains, with obvious consumer surplus gains
in the relevant range.

There are several conclusions to draw. First, not only do the collusive regimes offer po-
tential profit, consumer surplus and welfare gains over SQ, but they also offer the possibility
of a more extensive network which can yield additional welfare gains. Second, whilst the
MTC dominates the collusive regimes in consumer surplus and welfare terms, the Com-
petition Commission’s recommended pricing framework (which our stylised regime seeks to
represent) appears to be unattractive to operators with evidence of their use in practice
being limited. Third, if the market is struggling to support more than a small number of
operators, even if the operators can be convinced to adopt the MTC, higher consumer sur-
plus and welfare might be available if the operators were allowed to pursue one or other of
our collusive pricing regimes, to the extent it might encourage a wider/denser network.The
calibration suggests exactly this if n is low.
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Finally, Figures 5(d) and (h) illustrate aggregate quantity ratios of collusive regimes
relative to the smaller networks under SQ and MTC. The quantity gains available under
the larger collusive regime networks suggest additional potential welfare benefits through the
replacement effect of private car journeys with public transport lowering pollution, congestion
and accident externalities (e.g., see Adler and van Ommeren, 2016) and offering productivity
boosting agglomeration economies over and above those discussed in the previous section.

6 Conclusions
The importance of a well-functioning urban public transport system has long been under-
stood in relation to facilitating growth and equality of access to urban facilities whilst helping
alleviate pollution, accidents and congestion and stimulating agglomeration economies. How-
ever, urban transport networks often exhibit rival and complementary service aspects. Here,
theory suggests that private operation, with service providers setting prices independently,
a scenario we characterise as the ‘Status Quo’ (SQ), will result in inefficiencies, in particular
through inflated Multi-Operator (MO) prices, which can damage profit as well as consumer
surplus. Evidence in the deregulated urban public transport system in Britain (outside Lon-
don) appears to lend support to these theoretical priors. This is despite the introduction
of a Block Exemption (Competition Commission, 2001) permitting collusive pricing on MO
tickets aimed at addressing the externalities which drive up MO prices. In particular, the
UK Competition Commission recommends a pricing framework under a Multi-operator Tick-
eting Card system (MTC) where MO prices are set at an agreed discount of the weighted
average of the prevailing Single-Operator (SO) ticket prices on the network. Analysis of this
pricing framework in McHardy (2022) suggests that, whilst it may help address excessive
MO prices, raising consumer surplus and welfare, it may be less attractive to operators
than SQ, and therefore joining it may not be incentive compatible. Indeed, usage of tickets
conforming to such a pricing regime (MO being discounted relative to SO prices) do not
appear to be widespread in Britain.

Department for Transport (2021) explicitly recognises the urgent work that is needed to
fix urban public transport in Britain. It focuses on correcting long-standing shortcomings in
the deregulated bus sector, in particular, excessive MO ticket prices, declining patronage,
geographical and temporal deficiencies in service provision and poor integration with other
public transport modes. Whilst much emphasis is placed on MO tickets, evidence suggests
the MTC, as it is currently imagined, is not providing the answer. Further, the Block
Exemption, which underpins it, is due to expire in 2026 and is currently under statutory
review.

In this paper we propose an alternative pricing system that can help address inflatedMO
prices under SQ in a way that can also benefit from incentive compatibility. This system
involves operators setting their SO prices independently in one stage and colluding with other
operators to setMO prices in another stage. We consider two collusive regimes, distinguished
by the stage in which collusion on MO prices takes place and analyse both in an n-operator
differentiated transport framework, which captures rival and complementary service aspects.
Comparing the two collusive regimes against SQ, we show both have the potential to create
a win-win situation where profit, consumer surplus and welfare are improved relative to
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SQ. Using a calibration exercise, we demonstrate that these gains occur close to where
the market may be functioning. Comparing the collusion regimes against a stylised MTC,
whilst the latter dominates in consumer surplus and welfare terms, it is inferior in profit
terms. Hence, whilst the collusive regimes offer a potential win-win relative to SQ, the
MTC is better for consumers and welfare. The MTC is optional, however, and suffers from
incentive incompatibility, meaning the associated benefits may not arise under the current
policy environment with the evidence pointing to this being the case to some extent.

