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Abstract 
 
Decision models are usually populated one parameter one at a time, with one item of 

information informing each parameter. Often, however, data may not be available on 

the parameters themselves but on several functions of parameters, and there may be 

more items of information than there are parameters to be estimated. We show how in 

these circumstances all the model parameters can be estimated simultaneously, using 

Bayesian Markov Chain Monte Carlo methods. Consistency of the information and/or 

the adequacy of the model can also be assessed within this framework. Statistical 

evidence synthesis using all available data should result in more precise estimates of 

parameters and functions of parameters, and is compatible with the emphasis 

currently placed on systematic use of evidence. To illustrate this, WinBUGS software 

is used to estimate a simple 9-parameter model of the epidemiology of HIV in women 

attending prenatal clinics, using information on 12 functions of parameters, and to 

thereby compute the expected net benefit of two alternative prenatal testing strategies, 

universal testing and targeted testing of high risk groups. We demonstrate improved 

precision of estimates, and lower estimates of the expected value of perfect 

information, resulting from the use of all available data. 
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Standard texts and tutorial articles on decision analysis tend to assume that parameter 

values and their ranges are taken individually from appropriate literature 1 2.  

Typically, there is uncertainty concerning the parameter values because each is based 

on a finite sample. If this uncertainty can be expressed in the form of statistical 

distributions, Monte Carlo (MC) simulation is an appropriate way of computing the 

expected values of  particular functions of parameters, such as the incremental net 

benefit of one strategy over another. MC simulation, using standard spreadsheet 

software,  also allows one to correctly propagate the uncertainties in the input 

parameters to generate a distribution around functions of parameters, and this 

‘probabilistic sensitivity analysis’ 3 4 5 has become a firmly accepted tool of decision 

analysis 2 5 6. 

 

In this paper we look at situations where data may not be available on the parameters 

themselves, but on complex functions of several parameters.  In addition, information 

may be available on more functions of the parameters than there are parameters in the 

model. It is hard to say how often this situation arises, but the habit of populating 

decision models one parameter at a time, and unfamiliarity with methods that can take 

advantage of multiple evidence types, has perhaps deterred decision analysts from 

seeking and using additional sources of data that are available.  No one seems to have 

noticed what a marvellous coincidence it is that the literature always seems to provide 

just the right number of items of data to populate a model,  never more ! 

 

The proposals below for the statistical combination of evidence are in the same spirit 

as the Confidence Profile Method (CPM) of DM Eddy and colleagues 7 8 9 10 11 , but 

we attempt to take their very powerful ideas further in a number of ways.  First, we 

show how Markov Chain Monte Carlo methods implemented in the freely available 

WinBUGs software 12 provide a relatively simple alternative estimation framework.  

Secondly, we raise the issue of evidence consistency, which was not emphasised in 

CPM literature on evidence synthesis. Thirdly, we show how conventional methods 

for populating decision trees, one parameter at a time, lead to incomplete and hence 

arbitrary use of evidence. In a decision context this results in a biased assessment, and 

usually an over-estimate, of the true uncertainty in a decision. 
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We illustrate our approach with a simple model of the epidemiology of HIV infection 

in pregnant women, set in the context of a decision about whether prenatal testing for 

HIV in the London metropolitan area of the United Kingdom should be universal or 

targeted at high risk groups 13 14 15. This is not, at present, a particularly realistic 

decision problem: the decision to screen universally throughout England has now 

been taken, although it remains to be fully implemented. Further, targeted testing, 

even in areas of extremely low prevalence where universal testing may not be cost-

effective, is considered politically difficult in Europe and North America, and 

possibly discriminatory 16 17. Although the analysis is therefore illustrative in nature, 

simplifications intended to avoid unhelpful detail are made explicit, and the analysis is 

essentially what we would propose in a definitive application.  

 

Methods 
 
HIV EPIDEMIOLOGY MODEL AND SOURCES OF DATA 

The decision problem is to choose between targeted and universal prenatal testing for 

HIV. The decision tree in Figure 1 incorporates what is, in effect, an 8- parameter 

model of the epidemiology of HIV infection in pregnant women: a is the proportion 

of the prenatal population born in sub-Saharan Africa (SSA), b is the proportion who 

are previous or current injecting drug users (IDU). The remaining proportion (1-a-b) 

are considered low risk: these would only be tested in a universal programme. 

Parameters c,d, and e are the HIV prevalence in each of these three population groups, 

and f, g, and h  are the proportions of infected women who have already been 

diagnosed as HIV infected prior to prenatal attendance.  

 

Table 1 presents the 12 data items that could be used to inform this model. Note that 

there is no direct data on parameters e,f, or h.  Before looking at the decision problem 

in terms of the incremental costs and effects of universal compared to targeted testing, 

we begin by describing the data sources and their relation to model parameters, from 

the perspective of an epidemiologist interested in estimating the model.  

 

Data item 1 provides information on  parameter a,  the proportion of women who 

were born in Sub-Saharan Africa. Data on mother’s country of birth is collected at 

civil registration of every birth and compiled by the Office for National Statistics 18. 
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Item 2 provides information on parameter b,  the proportion of IDUs. This is based on 

the 1990 National Survey of Sexual Attitudes and Lifestyles 19. The  12/882 (0.136%)  

used here represents an adjustment of the original national data for the relative extent 

of reported female injecting drug use in London14, and for additional variance in the 

estimate due to survey clustering (A.Copas, personal communication). 

