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ABSTRACT 

Monte Carlo simulation has become the accepted method for propagating parameter 

uncertainty through risk models. It is widely appreciated, however, that correlations 

between input variables must be taken into account if models are to deliver correct 

assessments of uncertainty in risk.   Various two-stage methods have been proposed, 

which first estimate a correlation structure and then generate Monte Carlo simulations 

which incorporate this structure while leaving marginal distributions of parameters 

unchanged. Here we propose a one-stage alternative, in which the correlation structure 

is estimated from the data directly by Bayesian Markov Chain Monte Carlo methods. 

Samples from the posterior distribution of the outputs then correctly reflect the 

correlation between parameters, given the data and the model. Besides its 

computational simplicity, this approach utilises the available evidence from a wide 

variety of structures, including incomplete data, correlated and uncorrelated repeat 

observations. The major advantage of a Bayesian approach is that, rather than 

assuming the correlation structure is fixed and known, it captures the joint uncertainty 

induced by the data in all parameters, including variances and covariances, and 

correctly propagates this through the decision or risk model.  These features are 

illustrated with examples on emissions of dioxin congeners from solid waste 

incinerators. 
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1. INTRODUCTION 

Monte Carlo simulation is the widely accepted method for propagating uncertainty in 

input parameters through a decision model.(1) (2) (3)  Simulation generates probability 

distributions for model outputs, and enables analyses to be made of the contribution of 

different inputs to the uncertainty in the outputs. At the same time, it is recognised 

that correlations between input variables can have a profound influence on the 

uncertainty in the outputs, and the importance of “correlation control” is stressed in 

recent textbooks.(4) (5)  

 

Faced with the need to incorporate input correlation in Monte Carlo simulation, the 

procedure most frequently adopted in practice is that proposed by Iman and 

Conover.(6) This is a restrictive pairing technique, now implemented in the Crystal 

Ball decision package, which induces a specified rank correlation structure in Monte 

Carlo simulation while leaving the marginal distributions of the input parameters 

unchanged. The process involves, in essence, generating samples from the marginal 

distributions of the inputs and then rearranging the same samples in a way that 

respects the desired rank correlation structure. More recently, copulas, a class of 

mathematical representations of  bivariate distributions on the unit square have been 

proposed,(7) (8) (5) This method, again, allows the user to specify the marginal 

distributions of parameters and a matrix of  between-parameter dependence measures 

such as Spearman’s ρ or Kendall’s τ, and then generates a joint distribution using a 

copula relationship.  A related approach is the NORTA (Normal To Anything) 

algorithm.(9) This begins with a specification of the marginal distributions and the 

desired correlation matrix, and then generates a multi-variate normal distribution 

which can be mapped into the required joint distribution.  

 

All these methods are based on correlation structures that are assumed to be fixed and 

known. These are powerful procedures which are particularly attractive whenever the 

correlations originate from expert opinion and so cannot be measured directly (see 

Clemen and Reilly (8) for a discussion of elicitation methods). However, we will argue 

that whenever possible, the correlations should be treated as uncertain, and be 

estimated jointly with the other parameters from available evidence. This can be 

achieved in a number of ways, but if Bayesian Markov Chain Monte Carlo methods 
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are used, not only will samples from the joint posterior distribution appropriately 

reflect the uncertainties in the data, but these uncertainties can be simultaneously 

propagated through the risk model. This differs fundamentally from other methods so 

far discussed, not only because it captures the uncertainty in the correlation, but it also 

because it captures the dependencies between the posterior correlations, variances, 

and means that are induced by their joint estimation from data.  

 

We begin with the simple bivariate dataset  (Table 1) used by Haas,(7) itself abstracted 

from an earlier paper by Hattis and Burmaster.(10) This example concerns emissions of 

two dioxin congeners from seven solid waste incinerators. These emissions are 

approximately log-normal and positively correlated. The objective of the analysis is to 

identify the distribution of the overall toxic equivalency (TEq), a simple linear 

combination of the two dioxins. We then turn to more complex, and more realistic 

data structures, with incomplete data, repeated observations, and correlations both 

within and between plants. In discussion we examine the limitations of the Bayesian 

MCMC approach, the issue of model uncertainty, and the general question of 

incorporating evidence on complex functions of model parameters. 

