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Abstract. This paper investigates the problem of moving a mixture
of active and passive elements to a desired location using a swarm of
wheeled robots that require only two bits of sensory input. It examines
memory-less control strategies that map a robot’s sensory input to the
respective wheel velocities. Results from embodied simulations show that
the problem can be solved without robots having (i) to discriminate
between active and passive elements or (ii) sense other robots. Strategies
optimized for moving passive elements, or mixtures of active and passive
elements, performed robustly when changing the mixture of elements,
or scaling up the number of robots (up to 25) or elements (up to 100).
All strategies demonstrated to be fairly robust to noise and adaptable to
active elements of different dynamics. Given the simplicity of the robot
capabilities and strategies, our findings could be relevant in scenarios
where microscopic swarm robots need to manipulate mixtures of elements
of unknown dynamics, with potential applications in nanomedicine.

1 Introduction

Many studies examine the ability of swarms of robots to physically manipulate
their environment. For example, this could concern the cooperative transport of
an object that is too heavy to be effectively displaced by individual members of
the swarm [11, 1, 28, 4, 25, 5]. In the following, we specifically focus on the ability
of swarms of robots to manipulate numerous elements at the same time.

In some application scenarios, the elements to be manipulated would be
entirely passive, as exerting no control over their movement. This would be the
case, for example, when collecting plastic waste in water bodies [20]. Beckers et
al. [2] study a group of robots equipped with C-shaped pushers. The latter enable
the robots to push and retain multiple, smaller objects even during turns. Each
robot moves in a straight line and rotates by a random angle when detecting
an obstacle or when the resistance met by its pusher exceeds a threshold. The
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strategy is shown capable of clustering 81 objects in a bounded environment.
Melhuish et al. [15] propose an extension of this strategy enabling a group of
robots to spatially separate colored objects into distinct clusters. Kim and Shell
[10, 21] studied a cluster task similar to [2]. As the robots are circular in shape,
careful design is required to prevent the formation of (possibly separate) clusters
along the boundary. The authors propose a strategy by which some robots are
‘diggers’, which follow walls and separate objects from the boundary, whereas
others are ‘twisters’, which act on ‘dug up’ objects, and push them towards the
center. This results in all objects ending up in a single cluster.

In other application scenarios, the elements to be manipulated may be active,
as exerting control over their movements. This would be the case, for example,
when shepherding groups of land mammals. The problem of shepherding a set of
active elements to a goal region has been addressed using single-robot systems [3,
6, 22–24, 26, 27]. Vaughan et al. [26] propose a strategy to shepherd a flock of
ducks towards a goal. An external system is used to determine the position
of the flock, as well as the position and orientation of the robot. The robot
is attracted towards the flock, the further the latter is away from the goal,
the stronger the attraction. Moreover, it is repelled from the goal. This simple
behavior succeeds in driving the flock towards the goal. A number of studies use
distinct behaviors for (i) gathering the elements, and (ii) driving them towards
the goal, which are executed either in alternation or simultaneously. Gathering
maneuver include moving in arcs, zig-zags or orbiting. Driving maneuver include
approaching the flock in a straight line from a position opposite to the goal, or
performing gathering maneuver while gradually moving towards the goal [3, 6,
22, 24]. In [23], a robot shepherds a group of sheep agents. It relies only on
local sensing. It moves repeatedly behind the sheep robot that is furthest away
from the goal. Owing to a cohesion behavior however the sheep have no natural
tendency to split into separate groups. Studies considering a group of shepherd
robots include the work by Lien et al. [13] that demonstrated that a group of
shepherds outperformed a single one. Other examples are Miki & Nakamura [16]
and Lee & Kim [12] which study sets of simple rules to replicate common types of
shepherding behaviors. They both demonstrated that the active elements could
be herded by a swarm of robots without centralized coordination.

In our previous works [8], a computation-free paradigm for controlling swarms
of simple robots was proposed. It was subsequently used to design computation-
free controllers for swarms of robots to cluster passive elements [7], without
specifying a desired goal region. Moreover, it was used to design computation-
free controllers for swarms of robots to shepherd active elements towards a goal
region [18].