 

 Anonymous newborn seroprevalence surveys with linked maternal country of birth 

data in North London provide data on parameter c, HIV preva lence in women born in 

Sub-Saharan Africa (item 3) 20. (Antibody in the newborn is a highly reliable indicator 

of maternal infection). Other anonymised surveys (item 4) 21 give information on 

parameter d, HIV prevalence in IDUs. Although there is no direct information on HIV 

prevalence in the low-risk, there is data on women not born in Sub-Saharan Africa. 

Thus, data item 5 estimates a weighted average of the HIV prevalence parameters c 

and d, with the population sizes, b and (1-a-b) respectively, as the weights.  

 

Item 6, also from anonymised surveys21, provides information on overall 

seroprevalence in all London in 1999, a function of the parameters a,b,c,d, and e  . 

(Note that this data source does not overlap with items 3 and 5, which relate to data 

collected in the years 1997-98.  Setting aside the possibility of auto-correlation across 

time-periods, this is a somewhat artificial way of ensuring approximate independence 

of data items, in order to avoid unhelpful complication).  

 

Items 7 and 8 arise from data that is collected on cases of HIV in pregnancy that have 

been diagnosed prior to initial prenatal attendance 22 23. This survey can be used to 

provide information on the proportion of diagnosed infection that can be attributed to 

each of the three population groups. To maintain independence the information is 

expressed in the form of two proportions, diagnosed SSA women as a proportion of 

all diagnosed women, and diagnosed IDUs as a proportion of all diagnosed non-sub-

Saharan African women.  The same survey provides the total number of already 

diagnosed women, which is the numerator for data item 9, while the denominator, the 

total number of infected women, comes from the anonymised neonatal surveys 24. 

Data item 1021 provides a direct estimate of parameter g, the proportion of infected 

IDUs that are already diagnosed.  
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In the period 1997-8, anonymous samples from North London that were HIV-1 

seropositive were serotyped 25, and 15/118 typed samples from infants born to women 

from sub-Saharan Africa were sub-type B. Data item 11 informs us about an ancilliary 

parameter, w, which is not part of the epidemiological model, but which allows us to 

incorporate serotype data on non-SSA mothers (item 12). The reasoning here is as 

follows. HIV infection in IDUs is invariably subtype B.  A fairly well-supported 

assumption at this early stage in the epidemic is that the subtype profile in the low-

risk group is the same as the SSA subtype profile 26. Thus the proportion of subtype B 

in the non-SSA women (data item 12) is a weighted average of the proportion of 

subtype B in SSA women (w), and the proportion of subtype B in IDUs, with the 

weights being the proportions of infection attributable to IDU and low-risk groups. In 

the absence of direct data on the parameter e, HIV prevalence in the low risk, we 

introduce these two final data points, along with the ninth parameter w, in order to 

provide further information that bears on the distribution of infection in these two 

groups. 

 

THE DECISION PROBLEM 

Our characterisation of the decision problem is kept very simple. It is assumed that  

the test is 100% sensitive and specific, and that the uptake of testing in the high risk 

groups is the same in both strategies.  Under these circumstances, it can be shown that 

the incremental net benefit of universal compared to targeted testing depends on the 

prevalence of undiagnosed infection in the low risk group, the additional group that a 

universal strategy tests and a targeted strategy does not 14 27. 

 

Specifically, for a prenatal population of 105,000 per year in London, the additional 

number of tests carried out in a universal programme compared to targeted is:  105000 

(1-a-b) (1-eh). The additional number of infected women diagnosed is: 105000 (1-a-

b) e(1-h).  With T  as the unit cost of an HIV  test and B  as the net benefit 28 29 of a 

maternal diagnosis, the expected incremental net benefit of universal over targeted 

testing per year is therefore: 

 

                   E[INBU] = E[ 105000 (1-a-b) {Be(1-h) – T(1-eh)} ]                           (1) 
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INBU  is a random variable, due to the stochastic uncertainty in the parameters a,b,e,h, 

and B.  The optimum policy is Universal if and only if E[INBU] > 0.    We therefore 

take an expectation over the expression, bearing in mind that the mean of a non- linear 

function of random variables is not equivalent to the function applied to their expected 

values.    

 

In the illustration that follows, T is taken to be fixed at £3. For B a distribution of 

values is based on earlier work which took account of:  the costs and effectiveness of 

treatment to prevent transmission to the foetus and newborn, the life-time costs of 

paediatric infection, the life-years gained by averting it, the life-years gained by the 

mother through earlier diagnosis and the additional costs incurred.  Based on 

published models of each of these processes, and assuming a £10,000 value per 

additional life-year gained 30, it was concluded that the net benefit of a maternal 

diagnosis was approximately £50,000 with a range of £12,000 to £60,000 13. The 

extreme leftwards skew is a result of the diminishing return that is achieved by 

lowering the mother-to-child transmission rate still further. For present purposes we 

interpret these results as the mean and 95% confidence limits of a probability 

distribution, which can be represented by a transformed gamma distribution, truncated 

at an upper limit of 2: 

                            B  ~  600012 – 54296 {gamma (0.56,3) | (0,2)}                          (2) 

 

Uncertainty in the incremental net benefit of universal versus targeted testing is 

expressed by the spread of the distribution of INBU. This uncertainty results in 

uncertainty about which decision to adopt. If we had perfect information on INBU the 

decision would be optimal and we would maximise net benefit. Uncertainty in INBU 

therefore has a ‘cost’, arising from the probability that a decision based on its 

expected value may be the wrong decision. This expected loss due to uncertainty is 

also known as the Expected Value of Perfect Information (EVPI)31 32, because it is the 

amount that a decision maker should be willing to pay in order to eliminate 

uncertainty in a decision.  