 

 

2.  BAYESIAN MARKOV CHAIN MONTE CARLO 

Markov Chain Monte Carlo (MCMC) simulation is a computing framework for 

Bayesian statistical inference.  The theoretical background and practical examples are 

set out in recent texts.(11) (12) (13) (14)  Here we employ WinBUGs 1.4 software.(15) The 

BUGs website (Bayesian inference Using Gibbs Sampling), www.mrc-

bsu.cam.ac.uk/bugs/welcome.shtml,  gives free access to the software, manuals, 

worked examples, tutorial papers, lectures, and further references and contacts.  

 

The aim of Bayesian inference is to provide information on the posterior distribution 

of model parameters given the data.  In MCMC samples are drawn from the posterior 

distribution, and the mean, standard deviation and percentiles of parameters or 

functions of parameters can then be examined from several thousands of simulated 

draws.  Gibbs sampling (16) is a form of MCMC algorithm implemented in WinBUGS 

in which samples are drawn from the conditional distribution of each parameter given 

the current values of the other parameters and the data. It can be shown that, given 
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some initial values, the resulting distributions converge to a stationary distribution 

that correctly reflects the required posterior distributions.(17) The first few thousands 

of ‘burn in’ simulations, while the distributions are not yet stationary, are discarded.  

In the examples presented here, graphical tests incorporated in WinBUGS suggested 

that adequate convergence had been achieved within 3000 iterations. The first 10,000 

were discarded, and results are based on the subsequent 100,000 samples. This runs in 

50 seconds on a PC with a 1.9 GHz processor.  Datasets and WinBUGS code for each 

illustration are available from the author. 

 

3.  FRAMEWORK 

We explain the concepts behind our approach using as an illustration the original data 

(Table 1) from Haas(7) giving emission factors for two dioxins from 7 incinerators. 

The means, standard deviations, on a natural log scale are also given. The correlation 

coefficient of the logged data is 0.8254, with a 95% confidence interval (0.191 - 

0.973), based on the normalising transformation z= 0.5 ln((1+r)(1-r)).  

 

Table 2 presents the Toxic Equivalent (TEq) percentiles obtained by Haas, assuming 

the Toxic Equivalent Factors for each dioxin are known to be 0.5. These include the 

results of restricted pairing(6) based on the observed rank correlation, and a range of 

copula relationships estimated from the data by maximum likelihood.  

 

For purposes of comparison, a non-Bayesian alternative approach might be to draw 

samples from two correlated normal distributions, using the means and covariance 

structure observed in the data (Table 1), exponentiate each sample, and then take an 

average to obtain TEq. This MC simulation from correlated log-normals gives a 

somewhat wider distribution than the methods described by Haas. It is not 

immediately clear why this is, although Hattis & Burmaster also observed that with 

approximately lognormal data, the simulated joint distributions generated by the Iman 

and Conover procedure, which is based on rank correlation, consistently 

underestimated the original correlations. 

 

Before describing a Bayesian analysis of this dataset, we must first clarify exactly 

which distribution we wish to sample from. Three possible candidates are: 
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Distribution of mean TEq.   Hattis and Burmaster(10) observe that mean TEq and the 

uncertainty in the mean given this sample from seven incinerators may provide the 

appropriate perspective for a national policy maker. They treat this as a subsidiary 

problem and suggest an approximate method. 

Distribution of TEq in the seven incinerators based on known parameters.  Earlier 

analyses(7) (10) were intended to deliver the distribution of TEq from the seven plants 

included in the sample, assuming that the mean, the between-incinerator variance, and 

the rank correlation between dioxins are all known to be at their maximum likelihood 

values.  