In terms of the perennial problems hindering urban public transport in Britain that we
identified at the out-set, the new regimes offer the potential for lower MO prices, incentivis-
ing greater MO use, and driving increased patronage, relative to SQ. However, inadequate
service provision and an inability for markets to sustain sufficient numbers of rivals to engen-
der a competitive environment were also cited as ongoing problems. Our analysis indicates
that the collusive two-stage regimes may be able to sustain a higher number of operators in
the network than would be profitable under the SQ and MTC regimes, resulting in further
potential consumer surplus and welfare gains. Hence, even though the collusive regimes offer
lower consumer surplus and welfare than the MTC when all regimes have the same number
of operators, the higher profit available under the former can result in more operators pro-
viding more services than under the MTC to the extent that these regimes now dominate
the MTC in consumer surplus and welfare terms. Indeed, we find that the collusive regimes
can support larger networks with associated consumer surplus and welfare gains relative to
SQ and MTC where a calibration exercise indicates the market might be operating.

Regarding whether the collusive regimes proposed here could be permitted in accordance
with the Block Exemption, we return to the four conditions set out earlier. First, we have
seen that the collusive regimes can improve on prices, consumer surplus and welfare relative
to SQ, with a calibration indicating this may be the reality where the market is operating.
With lower prices and higher consumer surplus, this appears to satisfy the second condition,
that consumers get a fair share of the gains. Indeed, since the collusive regimes also generate
higher profits under these parameterisations, it has been shown that they have the potential
to provide more services than SQ supporting the first condition regarding efficiency. At the
same time the equilibria under the collusive regimes do not suggest anti-competitive out-
comes, satisfying the third condition. Regarding the fourth condition, the two-stage pricing
structure is designed to explicitly avoid collusion in the setting of MO prices (which gener-
ates the win-win higher profit and consumer surplus outcome) leaking into anti-competitive
practices elsewhere. However, whether such a scheme would function this way in practice
is likely a function of the way in which the collusion stage is organised and regulated, for
instance, in terms of what information operators are allowed to share. But a priori, it is not
obvious that it need be more prone to anti-competitive leakage than the existing opportunity
to collude under the MTC, although this is clearly an avenue for further enquiry.

Finally, we note that the higher levels of patronage under the collusive two-stage pric-
ing regimes might have further indirect benefits not captured in the modelling. It is well
understood that attracting urban travellers from private car to public transport carry ad-
ditional environmental, congestion and accident benefits, further extending the gains from
the increased number of operators and patronage of the proposed pricing system. Indeed,
by improving transport efficiency the proposed pricing structure may help improve city den-
sity, especially in Britain’s second-tier cities which do not tend to benefit from extensive
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public transit rail and underground networks and so are more reliant on bus provision, with
associated agglomeration effects contributing to the current leveling-up priority in Britain.
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Appendix

A Second Order Conditions
Under Monopoly, the firm sets N prices, and the Hessian for its profit function is N × N with
−2b on the principal diagonal and 2d elsewhere. In the case of ‘Status Quo’, firm i sets 2n − 1
prices and the (2n − 1) × (2n − 1) and the Hessian matrix of the profit function has −2b < 0 on
the principal diagonal and 2d > 0 elsewhere. A dominant diagonal requires, b > (n2 − 1)d and
b > 2(n − 1)d, respectively, both of which follow under under Assumption 1, guaranteeing the
second-order condition is satisfied in the relevant range.27 Under the MTC, firms set a single price
and so the second-order condition is satisfied since −b < 0.

In the case of stage-two price setting in regime C1, the own-price second derivative of profit for
firm i is negative since −b < 0. The second derivative of aggregate profit with respect to Px, after
imposing symmetry, can be written:

− 2nA[bA− (n− 1)d(n+A)]− 2n(n− 1)[b− d(n(A+ n− 1)− 1)] (26)

the sign of which can be shown to depend on:

−4b(b− d(n2 − 1))− nd2(n− 1)2

which is strictly negative under Assumption 1.
In the case of regime C2, the stage-one price setting second derivative of operator profit i with

respect to Pii can be written:

− 2
b− d(n(n− 1)− 1)(b+ d)[b− d(n(n− 1))] (27)

which is strictly negative under Assumption 1. In the case of the stage-two price setting in regime
C2 the second derivative of joint profit with respect to Px can be written:

− 2n(n− 1)[b− d(n(n− 1)− 1)] (28)

which is guaranteed under Assumption 1.