 

EVPI can be calculated from the distribution of INB by integrating over the product 

of the loss and the probability of the loss. Assuming that universal testing has a higher 

expected net benefit than targeted (i.e.  NBU – NBT > 0), then universal testing is the 
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optimal decision given current information. EVPI is the difference between the 

expected gain given a decision based on perfect information,  E[ max (NBU, NBT)], 

and the expected gain given a decision based on current information,  E[NBU].                           

Using NBU – NBT = INBU, and assuming a 10 year horizon for the decision, and 

discounting at 5% per year, then: 

                                         EVPIU  =  E[7.7127   Max(-INBU,0)]                           (3) 

 

 

ESTIMATION OF THE MODEL 
 
Bayesian analysis 
 
Markov Chain Monte Carlo (MCMC) simulation is a framework that is useful in both 

Bayesian statistical inference and decision analysis.  The theoretical background and 

practical examples are set out in recent texts 33 34 35. Here we employ WinBUGs 

software, version 1.3.12 The BUGs website (Bayesian inference Using Gibbs 

Sampling), www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml,  gives free access to the 

software, manuals, worked examples, tutorial papers, lectures, and further references 

and contacts.  

 

The aim of Bayesian inference is to provide information on the posterior distribution 

of model parameters given the data.  In a multi-parameter model, direct computation 

of the posterior distribution would require a high dimensional integration. Instead, the 

MCMC approach is to repeatedly draw samples from the posterior distribution, 

allowing the analyst to estimate its mean, standard deviation and percentiles. In Gibbs 

sampling 36, an MCMC algorithm implemented in WinBUGS, samples are drawn  

from the conditional distribution of each parameter given the current values of the 

other parameters and the data. It can be shown  that, given some initial values, the 

resulting distributions converge to a stationary distribution which correctly reflects the 

required posterior distributions 37. The first few thousands of ‘burn in’ simulations, 

while the distributions are not yet stationary, are discarded.  In the examples 

presented, tests for convergence 38 incorporated in WinBUGS suggested that adequate 

convergence had been achieved within 3000 iterations. In results reported below the 

first 10,000 were discarded, and results are based on the subsequent 100,000 samples. 

This took about 115 seconds on a PC with a Pentium III 700MHz processor. 
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The BUGS system computes the conditional distributions, manages the sampling 

process, accumulates the samples from the posterior distributions of the parameters 

and of any function of the parameters, and produces statistical summaries of them 

including the mean, standard deviation and centiles.  All the user need do is to specify 

the relationships between the data and the model parameters, exactly as expressed in 

Table 1, provide prior probability distributions for each of the parameters, and specify 

the likelihood for the data, given values of the parameters. All the 9 basic parameters  

are assigned beta distributions, which is a natural choice for probability parameters. 

An additional constraint is imposed to ensure that (1-a-b) > 0. All parameters are 

given minimally informative, uniform, beta(1,1) priors indicating a prior belief that all 

values are equally likely. Vague priors mean that inference will be dominated by the 

data rather than prior assumptions. Beta(0.5,0.5) priors would be an alternative giving 

virtually identical results.  Each of the twelve data items are generated by binomial 

processes, so that the likelihood of the data given values of the parameters is a product 

of 12 binomial likelihood contributions. The WinBUGS code, given in full in the 

appendix, therefore specifies that the data numerators are drawn from binomial 

distributions, whose probability parameters are given by the model parameter or 

function of model parameters shown in Table 1, and with denominators given by the 

data. 

 

Model checking and diagnostics 

Besides looking at the posterior distributions of the estimates and various functions of 

them, we also compute certain diagnostic statistics both to assess the overall fit of the 

model, and to identify data points that are inconsistent with other data given the 

model.  Bayesian global goodness of fit statistics used to compare models in this 

paper are: the sum of the squared standardised residuals, the posterior mean deviance, 

the estimated deviance at the maximum likelihood solution,39  and the Deviance 

Information Criterion (DIC).39  The latter is a measure that captures goodness of fit 

but penalises additiona l parameters. To assess the consistency of individual data 

points we use: the standardised residual, the deviance contribution, and the probability 

of getting a more extreme observation.  The latter is the posterior predictive p-value, 

obtained by comparing the observed data with a simulated ‘replicate’ observation, 

whose distribution captures both the uncertainty in the fitted probability and the 
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uncertainty due to binomial sampling.40 These are not necessarily the most 

sophisticated model diagnostics, but they are simple to compute and serve to illustrate 

the feasibility and importance of model checking in decision analysis.  The Appendix 

describes how each of the model diagnostics, and all the results presented in tables, 

can be derived from the WinBUGS output. 

 

Results 

GOODNESS OF FIT AND CONSISTENCY OF EVIDENCE 

Table 2 compares the mean and the 2.5 and  97.5  percentiles of the posterior 

distribution of the predicted probabilities, along with the point-by-point model 

checking information. The posterior mean probabilities for each data point are 

reasonably consistent with the observed data, except for 3 data points: item 2, the 

proportion of the prenatal population who are or were IDUs (parameter b);  item 4, the 

prevalence of HIV in this group (parameter d); and item 12, the proportion of HIV 

infected women not from sub-Saharan Africa who have serotype B. In these three 

cases, the observed data lie towards the edge of the posterior distribution. 

 

The three indicators of goodness of fit at the individual data-point level confirm this 

picture. The posterior mean of the deviance contributions, which would be expected 

to be unity if the data were consistent with the model, is higher at these three points. 