This paper goes beyond prior work in swarm robotics by considering for the
first time the problem of moving a loose mixture of active and passive elements
towards a goal region. This problem is important for real-world applications,
where the dynamics of the elements to be manipulated may not be known, or
could vary among the elements. We hypothesize that a single set of rules ex-
ists that requires no run-time memory and yet solves the problem irrespective of
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Fig. 1. A group of shepherd agents (red) is tasked to herd a mixture of elements
of unknown dynamics towards a goal region (white) near a goal object (green). The
elements can be actively moving (blue) or purely passive (orange).

whether the elements to be manipulated are (i) passive, (ii) active, or (iii) a mix-
ture of active and passive elements. We examine to what extent the controllers
trained for any one of these sub-problems generalize to the respective other sub-
problems, and hence, how the sub-problems compare in terms of complexity.

2 Methods

This section presents the problem formulation, the simulation setup used during
design and validation, the control strategies of the shepherd agents, and the
optimization process used for obtaining the parameters of the strategies.

2.1 Problem Formulation

The environment is an unbounded, planar, continuous space (see Figure 1). It
contains m ≥ 1 shepherd agents, n ≥ 1 elements, of which na ≥ 0 are active
and np = n− na ≥ 0 are passive, as well as a goal object. The shepherd agents
and all elements have cylindrical bodies of identical dimensions and mass. The
goal object is stationary. It is also cylindrical, and assumed to be taller than the
shepherd agents and elements.

Each shepherd agent has two wheels that are placed equidistant from its
center. They can be controlled by setting a pair of normalized wheel speeds,
υℓ, υr ∈ [−1, 1], where −1 and 1 represent the maximum backward and forward
speeds, respectively.

The shepherd agent has two line-of-sight sensors pointing forward, and as-
sumed to have an infinite range.1 The sensors are discrete; they only return the
1 Throughout this work, we assume an unlimited sensing range; in practice, however,

nearly-identical results can be obtained if the sensing range is limited to a reasonably
high value. The effects of a limited sensing range in a similar setting were studied
in [8].
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Fig. 2. Illustration of line-of-sight sensor implementation. Each shepherd agent obtains
two bits of sensory information. The first indicates whether the goal object is in front
of the robot (in the direct line of sight). The goal object is taller than any other object,
which allows the shepherd to detect it even when some other agents or elements are
placed in between. The second bit of sensory information indicates whether an element
is in front of the robot (in the direct line of sight). This is only the case, if the nearest
object is an element. The sensor does not distinguish between active or passive elements.

type of the first detected object in their direct line of sight (see Figure 2). The
first sensor is used to detect the goal which is taller than the shepherd agents
and elements. This allows the shepherd agent to detect the goal if it is oriented
towards the goal. The second sensor is used to detect the active and passive
elements without distinguishing between them. For the sake of simplicity, we
assume that the shepherd agent obtains a single, combined sensor reading,

I =


0, if neither goal nor any element is detected;
1, if only an active or passive element is detected;
2, if only the goal is detected;
3, if both the goal and an active or passive element are detected.

(1)

The objective for the shepherds is to herd all elements toward the goal.
We define a goal region around the goal object (see Fig. 1) and assume that
an element has been successfully moved towards the goal, as long as its center
resides within the goal region at the end of the evaluation period. Note that the
goal region is not detectable by any of the agents, it merely serves for evaluation
purposes.

2.2 Setup for Computational Experiments

Open-source robot simulator Enki [14] was used for all computational experi-
ments. All bodies are rigid. Their dynamics and kinematics are updated every
0.01 s. The sensors, control cycle, and actuation are updated every 0.1 s. The goal
object is a cylinder of 12.5 cm radius and 5 cm height. The goal region is a disk
of radius 50 cm. The shepherd agents are modelled as e-puck robots [17], which
have cylindrical bodies of 3.7 cm radius and 4.7 cm height, and weigh 152 g. The
active elements are modelled as e-puck robots too. The passive elements are
cylindrical bodies of identical dimensions and mass. Their friction coefficient
with the ground is 2.5.

The dynamics model of active elements are loosely inspired by the boids
model [19]. It comprises three behavioral components:
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1. To weakly repel from nearby active and passive elements;
2. To strongly repel from any nearby shepherd agent;
3. To move randomly.