Predictive distribution of TEq in a new incinerator.  Here the seven incinerators are 

considered to have been sampled from a larger population, and in this paper we adopt 

the perspective of a decision maker concerned with the distribution of  TEq that might 

be expected in a new incinerator, given that the mean and covariance parameters for 

the population can only be estimated with uncertainty.  

 

4.   ILLUSTRATIONS 

4.1 Multi-variate normal, no missing data, no repeated measurements 

The data in Table 1 gives the emission factors Yij for congener, j, j=1..Nj, measured in 

micrograms/metric ton, in incineration plants, i, i=1…Ni. We assume that yij = 

log(Yij) has a multi-variate normal distribution: 

                                          yij ~ Mnorm(µ,P) 

The normality assumption will be explored later. µ is a vector of Nj means, and P an 

Nj-by-Nj precision matrix, the inverse of an Nj-by-Nj covariance matrix. There is also 

a vector of Nj known Toxic Equivalency Factors (TEFs), T. In the Table 1 example 

above, Nj=2, Ni=7, and T=(0.5,0.5). 

 

We assign minimally informative prior distributions to M and P. The two means are 

assigned a normal prior with low precision (high variance), and the precision matrix a 

vague Wishart distribution. Other options are available: readers should consult the 

examples in the WinBUGS manual or tutorial texts on practical Bayesian MCMC 

modelling.(11) (12) (14) The posterior distribution of interest is the predictive distribution 

of TEq in an unknown incinerator from this same multi-variate normal population.  

We draw a pair of values, one for each dioxin, from an ‘eighth’ incinerator, 
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exponentiate them back to the natural scale, and multiply them into their respective 

TEF and sum : 

                                              yn+1,j  ~ Mnorm(µ,P) 

                                              TEq = sumj (TEFj exp(yn+1,j)) 

 

The full WinBUGS code is as follows: 
model{ 
for (i in 1:8){ y[i,1:2] ~ dmnorm(mu[],P[,])   }       #  1.  multivariate normal  likelihood 
for (j in 1:2){ mu[j] ~ dnorm(0,.0001) }                 #  2.  vague prior for means 
P[1:2,1:2] ~ dwish(om[,],2)                                  #  3.  vague prior for precision (see data list) 
TEq <- (exp(y[8,1])  + exp(y[8,2])   )/2                 #  4. TEq for samples from ‘eighth’ incinerator 
} 

with the following data list: 
 
list(y=structure(.Data=c(1.853168097,  3.987130478, 
                                      2.93385687,    4.032469159, 
                                      0.875468737,  1.289232648, 
                                     -1.482805262,  2.4765384, 
                                      5.638354669,  5.247024072, 
                                     -0.410980289,  1.682688374, 
                                      0.506817602,  1.800058272, 
                                      NA,                  NA ),  .Dim=c(8,2)  ), 
     om=structure(.Data=c(.001,0,0,.001),.Dim=c(2,2) ) ) 
 

The results are shown in Table 2, alongside the results of Haas, and the non-Bayesian 

multi-variate approach. Note that only four lines of code are required: one to specify 

the likelihood, two to set the minimally informative priors, and a fourth to monitor 

TEq.  Two additional lines of code invert the precision matrix to obtain the variance-

covariance matrix and then obtain a posterior distribution for the correlation 

coefficient:  
             s[1:2,1:2] <- inverse(P[,])              
             r <-  s[1,2]/sqrt(s[1,1]*s[2,2])                         
                    

The predictive distribution given by the MCMC method is considerably wider than 

the classical methods as it incorporates both the uncertainty due to sampling from a 

multi-variate distribution, and the uncertainty in its variance-covariance structure. The 

ratio of the 90th to the 10th centiles in increased from about 47 to about 99.   

 

Scatter plots of samples drawn from the posterior distribution of parameters (Figure 1) 

portray the nature of the joint uncertainty, and make the point that, conditional on the 

available evidence, the distributions of the means, standard deviation and correlation 

have a distinct structure. Extreme values of the mean are associated with high 
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standard deviation, and high correlation. This structure has significant implications, as 

high variance and high correlation both widen the predictive distribution of TEq. 