The standardised residuals for these three items are also the largest. The residuals for 

items 2 and 4 are both positive, suggesting that either the proportion of IDUs or the 

HIV prevalence in IDUs in the data, or both, is too great to be consistent with the 

remaining information. The probability of obtaining a more extreme observation is 

also at its lowest at these three points. 

 

To obtain further insight into which data source or sources are inconsistent with the 

others, the model was re-estimated with each of the three deviant data points left out 

in turn, and results compared with the original 12- item dataset in terms of  global 

goodness of fit statistics (Table 3).  For all criteria a lower number indicates a better 

fit.  Both the full dataset and the dataset without item 12 produce a poor fit, compared 

to the datasets without item 2 or without item 4.  With either of these two data points 

removed, the remaining data items appear to be consistent and the model appears to fit 
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well, in the sense that the estimated deviance at the maximum likelihood solution is 

close the number of degrees of freedom, the posterior mean deviance is close to the 

number of data points, and the DIC is equal to the number of data points plus the 

number of parameters. However, removal of the serotyping data item 12 still leaves 

evidence of poor model fit as judged by these global diagnostics.  All this suggests 

that it is the conflict between items 2 and 4 rather than the serotyping data item 12, 

that is the cause of the inconsistency. There is little to choose between the two 

datasets that appear most consistent. This is because in each case information on the 

missing parameter, b  or d, comes from  evidence on the other together with the same 

evidence on the product db.   

 

As the choice of dataset cannot be made on the basis of global goodness-of-fit 

statistics,  one must consider the epidemiological interpretation of the data. The 

information on the proportion of IDUs in the prenatal population is based on a 

structured representative survey, and should be unbiased. However, information on 

HIV preva lence in IDUs is based on current, and probably longer-term, drug users 

attending drug user clinics. HIV prevalence in this group is likely to be higher than 

among the ‘ever-IDUs’ among the prenatal population. For this reason we would 

prefer to adopt a model based on dropping data item 4 in a definitive analysis. 

 

Full results for this 11- item dataset (Table 4) indicate  predicted values are more 

concordant with the observed data, and the point-by-point diagnostics all suggest the 

remaining data are consistent with each other. Note that the modeling still gives us an 

estimate of parameter d, HIV prevalence in IDUs, although there is no longer 

evidence that informs this directly. The estimate is  0.5% (95% confidence interval: 

0.15% - 1.2%), lower than the full 12- item dataset estimate of 1.2%, and far less than 

the 2.1% in the data itself.  

 

 

PRECISION OF ESTIMATES 

Bringing more data to bear on a decision problem should improve the precision of 

estimates. This can be illustrated most readily in parameters and functions on which 

there is direct data. In Table 5 we compare  the coefficient of variation (CV) of the 

posterior distributions of the fitted probabilities at each data item with the CVs of the 
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original data represented as a beta distribution. The  improvements in precision are 

particularly noticeable in items relating to IDUs, but estimates of HIV prevalence in 

women from Sub-Saharan Africa and of overall prevalence have also benefited. 

 

The uneven nature of the changes in precision illustrates how the influence of  

parameters and the functions of parameters on each other depends on the model 

structure and on the amount of information supporting different aspects of the model. 

Although MCMC estimation is superficially similar to forward Monte Carlo 

simulation as practiced in probabilistic sensitivity analysis, the critical difference is 

that both the structural constraints imposed by distributional assumptions, and the 

excess of data items over parameters to be estimated, induce correlations between 

parameters. These are illustrated in Figure 2. Notice for example the strong negative 

correlation between items 2 and 4.  Within a framework where we have information – 

direct or indirect – on the proportion of all HIV infection that is attributable to IDU, a 

scenario of high HIV prevalence implies a low number of IDUs in the population, and 

vice versa. Without the constraint imposed by information on the overall amount of 

IDU-related infection via the product db, this correlation cannot occur.   

 

ESTIMATES OF LATENT PARAMETERS, INCREMENTAL NET BENFIT AND 

EXPECTED VALUE OF PERFECT INFORMATION 

As we have seen, multi-parameter synthesis via MCMC readily generates estimates of 

model parameters and functions of model parameters which have not been directly 

observed, and further functions of them.  Posterior means and confidence intervals for 

parameters e,h,  along with the Incremental Net Benefit of universal over targeted 

tests, and the EVPI, are presented in Table 6, based on the full 12- item dataset and on 

the 11-item dataset with item 4 removed.  The table shows that the latent parameters, 

INB and EVPI are not particularly sensitive to the inclusion of this data point. 

 

The results from the 12- item and 11- item datasets contrast with those that might be 

obtained if one were to choose subsets of the data. Table 6 gives results for 6 of over 

one hundred ‘minimum’ subsets of the data from which INB and EVPI could be 

computed. (Minimum in the sense that the number of data points equals the number of 

parameters that need to be estimated, so that they provide just enough data to uniquely 

identify the parameters a,b,e,h that are required for INB). Among these subsets some, 
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like {1,2,3,4,5,7,8,9} and {1,2,3,4,6,7,8,9}, incorporate the strongest items of data and 

would form a reasonable basis for estimation.  Others, such as {2,3,4,5,8,9,10,11,12},  

leave these items out, and would not be considered an intelligent use of available data. 

Although the expected INBU is positive in all these datasets, so that policy decision in 

favour of Universal would not be affected, one observes that not only are the 

estimates of the latent parameters and of INB strongly dependant on the dataset 

chosen, but the precision of these estimates is compromised by incomplete use of 

available data. Further, even the more reasonable datasets result in seriously biased 

over-estimates of EVPI.  