All components rely only on local sensing: Active element i has two neighbor-
hoods. The first, denoted by N el

i , comprises all other elements that are no more
than del = 10 cm away. The second, denoted by N sh

i , comprises all shepherds
that are no more than dsh = 50 cm away. The repulsion components can then be
expressed as

Fi = kel
∑

j∈N el
i

r̂ji
||xj − xi||2

+ ksh
∑

j∈N sh
i

r̂ji
||xj − xi||2

, (2)

where coefficients kel = 100 and ksh = 500 model the strength of repulsion
from other elements and shepherds, respectively, xi is the position of focal ele-
ment i, xj is the position of any other element/agent within the corresponding
neighborhood, and r̂ji is the unit vector from element/agent j to element i. We
assume that the elements are indexed 1, 2, . . . , n and shepherd agents are in-
dexed n+ 1, n+ 2, . . . , n+m. The wheel speeds for the active element are then
calculated as: (

vl
vr

)
=

(
C1 C2

C1 −C2

)(
fx
fy

)
, (3)

where C1 = 2.0 is a linear coefficient, C2 = 1.3 is an angular coefficient, and
fx and fy are the force components of Fi along the x- and y-axis in the focal
element’s coordinate frame (with the x-axis pointing towards the front of the
robot).

The final behavioral component (random walk) is realized by adding random
variables, which follow normal distributions X ∼ N (0, 1), to the speed values of
each wheel of the active element. Before applying the value to the actuator, it is
truncated to half the maximum speed of the e-puck robot (12.8cm/s). Therefore,
in the default setup, the speed of the active elements are at most 50% of the
maximally possible speed of the shepherd agents.

2.3 Control Strategies of the Shepherd Agents

Each shepherd uses the same controller. The controller is fully reactive, that is,
it has no memory to store any values during run-time. It maps sensor reading I
directly onto a pair of normalized wheel speeds υℓ, υr ∈ [−1, 1].

The complete parameterized controller can be written as v = (υℓ0 , υr0 , υℓ1 , υr1 ,
υℓ2 , υr2 , υℓ3 , υr3), v ∈ [−1, 1]8, where (υℓ0 , υr0) is the left and right normalized
wheel velocities when the combined sensor reading I = 0 and so on (for a defi-
nition of I, see Equation 1).

We design three control strategies—one for each variant of the problem. We
refer to them as Controller A (active only scenario), Controller P (passive
only scenario), and Controller A+P (combined scenario). The controller vari-
ants only differ in the choice of parameter values.
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2.4 Optimization Process

To optimize the parameter values of the controller, the Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES) [9] is employed. CMA-ES is a stochastic
method for optimization of non-linear, non-convex functions with continuous
domains. It self-adapts the variance of decision variables and the co-variances
between decision variables. In our case, the decision variables are the wheel speed
pairs for every possible value of sensory input, that is, v.

CMA-ES is conventionally unbounded, operating in the continuous space
Rd, where d = 8 is the problem dimension. However, as normalized wheel ve-
locities are considered in the controller design, a way to map Rd 7→ [−1, 1]d

is needed. This is achieved by using a sigmoid-based function on each wheel
velocity, sig(v) = 1−e−v

1+e−v ,∀v ∈ R.
We set the initial solution to the zero vector v(0) = 0, population size to

λ = 20, and the initial step size to σ(0) = 0.72. These settings approximate a
uniform distribution over [−1, 1]d, as empirically demonstrated by Gauci et al.
[7] using Monte Carlo simulations. Each evolution runs for 500 generations.

Fitness Function To evaluate the utility of candidate solutions, a fitness func-
tion is used. For the problem considered here, the fitness function has a dual
purpose. First, it shall reward candidate solutions that gather the elements,
thereby providing cohesion. Second, it shall reward candidate solutions for mov-
ing elements near to the goal. A corresponding metric is established, which at
time t is given by

f(t) =
1

4nr2

n∑
j=1

||x(t)− xj(t)||2 · ||x(t)− g||2, (4)

where r is the radius of the element body, x(t) is the centroid of all elements at
time t, xj(t) is the position of element j at time t, and g is the position of the
goal object.