 

4.2.  Multi-variate t distribution 

One way of exploring the assumption of multi-variate normality is to fit a distribution 

with heavier tails. Table 2 shows the results for a t distribution with 10 degrees of 

freedom, achieved by replacing line 1 with: 

 
for (i in 1:8){ y[i,1:2] ~ dmt(mu[],P[,]),10  }                            # 1. multivariate t- likelihood  
 

The effect is to widen the predictive intervals still further (Table 2), with the ratio of  

90th to the 10th centiles now 140.   

 

 

4.3 Incomplete data 

We now consider a situation where additional data is available from other 

incinerators, but this is not paired (Table 3). This ‘incomplete’ data structure has the 

same form as that examined by Hattis and Burmaster. Note that although the unpaired 

information does not contribute directly to the estimate of the correlation, it does 

provide indirect information by contributes to the estimates of the variances.  To 

allow comparison with the Table 1 measurements are used twice in a 28-item dataset 

from 21 incinerators, so that the means and variances are the same.  No alterations in 

the programme are required for this analysis other than changes in the array index 

from 8 to 22. As expected, uncertainty in TEq is considerably reduced, largely 

because of reduced uncertainty in the means. Note also, however, that the posterior 

distribution of the correlation coefficient is very slightly more narrow, due to the extra 

information on the variances.  

 

4.4 Unrelated repeated measures from the same plant 

A further extension allows one to incorporate a variable number of repeat 

measurements from the same plant on each of the dioxins. We assume, implausibly, 

that the measurements of the dioxins are unrelated: for example that within each 

incinerator the measurements of each congener were taken at different times. Each 

data point in Table 1 is replaced, in effect, with a (variable) number of independent 
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observations. A reasonable assumption would be that the observations, indexed k, are 

normally distributed about an incinerator- and dioxin-specific means, with an 

incinerator- and dioxin-specific variance:          

                              yijk ~ N(µij, τij) 

with the µij and  the τij to be estimated from the data. We might further assume that 

these precision parameters arise from a common gamma distribution, whose 

parameters will be estimated from the data, given vague priors. This device reduces 

the effective number of parameters being estimated, as the Ni-times-Nj precision 

estimates  ‘borrow strength’ from each other, just as the estimated means ‘borrow 

strength’ from each other though the common covariance structure.   

 

To implement this, the following two lines replace line 1 of the original code: 

 
for (i in 1:ni) { for  (j in 1:nj)  for (k in 1:nk) {  y[i,j,k] ~ dnorm(mu.y[i,j],tau[i,j])} } 
                      mu.y[i,1:nj] ~ dmnorm(mu[],P[,])  }     
 

and the following is added for the precision parameters: 
              
for (i in 1:ni) { for  (j in 1:nj)  { tau[i,j] ~ dgamma(a,b)  }}     
a ~ dexp (.01)                                                      
b ~ dgamma(.01,.01) 
 

This code will accommodate a variable number of up to Nk repeat measurements on 

each incinerator / dioxin combination. Example code and data lists are available from 

the author on request.  

 

4.5 Correlated repeated measures  

A more realistic scenario would be to have a varying number of measurements at each 

incinerator, but with Nk paired observations on the dioxins, as if for example they 

were measured on the same day. This generates a second, within-incinerator 

correlation structure. The model for the congener / incinerator mean in the previous 

example is replaced by a model which specifies that measurements on dioxins within 

the same incinerators are multi-variate normal, with a second 2 by 2 precision matrix. 