 

Discussion 

 

This example illustrates how Bayesian MCMC methods can be used to statistically 

estimate a decision model in situations where some of the data informs complex 

functions of parameters rather than the parameters themselves,  and where there are 

more items of data than there are parameters.  In this section we compare statistical 

evidence synthesis to the traditional approach where model parameters are informed 

individually, and then review earlier related work on evidence synthesis, before noting 

some of the wider implications and directions for future work. 

 

Compared to populating decision models one parameter at a time, statistical synthesis 

via Bayesian MCMC, or by other methods, adds to the conceptual and technical 

complexity of decision modelling, but it has important advantages.  The first is that by 

using all the available information we should obtain more precise estimates than is 

possible if only a subset of the data is used. If the number of data points is limited to 

equal the number of parameters, the choice of which data points to use becomes 

arbitrary.  For example, the parameters a,b,c,d,e could be estimated from data points 

(1,2,3,4,5), or (1,2,3,4,6). In fact there are over 100 different ‘minimum’ subsets of 

the 12 data items that could be used to estimate INB.  The results of fitting MCMC 

models to just a few of these subsets (Table 6) illustrated how this can lead to extreme 

over-estimation of uncertainty, and of the expected cost of making a decision under 

uncertainty as measured by EVPI.  EVPI is now increasingly recognised as a method 

for sensitivity and analysis and for research prioritisation 28 41 42 43 44 45 46 in medical 
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decision making, and environmental health risk assessment 47 48 . Within a decision 

theory framework, over-estimation of EVPI would lead to incorrect assessment of 

research priorities, and inappropriate allocate of resources. But even if a less formal 

view is taken of the research process, it is clear that an accurate identification and 

assessment of  uncertainty must play a critical role.  

 

In the present example, even if the number of available data items really did equal the 

number of parameters, it would not in any case be possible to carry out a probabilistic 

sensitivity analysis or estimate EVPI using conventional MC methods41 42 46. This is 

because INB is a function of unobserved parameters. It might appear that this can be 

circumvented.  For example, in order to obtain an estimate of uncertainty in the 

parameter e from data items 1 through 5,  one could consider carrying out  MC 

simulation at each data point, and then solve the simultaneous equations for  e  on 

each MC cycle 49. However, this would not necessarily lead to correct propagation of 

uncertainties, as there would be no way of preventing MC samples of latent 

parameters being outside their possible range. In the first four ‘minimum’ datasets in 

Table 6,  at least one probability parameters is assigned a value outside the  {0,1} 

range in 81%, 38%, 58%, and 2% of MC simulations. 

 

A further advantage of using all available data is that if there is data on more 

functions of parameters than there are parameters, it becomes possible to check the 

consistency of the data sources, and the overall fit of the model to the data. We have 

illustrated this with a number of diagnostic and model checking tools. Bayesian model 

diagnostics are a very active area of research at present, and the interested reader is 

referred to standard texts 33 34 and recent work.39  The use of formal methods for 

model checking has not been particularly common in medical decision making. It is 

occasionally recommended that additional data items, relating to functions of several 

parameters, are used to ‘validate’ the chosen values and ranges for the basic model 

parameters 50. Alternatively, an investigator might use this additional information to 

‘calibrate’ the basic parameter ranges in an attempt to harmonise the model with 

additional data sources not incorporated in the model itself. This is certainly feasible 

when there is just one additional source of data, but increasingly complex if there are 

several.  Although the emphasis on calibration and validation reflects an appreciation 

of the need to make parameter ranges as credible as possible, we see our proposal as 



 15 

having two advantages: first, the tests of consistency are formal and based on all 

available evidence, including other indirect evidence on other functions of parameters; 

second, the validating data are – if consistent – incorporated into the model, 

increasing precision, and leading to a more realistic assessment of uncertainty. 

 

These proposals for statistical combination of evidence are an attempt to carry 

forward the pioneering work of DM Eddy and colleagues on the Confidence Profile 

Method  7 8 9 10, but they go beyond the CPM literature in some respects.  Bayesian 

MCMC via WinBUGS has several technical advantages over the FASTPRO software 

made available for CPM 51, in which maximum likelihood and  non-MCMC Bayesian 

approaches were offered. These include the flexibility to programme ad hoc ancillary 

analyses like those required for model checking, in some cases increased accuracy in 

estimated posterior distributions 52, and the facility to generate programme code 

directly from conditional independence graphs52. It should be noted that an 

alternative, non-Bayesian,  estimation  could also be achieved using the non- linear 

regression modules within a number of statistics packages. However, the partial 

derivatives of each of the 12 functions with respect to each of the 9 parameters would 

have to be provided to ensure stability: a substantial additional programming effort in 

itself. Further programming would then be required to obtain confidence intervals for 

arbitrarily complex functions of parameter such as INB, and to compute EVPI.  