Each simulation trial is associated with a weighted sum of the fitness values
at times t,

F (T ) =

T∑
t=1

t · f(t), (5)

where T = 600 s is the total evaluation period (in simulated time). The weighted
sum rewards the speed at which the elements are gathered and driven towards
the goal while also rewarding ‘convergence’ towards a stable configuration.

The final fitness value is obtained as the mean F (T ) score across N = 20 in-
dependent simulation trials. In each trial, the starting locations of all agents and
elements are sampled using a uniform distribution from within the initialization
region denoted in Figure 1.
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Table 1. Best controller for each scenario.

Controller I = 0 I = 1 I = 2 I = 3

Controller A (active elements only)
υℓ 0.459 0.995 0.738 -0.163
υr 0.983 0.161 -0.958 0.948

Controller P (passive elements only)
υℓ 0.997 0.925 -0.996 0.995
υr 0.632 1.000 -1.000 0.703

Controller A+P (combined scenario)
υℓ 0.592 1.000 0.729 0.794
υr 0.939 0.917 -0.998 0.983

Fig. 3. Sequence of snapshots showing three shepherd agents (red) moving five active
(blue) and five passive (orange) elements to the goal object (green). The shepherds use
controller A+P, which was specifically optimized for this scenario.

3 Results

We performed 30 evolutionary runs for each of the three problem variants. In all
simulation trials, m = 3 shepherd agents and n = 10 elements were used. The
number of active (na) and passive (na) elements were as follows:

1. na = 10, np = 0 in the active only scenario (to synthesize Controller A);
2. na = 0, np = 10 in the passive only scenario (to synthesize Controller P);
3. na = np = 5 in the combined scenario (to synthesize Controller A+P).

For each scenario and for each of the 30 evolutionary runs, we post-evaluated
the highest rated control strategy 100 times with random starting configurations.
The best-rated controller from these post-evaluations is considered as the final
controller for that scenario.

The evolved control parameters are shown in Table 1. Figure 3 shows a se-
quence of snapshots taken from a typical trial with Controller A+P. The shep-
herds tend to orbit around the elements and the goal. This helps to gather the
elements and move them towards the goal region. A video showing representative
trials for all controllers and scenarios is available on https://www.sheffield.
ac.uk/naturalrobotics/supp/2022-001.

3.1 Generalization and Scalability Analysis

Each controller is examined in all three scenarios, thereby testing to what ex-
tent it generalizes beyond the specific scenario it was optimized for. For example,
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Fig. 4. Generalization and Scalability Analysis. Heat map showing the success
rate grouped by controller type and scenario. Average rates over 100 trials in which m
shepherd agents herd na active elements and np passive elements to the goal region.

Controller A, which was trained in the active only scenario, is tested here in all
three scenarios, including the passive only scenario and the combined scenario.
Moreover, to test scalability of the controllers, a range of configurations is con-
sidered. Specifically, the number of shepherds is chosen as m ∈ {5, 10, 15, 20, 25}
and the number of elements is chosen as n ∈ {10, 20, 30, . . . , 100} (for the com-
bined scenario, we use na = np = n

2 ). Each of these configurations is tested
against each of the three controllers. For each setup, 100 independent trials are
conducted. Each trial lasts 1500 s.

Figure 4 shows the performance. Reported is the average success rate which is
defined as the percentage of elements inside the goal region at the end of the trial.
When only m = 5 shepherd agents are available, the performance of all three
controllers decreases as the number of elements na+np goes beyond 50. This can
be attributed to the limited time available for five shepherds to move a relatively
large herd, but possibly as well, though to a lesser extent, to the challenge
of containing the herd, while elements move at random. The performance for
Controller A and Controller P also drops when the number of shepherds m
is similar to, or even exceeds, the number of elements (na + np). Moreover,
Controller A struggles in the passive only scenario when np ≥ 60. This can be
attributed to the behaviors being insufficiently optimized for handling passive
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Fig. 5. Varying Ratio Analysis. Times to completion (box plots) and success rates
(bar charts) for the three controllers as the ratio of active (na) to passive (np) elements
is varied (100 trials per setup).

elements: As the elements are no longer repelled by the shepherd, the latter has
to push the elements for them to move. However, we found that this is not an
issue in the combined scenario as the active elements help by pushing the passive
elements and the passive elements prevent the active elements from dispersing.
Controller A+P exhibited the best overall performance.