B Proof to Propositions
B.A Proof to Lemma 1
From Eqs. (7) and (18), note H ≡ PC1

x

PM
= 2PC1

x
α , which is continuous, has no solutions for H = 1 in

the relevant range, and for which feasible combinations of (γ, n) yield values of H < 1 completing
the proof.

B.B Proof to Proposition 1
(i) From Eqs. (18) and (24), define H ≡ PC1

PC2 = 2(2+(n−3)γ)((n2+n−4)γ+2)(1+γ(n2−1))
(4+(n3−6n2+n+8)γ2+(4n2−12)γ)(2+(n2+2n−3)γ) and

Hx ≡ PC1
x

PC2
x

= 2(γn2−2γ+1)(γn−3γ+2)(γn2−γ+1)
(4+(n3−6n2+n+8)γ2+(4n2−12)γ)(1+(n2+n

2−
3
2 )γ) . Note, H and Hx are continuous in (n, γ).

27(E.g., see Theorem M.D.5, Mas-Colell et al., 1995, p. 939).
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It is straightforward to see the maximal solutions for H = Hx = 1 are γ = 0 and n = 1, which lie
outside the relevant range. However, given continuity and the existence of feasible (n, γ) combi-
nations yielding PC1 > PC2 and PC1

x > PC2
x , completes the proof. (ii) From Eqs. (18) and (24),

define H1 ≡ PC1
x

PC1 = 2γn2−4γ+2
(n2+n−4)γ+2 and H2 ≡ PC2

x

PC2 = 2+(2n2+n−3)γ
2+(n2+2n−3)γ . Note, H1 and H2 are continuous

in (n, γ). It is straightforward to see the maximal solutions for H = Hx = 1 are γ = 0 and n = 1,
which lie outside the relevant range. However, given continuity and the existence of feasible (n, γ)
combinations yielding PC1

x > PC1 and PC2
x > PC2, completes the proof.

B.C Proof to Proposition 2
(i) From Eqs. (9) and (24), setting n = 2 gives: H ≡ PSQ|n=2

PC2|n=2
= 2(1+3γ)

2+5γ and Hx ≡ PSQx |n=2
PC2
x |n=2

=
8(1+3γ)
6+21γ , which are both strictly greater than one in the relevant range. (ii) From Eqs. (9), (18) and

(24), defineH1 ≡ PSQ

PC1 = (12+(3n3−18n2+3n+24)γ2+(12n2−36)γ)
(2(3+(n2−3/2n−5/2)γ)((n2+n−4)γ+2)) ,Hx1 ≡ PSQx

PC1
x

= (8+(2n3−12n2+2n+16)γ2+(8n2−24)γ)
((2γn2−3γn−5γ+6)(γn2−2γ+1)) ,

H2 ≡ PSQ

PC2 = 3(γn−3γ+2)(γn2−γ+1)
((3+(n2−3/2n−5/2)γ)(2+(n2+2n−3)γ)) , Hx2 ≡ PSQx

PC2
x

= 8(γn−3γ+2)(γn2−γ+1)
((2γn2−3γn−5γ+6)(2γn2+γn−3γ+2)) . It

is straightforward to show that the maximal solution for H1 = Hx1 = 1 is at the common threshold
γC1

1 = 1
n2−2n+2 and similarly for H2 = Hx2 = 1 is at the common threshold γC2

1 = 2
2n2−5n+3 , and

these are the only solutions in the feasible range. Both thresholds are also clearly strictly decreas-
ing in n in the relevant range. Given H1, Hx1, H2, and Hx2 are all continuous functions in their
arguments, it follows that since for feasible (n, γ) combinations below those satisfying the relevant
critical threshold can be found for which each function is strictly greater than 1, completing the
proof. (iii) This follows directly from inspection of γC1

1 and γC2
1 from (ii) above.