 

Although CPM in both its maximum likelihood and Bayesian forms is capable of 

evidence synthesis in cases where the number of functions of parameters on which 

there are data exceeds the number of parameters, there are relatively few examples of 

this in the CPM literature. Further, in these examples, the issue of consistency of 

evidence was not addressed.   The approach to statistical evidence synthesis proposed 

here both enables one to use all the available evidence that bears on a problem, and to 

check that this evidence is consistent before proceeding. Although the best response to 

conflicting evidence remains a matter of judgement, the ability to check and evaluate 

complex evidence synthesis models has wide implications in epidemiology as well as 

decision making. From an epidemiologist’s point of view, it becomes possible to 

estimate unobserved variables from indirect evidence, and to discover that some 

evidence, for example HIV prevalence data from women attending drug abuse clinics, 

is probably biased, at least as an estimate of HIV prevalence in pregnant former 
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and/or current IDUs. Interestingly, in HIV epidemiology, two separate methods have 

been proposed for estimating HIV prevalence in sections of the United Kingdom 

population, the ‘direct’ method relying on the kind of data represented by items 2 and 

4 53 54, and the ‘indirect’ method relying on items such as 4 and  10 55.  Both methods 

over-estimate the uncertainty in the estimated prevalence of infection because they 

have no way of capturing the negative correlation between the estimates of group 

population size and group-specific prevalence.  

 

The idea that parameter estimates should be based on ‘all available evidence’ echos 

the emphasis now rightly placed on systematic review in meta-analysis 56 57, and 

carries it over into the multi-parameter setting.  The claim that an entire decision 

model is based on all available evidence, which has been checked for consistency, is a 

powerful one, that could enhance the model’s credibility and the acceptability of 

decisions based on it.  Further if research prioritisation is to be driven by the need to 

reduce uncertainty, with EVPI as one possible way of quantifying both the extent of 

uncertainty and its consequences, there appears to be a need to move towards a 

systematic use of available evidence and towards statistical methods for evidence 

synthesis that measure uncertainty accurately.  

 

MCMC methods for multi-parameter evidence synthesis can be applied to many other 

evidence structures, including indirect treatment comparisons and multiple 

intermediate outcomes. There are several areas for further research. First, an extension 

is required to situations where data on some functions of parameters itself arises from 

multiple sources, as in a standard meta-analysis, which may exhibit a within-study 

heterogeneity. Second, current MC methods for assessing the EVPI for subsets of the 

data41 46, assume both a linear relation between parameters and net benefit and a lack 

of correlation between parameters. New methods will be needed for EVPI on 

parameters in correlated structures, and for EVPI on functions of parameters. Finally, 

we began with a decision problem that required four parameters to estimate INB, a, b, 

e and h, but ended by estimating a 9-parameter model. If the concept of using all 

available information is interpreted as including information on ancillary parameters, 

this raises the question of how systematic review can identify which information is 

relevant.
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Table 1.  Data sources available, and the parameters or functions of parameters estimated. SSA Sub-Saharan Africa, IDU injecting drug user. 
 
 Description of data items Parameter or Function of parameters estimated Data  Ref 
     
1 Proportion born Sub-Saharan Africa, 1999 a   11044 /104577  18 
2 Proportion IDU last 5 years b        12 / 882 19 
3 HIV prevalence, women born in SSA, 1997-8 c     252 / 15428 20 
4 HIV prevalence in female IDUs, 1997-9 d      10/ 473 21 
5 HIV prevalence, women not born in SSA, 1997-8 [db + e(1-a-b)]/(1-a) 74 / 136139 20 
6 Overall HIV seroprevalence in pregnant women, 1999 ca + db + e(1-a-b) 254 / 102287 21 
7 Diagnosed HIV in SSA women as a proportion of all diagnosed 

HIV, 1999 
fca / [fca + gdb + he(1-a-b)]  43 / 60 23 

8 Diagnosed HIV in IDUs as a proportion of non –SSA diagnosed 
HIV, 1999 

gdb / [gdb + he(1-a-b)] 4 / 17 23 

9 Overall proportion HIV diagnosed [fca+gdb+he(1-a-b)] / [ca + db +e(1-a-b)] 87 /254 21 24 
10 Proportion of infected IDUs diagnosed, 1999 g     12/15 21 
11    Prop of serotype B in infected women from SSA, 1997-8 w 14/118 26 
12 Prop of serotype B in infected women not from SSA, 1997-8 [db /[db + e(1-a-b)]]  + we(1-a-b)/ [db + e(1-a-b)] 5 / 31 26 
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Table 2. Estimates of parameters and functions of parameters and model diagnostics for full dataset. SSA sub-Saharan Africa, IDU injecting 
drug user.  
 
 
 
Parameters/functions  Data Estimate 95% interval Dev St. 

Res 
P(extr) 

Proportion SSA 0.106 0.106 0.104, 0.018 1.01 -0.10 0.47 
Proportion IDU 0.0137 0.00894 0.0047, 0.015 2.90 1.77 0.13 
HIV prevalence in SSA 0.0163 0.0172 0.016, 0.019 1.33 -0.98 0.26 
HIV prevalence in IDU 0.0211 0.0124 0.0063, 0.021 3.41 2.26 0.09 
HIV prevalence in  non-SSA  0.000544 0.000597 0.00048, 0.00073 1.51 -0.85 0.29 
Overall HIV prevalence 0.00248 0.00235 0.0022, 0.0025 1.19 1.36 0.23 
Diagnosed SSA as a proportion of all diagnoses 0.717 0.688 0.58, 0.79 1.02 0.53 0.37 
Diagnosed IDU as prop of non-SSA diagnoses 0.235 0.304 0.16, 0.47 0.85 -0.86 0.32 
Proportion of all HIV that is diagnosed 0.343 0.351 0.30, 0.41 1.03 -0.30 0.42 
Probability already diagnosed,  IDU  0.800 0.739 0.51, 0.91 1.11 0.59 0.37 
Proportion subtype B in SSA 0.119 0.113 0.066, 0.17 0.95 0.23 0.41 
Proportion subtype B non-SSA 0.161 0.288 0.20, 0.39 2.98 -2.58 0.09 
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Table 3.  Comparison of models using global measures of goodness of fit. SSA sub-Saharan Africa, IDU injecting drug user. 
 