As before, this could be given an uninformative Wishart prior and estimated from the 

data. Lines 1-3 of the original code are therefore replaced by:  
 
for (i in 1:11) { for  (j in 1:6)  {  y[i,j,1:2] ~ dmnorm(mu.y[i,1:2],Pw[,] )} }         # ‘within’ model 
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Pw[1:2,1:2] ~ dwish(Ww[,],2)                                                                           
for (i in 1:11) {  mu.y[i,1:2] ~ dmnorm(mu[],Pb[,])  }                                        # ‘between’ model 
for (k in 1:2) { mu[k] ~ dnorm(0,.001)} 
Pb[1:2,1:2] ~ dwish(Wb[,],2) 
 

Congdon’s example 8.20 (page 420) has a virtually identical structure.(14)  

 

5. DISCUSSION 

The analyses described here should be seen not so much as an alternative method for 

incorporating correlation between parameters in simulation models, but as a method 

for simultaneously estimating the correlation structure and then incorporating it. One 

obvious advantage of the method is that, in the spirit of probabilistic uncertainty 

analysis, the uncertainty in the correlation structure is carried through and 

incorporated in the output. Alternative approaches, based on copula relationships or 

on correlation structures which are first estimated or elicited and then induced in MC 

simulation, have to rely on a deterministic form of sensitivity analyses in which 

‘extreme’ correlation structures are explored as an alternative to the base-case.(8)  

However, identifying correlation structures that deliver extreme results may itself 

require further complex analysis, such as dependency bounds.(18)    

 

A second advantage is that a Bayesian posterior distribution based on an appropriate 

characterisation of the data structure faithfully reflects the uncertainties inherent in the 

available evidence. In the examples given the variance and covariance terms both 

contribute to the final output, but are not independent conditional on the data, and the 

particular structure of the data determines the structure of the posterior uncertainty. It 

is difficult to see how the restricted pairing technique, or any method based on 

inducing fixed correlations can be adapted to be sensitive to the data structure in the 

required way. For example, in situations where there are both within- and between-

incinerator correlations, the two will be positively correlated, and for the simulation to 

be correct, their joint uncertainties must be propagated through the model. The 

essential difficulty is that, given any set of data, the posterior distributions of variance, 

covariance and mean dioxin levels are themselves related. Entering them into a MC 

simulation as if they were independent, while certainly better than assuming that 

covariances are zero, still fails to capture their overall joint uncertainty correctly.  
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A third advantage is the extreme simplicity of programming what are, in effect, 

textbook examples of Bayesian multi-variate analysis in the WinBUGS package, the 

ease of sampling from the appropriate predictive distribution in MCMC, and the many 

benefits of using standard statistical methods such as the availability of model 

checking facilities and graphical outputs.  

 

However, there are limitations. Firstly, the method as described depends on the 

existence of primary data. In the absence of source data, the copula or NORTA 

methods are available, although it is not easy to see how they could be adapted to 

incorporate uncertainty in correlation structure. A second limitation concerns the form 

of the source data. Hattis and Burmaster, who were the first to pose the problem that 

lead to the current study, discuss a dataset with 17 dioxins measured in 10 

incinerators. Clearly, a covariance matrix for this data can have no more than 10 

dimensions, so that a procedure like a principle components analysis is needed to 

reduce the dimensionality. However, this dataset was incomplete, with only 120 of the 

170 cells filled. Any formal method for correctly representing the uncertainty in this 

dataset, including a Bayesian MCMC analysis, would be difficult to implement.  A 

further serious limitation is the computational demands of MCMC modelling, which 

may not be a feasible method for decision problems with several hundreds of 

parameters.  

 

Haas(7) noted the sensitivity of the TEq distribution to the form of copula relationship 

assumed, though this seems comparatively slight compared both to the effects of data 

structure, and to sensitivity to the underlying distribution. Although the present 

approach is centred on the Pearson correlation, one way to parameterise model 

uncertainty might be to use a multi-variate t-distribution as in section 4.2 but allow the 

data to estimate the degrees of freedom. A better alternative might be to fit Box-Cox 

transformations(19). A Bayesian analysis would generate posterior distributions for the 

degrees of freedom or the Box-Cox skew parameter, and effectively ‘model average’ 

over this distribution, although these analyses cannot be carried out in the current 

version of WinBUGS. 