3.2 Varying Ratio Analysis

To analyse the controllers’ performance with different ratio of active and passive
elements, the latter is varied while keeping the total number of elements constant
(na + np = 10). The number of shepherds is set to m = 3. For each setup and
controller, 100 independent trials are conducted.

Figure 5 shows the time to completion, that is, the time by which the last
element enters the goal region, as well as the average success rates. As the fraction
of active elements increases, the times to completion tend to become shorter,
especially for Controller A and Controller A+P. For any pair of active and
passive elements (na, np), Controller A+P outperforms the other two controllers
in terms of completion times. However, for the (na = 0, np = 10) pair, its success
rate (96%) was slightly lower than that of the other two controllers (100%).

3.3 Varying Speed Analysis

To further examine to what extent the evolved controllers cope with elements
of different dynamic properties, we consider the impact of the maximum speed
of the active elements. We use m = 3 shepherds, na = 10 active elements and
no passive elements (np = 0). We choose the maximum speed of the active
elements as 0 × s, 0.125 × s, 0.25 × s, 0.5 × s, 1 × s, 2 × s, where s = 12.8 cm/s
is the maximum speed of the e-puck robot, and hence the maximum possible
speed that any shepherd agent could move. For each setup and controller, 100
independent trials are conducted.

Figure 6 shows the times to completion and the average success rates. The
performance is reasonably robust with respect to variations in speed. The best
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Fig. 6. Varying Speed Analysis. Times to completion (box plots) and success rates
(bar charts) for the three controllers as the maximum speed of active elements is varied,
expressed relative to the maximum speed of shepherd agents (100 trials per setup).

performance both in terms of completion times and success rates is obtained
when the active elements use the default maximum speed (0.5× s). This could
be because the controllers were specifically optimized for this setup. However, it
is also plausible that when the active elements are too slow, they require to be
pushed which may prove slightly less effective, whereas when the active elements
are too fast, they may disperse faster (using Eq. 2), and hence make it more
challenging to be contained by the shepherd agents.

3.4 Noise Analysis

To examine the robustness with respect to sensor noise, we conducted nine sets
of experiments, testing each controller on each scenario. Each of the two binary
sensor readings is subjected to (i) false-positive noise with probability p ∈ [0, 1]
(i.e. the sensors detect an object even though the object is not there) and (ii)
false-negative noise with probability p ∈ [0, 1] (i.e. the sensors do not detect an
object even though it is present).

Figure 7 shows the average success rates. All three controllers were particu-
larly robust to false-negative noise on the goal sensor (solid blue line). To identify
which conditions have the most adverse affect on performance, we ranked the
conditions (per controller) by the lowest noise level that caused the success rate
to drop to 50% (or below). Controller A and Controller P were most affected
by false-positive noise on the goal sensor (irrespective of the type of noise affect-
ing the element sensor). On the contrary, Controller A+P was most affected
by false-negative noise on the element sensor (irrespective of the type of noise
affecting the goal sensor).

4 Conclusions

This paper considered for the first time the problem of using a swarm of robots
to move a mixture of active and passive elements to a goal region. It showed
that this problem can be successfully addressed by robots that have only two
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Fig. 7. Noise analysis. Success rates for the three controllers when subject to false-
positive (P) and false-negative noise (N); 100 trials per setup.

binary sensors that detect the presence of the goal and of the elements in front
of the robot, without having to distinguish between active and passive elements,
and without needing to perceive the other robots in the swarm. Each robot has
no run-time memory, and hence, on its own, is unable to learn the unknown
dynamics of the elements during run-time.

We evolved three controllers, one for an active elements only scenario, one for
a passive elements only scenario, and one for a combined scenario. The controllers
generalized well between these scenarios, expect for the controller optimized for
the active elements scenario, which did not perform well on the passive ele-
ments scenario. The controllers proved flexible, capable of dealing with elements
of different dynamics, and reasonably robust to sensory noise. Moreover, their
performance scaled well, as validated with up to 25 robots and 100 elements.

In the future, we intend to validate the controllers in physical experiments
with e-puck2 robots, and possibly extending the work to 3D environments. Fur-
ther studies could investigate the evolution of controllers for active elements with
non-identical dynamics.
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