B.D Proof to Proposition 3
(i) From Eqs. (11) and (18) define H ≡ PC2

x

PMTC = ((n3−n2−4n+2)γ+4n−2)(1+(n2+1/2n−3/2)γ)
((γn−3γ+2)(γn2−γ+1)(2n−1)) . Note H

is continuous on (γ, n) and H = 1 has no solutions in the relevant range, whilst solutions exist for
H < 1. Given PC1

x > PC2
x from Proposition 1(i) completes the proof. (ii) Let HR ≡ PR

PMTC , R ∈
{C1, C2}: HC1 = ((n3−n2−4n+2)γ+4n−2)((n2+n−4)γ+2)

(2(n−1/2)(4+(n3−6n2+n+8)γ2+(4n2−12)γ)) ,H
C2 = (2+(n2+2n−3)γ)((n3−n2−4n+2)γ+4n−2)

(2(γn−3γ+2)(γn2−γ+1)(2n−1)) .
Note HR is continuous on (γ, n) in the relevant range. Setting HR = 1, and solving for γ, yields
γC1

2 = 2
n2+3 and γC2

2 = 2
n2−n+2 , which are both strictly decreasing in n and γC1

2 < γC2
2 in the

relevant range. Feasible (n, γ) combinations below those satisfying the relevant critical threshold
can be found for which each function is strictly less than 1, completes the proof.

B.E Proof to Proposition 4
For parts (i), (ii) and (iii), letHπ ≡ πC1

πC2 = 12(γn2−γ+1)(γn−3γ+2)2(γn2−2γ+1)
(3(4+3(3n3−5n2−7n+9)γ2+(4n2+4n−12)γ)(4+(n3−6n2+n+8)γ2+(4n2−12)γ)) ,

HS ≡ S2
S1 = (1+(n4−4.25n3+3.75n2+3.25n−3.75)γ3+(2.25n3−3.75n2−5.25n+7.75)γ2+(n2+2n−5)γ)(4+(n3−6n2+n+8)γ2+(4n2−12)γ)

(2+(n−3)γ)2(1+(n5−3n4−n3+6n2+2.22×10−16n−3)γ3+(n4+2n3−8n2−n+7)γ2+(2n2+n−5)γ)

andHW ≡ W2
W1 = (4+(n3−6n2+n+8)γ2+(4n2−12)γ)(3+ 1

4 (4n4−23n3+25n2+27n−33)γ3+ 1
4 (15n3−33n2−43n+73)γ2+(−13+4n+3n2)γ)

((γ2n3−5γ2n2+7γ2+3γn2+γn−10γ+3)(γ(n−3)+2)2(γ(n2−1)+1))
which are continuous on (n, γ) in the relevant range. Note, there are no solutions for HX = 1
(X = π, S,W ) in the relevant range.28 However, given continuity and the existence of feasible
(n, γ) combinations yielding HX > 1, completes the proof.

28In the case of XS = 1 and XW = 1, solve for n and plot over γ ∈ [0, 1] to see solutions only for n ≤ 1.
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B.F Proof to Proposition 5
(i) Let H ≡ πC1

πSQ
= (2γn2−3γn−5γ+6)2n(γn2−2γ+1)

(4+(n3−6n2+n+8)γ2+(4n2−12)γ)((8n3−15n2−2)γ+8n+1)) , which is continuous on (n, γ)
in the relevant range. Given there is a unique solution for H = 1 in the relevant range, γC1

1 (n),
defined above, no solutions for H < 1 and feasible (n, γ) combinations in the relevant range, above
and below γC1

1 for which H > 1, with continuity of H completes the proof. (ii) Let H ≡ πC2

πSQ
≡

(4+(3n3−5n2−7n+3)γ2+(4n2+4n−12)γ)(6+(2n2−3n−5)γ)2n
2((γn−3γ+2)2(γn2−γ+1)(8γn3−15γn2−2γ+8n+1)) , which is continuous on (n, γ) in the relevant

range. The are two solutions for H = 1: γ̄C2
1 , defined above, and γC2

3 = RootOf(6γ3Z5 + (−23γ3 +
8γ2)Z4 + (21γ3 − 10γ2)Z3 − γ3Z2 + (−27γ3 + 46γ2 − 20γ)Z + 24γ3 − 52γ2 + 36γ − 8). Plotting
these reveals γC1

1 lies below γC1
1 , with feasible (γ, n) combinations yielding H < 1 (H > 1) above

the latter and below the former, which given continuity of H completes the proof. (iii) Follows
straightforwardly from plotting n(γC1

1 ) − n(γC2
3 ) over the full interval γ ∈ [0, 1], to see it lies

everywhere strictly above zero, completing the proof.