  
 All 12 data points Exclude item 2,  

Proportion IDU 
in population 

Exclude item 4. 
HIV prevalence 
in IDUs 

Exclude item 12, 
Serotype B in 
non-SSA 

     
Data points 12 11 11 11 
Parameters 9 9 9 9 
Degrees of freedom 3 2 2 2 
Posterior mean deviance 19.3 11.5 11.5 16.0 
Deviance Information Criterion 28.4 20.1 20.1 24.9 
Estimated deviance at ML solution 10.37 2.53 2.60 7.39 
Sum of squared standardised residuals 20.0 5.8 5.8 10.7 
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Table 4. Estimates of parameters and functions of parameters with model diagnostics from reduced 11- item dataset, without data on HIV 
prevalence in IDUs. SSA sub-Saharan Africa, IDU injecting drug user. 
 
 
Parameters/functions  Data Estimate 95% interval Dev St. 

Res 
P(extr) 

Proportion SSA 0.106 0.106 0.104, 0.108 1.00 -0.10 0.47 
Proportion IDU 0.0137 0.0136 0.0070, 0.022 1.02 0.00 0.27 
HIV prevalence in SSA 0.0163 0.0172 0.016, 0.019 1.32 -0.96 0.35 
HIV prevalence in IDU 0.0211 0.00514 0.0015, 0.012 - - 0.20 
HIV prevalence in  non-SSA  0.000544 0.000581 0.00046,0.00071 1.21 -0.59 0.49 
Overall HIV prevalence 0.00248 0.00234 0.0021, 0.0025 1.39 1.53 0.40 
Diagnosed SSA as a proportion of all diagnoses 0.717 0.713 0.60, 0.81 0.91 0.07 0.47 
Diagnosed IDU as prop of non-SSA diagnoses 0.235 0.214 0.082, 0.39 0.77 0.27 0.45 
Proportion of all HIV that is diagnosed 0.343 0.346 0.29, 0.40 0.98 -0.10 0.46 
Probability already diagnosed,  IDU  0.800 0.770 0.56, 0.93 0.88 0.31 0.23 
Proportion subtype B in SSA 0.119 0.117 0.068, 0.17 0.88 0.06 0.47 
Proportion subtype B non-SSA 0.161 0.227 0.15, 0.33 1.13 -1.40 0.27 
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Table 5.  Effect of  evidence synthesis on coefficient of variation (posterior standard deviation divided by posterior mean).  
SSA sub-Saharan Africa, IDU injecting drug user. 
 
 
Parameters/functions  Data Model based on 

12 data points 
Model excluding item 4: 
HIV prevalence in IDUs 

Proportion SSA 0.0090 0.0090 0.0090 
Proportion IDU 0.29 0.29 0.29 
HIV prevalence in SSA 0.062 0.050 0.051 
HIV prevalence in IDU 0.31 0.31 0.52 
HIV prevalence in  non-SSA  0.12 0.11 0.11 
Overall HIV prevalence 0.063 0.041 0.042 
Diagnosed SSA as a proportion of all diagnoses 0.080 0.079 0.078 
Diagnosed IDU as prop of non-SSA diagnoses 0.42 0.26 0.37 
Proportion of all HIV that is diagnosed 0.087 0.083 0.085 
Probability already diagnosed,  IDU  0.13 0.14 0.13 
Proportion subtype B in SSA 0.25 0.24 0.23 
Proportion subtype B non-SSA 0.40 0.17 0.21 
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Table 6.  Comparison of full evidence synthesis based on all available evidence, with synthesis based on ‘minimum’ datasets. Posterior means 
and standard deviations of:  latent parameters e, HIV prevalence in low-risk women;  h, the proportion of infected low-risk women diagnosed 
before prenatal attendance; Incremental Net Benefit, and EVPI.. 
 
 
 
Dataset e (sd)                 h  (sd) E[INBU], £  (sd) EVPIU, £ 
     
MCMC full evidence synthesis      
All 12 data points 0.000485 (0.000065) 0.427 (0.12) 1,028,000 (516,000) 71,240 
Excluding item 4 0.000517 (0.000066) 0.408 (0.11) 1,149,000 (543,700) 73,290 
     
MCMC  with data items:     
1,2,3,4,5,8,10 0.000381 (0.000074) 0.759 (0.18) 163,900 (395,600) 532,400 
1,2,3,4,5,7,8,9 0.000298 (0.000086) 0.652 (0.19) 250,900 (417400) 404,800 
1,2,3,4,6,8,10 0.000692 (0.00018) 0.713 (0.20) 687,600 (851,400) 292,500 
1,2,3,4,6,7,8,9 0.000536 (0.00021) 0.464 (0.20) 1,202,000 (1,066,000) 178,800 
2,3,4,7,8,9,11,12 0.899 (0.07) 0.086 (0.077) 157,000,000 (65,350,000) 3,661,000 
1,2,3,4,8,10,11,12 0.158 (0.23) 0.129 (0.19) 714,000,000 (1120,000,000) 18,790,000 
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APPENDIX 
 