 

The issue of parameter correlation is just one aspect of the wider question: how to 

correctly reflect in simulation models the uncertainties inherent in all the available 
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information. As long as all the information sources relate to uncorrelated, individual 

parameters, simple MC simulation has been adequate. However, this method is not 

generally able to incorporate information on complex functions of parameters. 

Correlation is one of many types of information that has this property. More 

frequently encountered in risk and decision problems is information on model outputs. 

Two approaches to incorporating data on model outputs, or other functions of 

parameters, are the Confidence Profile Method of Eddy and colleagues,(20) (21) (22) (23) 

and the Bayesian Monte Carlo procedure.(24) (25)  Bayesian MCMC, and specifically, 

WinBUGS,  is an attractive alternative computational framework for many problems 

of this sort, (26) (27) and offers a unified, coherent, framework for evidence synthesis in 

risk and decision models. 

 

 

 

FIGURE CAPTION 

 
Figure 1.  Scatter plots based on 10,000 samples from the joint posterior distribution, 

given the Table 1 data, of the mean and standard deviation (sd) of log 1,2,3,7,8-CDD 

and its Pearson correlation (r) with log 2,3,4,7,8-PCDF.  
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Table 1.  Data on solid waste emission factors form Haas (1999) (7) from seven solid 

waste incinerators. 
 

 

Incinerator 1,2,3,7,8-
CDD 

2,3,4,7,8-
PCDF 

Ln (1,2,3,7,8- 
       CDD) 

Ln (2,3,4,7,8 
          -PCDF) 
 

1 6.38 53.9 1.853 3.987 

2 18.8 56.4 2.934 4.033 

3 2.4 3.63 0.876 1.289 

4 0.227 11.9 -1.483 2.477 

5 281 190 5.638 5.247 

6 0.663 5.38 -0.411 1.683 

7 1.66 6.05 0.507 1.800 

Mean   1.416 2.930 

Std Dev   2.352 1.496 

Spearman Rank correlation                        0.6786 

Pearson correlation                                     0.8254  (96% CI : 0.1912 – 0.9734) 
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Table 2.  Centiles of the posterior predictive distribution of TEq, means and posterior sd, from MCMC models, compared to the results of Haas 
(7) 
 
Percentile Haas (min - 

max) 
MC from ‘known’ multi-
variate normal 
 

MCMC 
Multivariate-normal 

MCMC 
Multi-variate  
t, df=10 

MCMC 21 
incinerators, 7 with 
paired data 

2.5% 0.74 – 0.76 0.60 0.35  0.23 0.56 

10.% 1.91 – 2.04 1.65 1.43 1.24 1.74 

50% 11.4 – 13.5 12.7 12.8 12.7 12.7 

90% 88.8 – 93.8 110 141 174 108 

97.5%      263 -288 377 865 1637 430

Mean log 1,2,3,7,8-CDD,  (sd)  1.42  (0.89)* 1.42 (0.95) 1.38(1.11) 1.41 (0.55) 

Mean log  2,3,4,7,8-PCDF,  (sd) ` 2.93 (0.57)* 2.93 (0.60) 2.91(0.64) 2.93 (0.35) 

Pearson correlation (95% CI)  0.825 (0.19-0.97) 0.806 (0.43-0.97) 0.800 (0.37-0.97) .806 (0.45-0.95) 

      

 

*  Standard error of mean 
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Table 3. Incomplete data structure:  21 Incinerators: 7 with information on  1,2,3,7,8-

CDD, 7 with information on 2,3,4,7,8-PCDF, and 7 with information on both. 

 

Incinerator 1,2,3,7,8-CDD 2,3,4,7,8-PCDF 
 

1 6.38  
2 18.8  
3 2.4  
4 0.227  
5 281  
6 0.663  
7 1.66  
8 6.38 53.9 
9 18.8 56.4 
10 2.4 3.63 
11 0.227 11.9 
12 281 190 
13 0.663 5.38 
14 1.66 6.05 
15  53.9 
16  56.4 
17  3.63 
18  11.9 
19  190 
20  5.38 
21  6.05 
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