B.G Proof to Proposition 6
(i) LetHS ≡ SC1

SSQ
= (2γn2−3γn−5γ+6)2(γ2n3−3γ2n2+γn2+3γ2+γn−4γ+1)n

(((n5−3n4+1.25n3+0.25n2+2n+0.75)γ2+(2n3−1.75n2−2.75n−2)γ+n+1.25)(4+(n3−6n2+n+8)γ2+(4n2−12)γ))

andHW ≡ WC1

WSQ = (2γn2−3γn−5γ+6)2(γ2n3−3γ2n2+γn2+3γ2+γn−4γ+1)n
(((n5−3n4+1.25n3+0.25n2+2n+0.75)γ2+(2n3−1.75n2−2.75n−2)γ+n+1.25)(4+(n3−6n2+n+8)γ2+(4n2−12)γ)) ,

are both continuous on (n, γ) and HS = HW = 1 for γ = γC1
1 . There exists a feasible (n, γ) com-

bination in the relevant range below γC1
1 for which HS > 1 and HW > 1 is strictly positive,

completing the proof. (iv) Let HS ≡ SC1

SSQ
=

4n(3+(n2−1.5n−2.5)γ)2(1+(n4−4.25n3+3.75n2+3.25n−3.75)γ3+(2.25n3−3.75n2−5.25n+7.75)γ2+(n2+2n−5)γ)
(2+(n−3)γ)2((4n7−12n6+n5+13n4+3n3+2n2−8n−3)γ3+(12n5−19n4−14n3−33.32×10−16n2+19n+11)γ2+(12n3−2n2−15n−13)γ+4n+5) ,
and, HW ≡ WC1

WSQ =
n(3+(n4−5.75n3+6.25n2+6.75n−8.25)γ3+(3.75n3−8.25n2−10.75n+18.25)γ2+(−13+3n2+4n)γ)(3+(n2−1.5n−2.5)γ)2

(((n5−3n4−2.75n3+7.75n2+2n+1.75)γ2+(6n3−9.25n2−6.75n−3.5)γ+5n+1.75)(2+(n−3)γ)2(1+(n2−1)γ)) , which
are continuous on (n, γ) and HS = HW = 1 for γ = γC2

3 . There exists a feasible (n, γ) combination
in the relevant range below γC2

3 for which HS > 1 and HW > 1 are strictly positive and for n = 2,
γC2

3 is outside the relevant range and there exists no solutions for H = 1, completing the proof.

B.H Proof to Lemma 2
First, note that γ̃ = n2−3+

√
n4−2n+1

3n2−n−4 , which is decreasing in n and limn→∞ γ̃ = 2
3 . γ

C1
1 = 1

n2−2n+2
is decreasing in n with lower limit in the relevant range γC1

1 |n=2 = 1
2 , completing the proof.

B.I Proof to Proposition 7
First, note from Propositions 5(ii) and 6(ii), γC2

3 < γC2
1 < γC1

1 . Next, the calibration contour in
(γ, n)-space with η = −1.0 and c = 0 is given by:

nCAL−1.0,0(γ) = γ +
√
−15γ2 + 16γ

4γ

and lies everywhere in the relevant range below γC2
3 . To see this, plot n(γC2

3 ) − nCAL−1.0,0(γ) and
plot over γ ∈ [0, 1], and see the resulting curve lies strictly above zero in the range where n ≥ 2
completing the proof.
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B.J Proof to Proposition 8
Let H ≡ KR

KMTC , for K ∈ {π, S,W} and R ∈ {C1, C2}. Note H is a continuous function on its
arguments (γ, n). Solving H = 1 in each case (e.g., solve H = 1 for n and plot over γ ∈ [0, 1] to see
there are no solutions for n ≥ 2. Noting that there are (γ, n) combinations in the relevant range
for which πMTC < πR, SMTC > SR and WMTC > WR completes the proof.
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