The BUGS code for the full model based on all 12 data items is: 
 
model; 
{ 
#  SET PRIORS    
   a ~ dbeta( 1,2)             
   z ~ dbeta (1,1)       
   b <- z * (1-a)             #  sets constraint (1-a-b > 0)        
   c ~ dbeta (1,1)              
   d ~ dbeta (1,1)              
   e ~ dbeta (1,1)             
   f ~ dbeta (1,1)               
   g ~ dbeta (1,1)               
   h ~ dbeta(1,1)               
   w ~ dbeta(1,1) 
 
# VECTOR p[1:12] HOLDS THE EXPECTED PROBABILITIES FOR EACH DATA POINT 
   p[1] <- a 
   p[2] <- b 
   p[3] <- c 
   p[4] <- d 
   p[5] <- (d*b + e*(1-a-b))/(1- a) 
   p[6] <- c*a + d*b + e*(1-a-b)  
   p[7] <- f*c*a / (f*c*a + g*d*b  + h*e*(1-a-b))  
   p[8] <- g*d*b / (g*d*b + h*e*(1-a-b)) 
   p[9] <- (f*c *a + g*d*b  + h*e*(1-a-b)) / p[6] 
   p[10] <- g 
   p[11] <- w 
   p[12] <- d*b/(d*b+e*(1-a-b))  +  w*e*(1-a-b)/(d*b + e*(1-a-b))  
    
# NET BENEFIT OF MATERNAL DIAGNOSIS, INCREMENTAL NET BENEFIT, EVPI 
   y ~ dgamma( 0.56,3)I(, 2)                                                               #  distribution for net benefit of maternal diagnosis                            
   nbmd <-  60012 - 54296*y                                                                                                                  #  see equation 2 
   inb.u <-  105000*(1-a-b) * (nbmd * e * (1-h) - 3.0*(1-e*h))                                               # annual INB, see equation 1                    
   evpi.u <- 7.7217 * max(-inb.u,0)                                             # expected value of perfect information, see equation 3            
 
#  LIKELIHOOD AND DIAGNOSTICS 
   for(i in 1: 12) { 
       r[i] ~ dbin(p[i],n[i])                                                                                           #  data numerators and denominators  
       rhat[i] <- p[i] * n[i]                                                                                                     # predicted value of numerators                
       dev[i] <- 2 * (r[i] * (log(r[i])-log(rhat[i]))  +  (n[i]-r[i]) * (log(n[i]-r[i]) - log(n[i]-rhat[i])))              #  deviance contribution 
       p.rep[i] ~ dnorm(p[i],t[I])          # replicate observation, normal approximation to binomial, mean p[I], variance 1/t[I]         
       t[i] <- n[i]/( p[i]*(1-p[i]))                                                                                                   #  1/variance of a proportion 
       p.smaller[i] <- step( (r[i]/n[i]) - p.rep[i])                                      # counts number of times replicate data < observed 
     }  
    sumdev <- sum(dev[])                                                                                                 # sum of deviance contributions         
} 
 

with the following data: 
 
list(   
r=c(11044,12,252,10,74,254,43,4,87,12,14,5), 
n=c(104577,882,15428,473,136139,102287,60,17,254,15,118,31) 
) 
 
 

The model checking diagnostics and measures of goodness of fit are computed as 

follows: 

 

Deviance (Tables 2,4): mean of the posterior distribution of dev[i].         

Standardised residuals (Tables 2,4): (Observed – expected probabilities)/standard 

deviation of expected. For example for data item 1: observed= 12/882= 0.0136, mean 
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of posterior distribution of p[2] is 0.0089, sd of posterior distribution of p[2] is 

0.00466. 

Probability of obtaining a more extreme observation (P(Extr)) (Tables 2,4): The node 

p.smaller[i] monitors the number of MCMC cycles in which the observed data exceeds 

a replicate data point p.rep[i] based on the p[i] on that cycle and the denominator. The 

tabula ted P(Extr) is Min(Prob(p.repi<ri/ni),1- Prob(p.repi<ri/ni) ). (Note that the normal 

approximation to the binomial gives adequate accuracy and speeds processing with 

large denominators. The function step(x) returns 1 if x = 0, else 0).  

Posterior mean deviance, E[D] (Table 3):  posterior mean of sumdev, a node that 

monitors the sum of the deviance contributions of each item. 

Deviance Information Criterion (Table 3): a measure of global fit that combines 

model fit as expressed by E[D], the posterior mean deviance, together with a penalty 

for the effective number of parameters pD.39  DIC = E[D] + pD ,  where  pD = E[D]  -  

D(E[θ]), and D(E[θ]) is the deviance calculated by plugging in the posterior mean 

values of the parameters into the formula for the deviance contribution. In the present 

case, pD should approximate the degrees of freedom.  

Estimated deviance at the Maximum Likelihood solution (Table 3):  The posterior 

mean deviance minus half its variance is an estimate of the deviance at the maximum 

likelihood solution.39 

Sum of squared standardized residuals (Table 3): the sum of the squared standardized 

residuals presented in Table 2. 

Coefficient of variation (Table 5). Posterior standard deviation of the fitted 

probabilities divided by the posterior mean.  
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FIGURE LEGENDS 

 

 

Figure 1.  
 
Model of the epidemiological prenatal screening.  The values of the eight parameters, 
a,b,c,d,e,f,g,h are to be estimated.  The decision problem relates to a choice between 
universal testing of all groups, or targeted testing of Black African and IDU women. 
 

 

Figure 2.   
 
Posterior correlations between parameters based on the full 12- item dataset. The 
correlations are calculated from the successive estimates of each parameter from the 
Monte Carlo Markov Chain. Forward slash indicates positive correlation, backward 
negative.  
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