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ABSTRACT (original MDM conference abstract – rewrite)

   Purpose: describe a generalised two level Monte Carlo simulation for calculating partial EVSI.  

   Background:  Claxton has promoted the EVSI concept as a measure of the societal value of research designs to help identify optimal sample sizes for primary data collection.  A method applies (using unit normal loss integral formula to calculate EVSI for sample size n), if the net benefit function is normally distributed, and if the proposed sample exercise measures all the model parameters.  Whilst common in trials, such conditions are not universal and a generalised method is needed for, so called, partial EVSI.

   Methods:  A two level algorithm, originally developed for partial EVPI applications, has been further refined, tested and applied to undertake EVSI calculations.  The paper also sets out a mathematical notation for EVSI for parameter(s).  The algorithm begins by sampling a 1st value for the parameter of interest (e.g. the underlying true %response rate to a drug, (1) and then… [sampling data (e.g. the response rate found in a trial of n=100, given (1).  A Bayesian update for the parameter of interest is calculated (merging the prior probability distribution with the sampled data).  This has a revised mean and a smaller variance than the ‘prior’ because new information has been obtained.  1000 monte carlo samples are now generated, allowing the parameter of interest to vary over its Bayesian updated distribution, and all other parameters to vary according to their priors.  The expected net benefit of each strategy is examined and the best strategy chosen.]   The process in [ ] is repeated for a 2nd monte carlo sample of the parameter of interest, then a 3rd and … 1000 times.  The overall mean expected net benefit is compared to the expected net benefit without further data collection - the difference is the EVSI for the research.  An illustrative model for two treatments, costs and benefits is used to show EVSI for a trial, a QALY study, both together, a long term follow up, and an all parameter study.  

   Results:  A mathematical expression for partial EVSI is generated, clearly showing the 2 level monte carlo in terms of 2 “expectations”.  Given sample data, Bayesian updating requires an analytic expression to revise parameters of the distribution (given here for normal, beta, gamma and lognormal distributions.  More general distributions may require other approximations or MCMC methods. 

The algorithm applies equally for sets of parameters as for a single one.

   Conclusion:  This provides a significant step towards a generalised method for partial EVSI
A TWO LEVEL MONTE CARLO APPROACH TO CALCULATING EXPECTED VALUE OF SAMPLE INFORMATION:- HOW TO VALUE A RESEARCH DESIGN.

Introduction

Clinical trials and other health research studies are investments, which hopefully lead to reduced uncertainty about the performance of health technologies and improved decision making on their use in practice.  What is the added value of a proposed research study?  How much more valuable would it be if its sample size were increased, or its design altered to measure additional data items or to collect information over a longer time?  Would a different research question be more appropriate and valuable to decision makers than the proposed study?  These questions are important for governmental, academic and indeed commercial healthcare research funding bodies throughout the world.  The aim is to allow researchers and funding agencies to rank different options for data collection, including different sample sizes, additional data on resource use and costs, the added benefit of quality of life / utility studies, longer trial durations or alternative study design such as observational or epidemiological studies rather than randomised controlled trials.  

Traditionally, the large investments in, for example, phase III clinical drug trials, have been planned around proving a statistically significant clinical difference i.e. delta (δ).  The implied assumption is that, if a clinical delta is shown conclusively, then adoption of the new technology will automatically follow, i.e. in a sense the clinical delta is a proxy for economic viability of the technology.  This produces a relatively common problem in cost-effectiveness analysis, where a study may show a clinically important outcome, but not be powered sufficiently to provide enough information for a reasonable estimation of cost-effectiveness.  This leaves healthcare decision makers with uncertainty concerning adoption decisions and sometimes with the need to acquire further information before a final decision is made. 

Recent work on valuing research has followed either the value of information direction (as this paper does) or the so-called payback approach (Eddy 1989, Townsend and Buxton 1997, Davies et al 1999, Detsky 1990, Drummond et al 1992, Buxton et al 1994).  The payback approach compares the costs and benefits of undertaking a specified technology assessment versus no data collection.  Firstly, the analyst lists the possible results of the proposed technology assessment (so-called ‘delta results’), then quantifies the likely changes in practice, health benefits and cost consequences for each delta result, and finally, by estimating the probability of each possible delta result, produces a weighted average (i.e. expected) cost and health benefits for the study.  By comparing this with the anticipated cost and health benefit consequences of no data collection, the incremental cost-effectiveness of undertaking the proposed study can be calculated.   There are two main shortcomings of this method: firstly, the starting point of the cost-benefit analysis is evaluation of a single specified research proposal, which implicitly assumes that the suggested proposal is optimally designed. In fact, the optimal trial design can only be shown be comparing a range of possible designs. Secondly, in practice the likelihood of the different results of the trial (at its simplest positive or negative) has very often been arbitrarily decided, giving rise to a lack of robustness in the payback model’s calculations. 

The expected value of sample information approach has been suggested as a tool to quantify the societal value of research and to identify optimal designs and sample sizes for primary research data collection (Claxton and Posnett 1996, Claxton et al 2001).  EVSI differs from the payback approach in that it begins immediately with a cost-effectiveness model of the interventions of interest including an assessment of the existing uncertainty.  The decision to adopt a particular intervention policy is made on the basis of the cost-effectiveness decision rule: choose the option with the greatest expected health benefits after adjusting for cost differences between strategies (i.e. the largest expected net benefit).  Where there is large uncertainty, the adoption decision based on current information could turn out to be sub-optimal, and so obtaining more data on uncertain parameters reduces uncertainty and adds value by reducing the chance of making a sub-optimal adoption decision. Because collecting data also incurs costs, a trade-off exists between the expected value of the additional data and the cost of obtaining it.  In this framework, the research design problem involves two components: what data to collect (i.e. upon which uncertain model parameters should data be collected) and how much data to collect (sample size)?  

To date most methodological development has focussed on the expected value of perfect information (ref Brennan MDM or CHBS discussion paper, Karl, Coyle) i.e. the expected value of perfect knowledge on all parameters in the model (overall EVPI) or perfect knowledge on subgroups of parameters (partial EVPI).  Earlier work (Claxton and Posnett 1996, Claxton et al 2001) on EVSI focussed upon relatively simple proposed data collection exercises (i.e. collect data on every uncertain model parameter in one single data collection exercise with a single specified sample size) and was valid in a relatively small number contexts (technically, the uncertainty in the net benefit function must be a normally distributed function for the so-called ‘unit normal loss integral’ formula to be valid).  Given that most cost-effectiveness models of interventions and most proposed research studies focus on more complex situations than this, a generalised method for calculating partial EVSI is required. 

This paper describes a generalised method to quantify the value of alternative proposed research designs. The approach uses Bayesian methods and two level Monte Carlo sampling and simulation, to produce the expected value of sample information for uncertain parameters in the cost-effectiveness model.  A detailed algorithm for undertaking the EVSI calculation process is developed and the mathematical formulation for the calculations is presented.  An important component is the synthesis of the existing uncertainty for a parameter with the simulated data collection, which requires a process called Bayesian updating.  The Bayesian updating procedure is described for the normal, beta, gamma and lognormal distributions and methods for other distributions are discussed.  To test its feasibility and to explore the interpretation of the results, the methodology is applied to an illustrative cost-effectiveness model comparing two interventions.  EVSI results can be calculated for each different sample size but this paper also examines an interpolation method so that EVSI for smaller or larger sample sizes can be estimated to reduce the need for larger numbers of simulations.  
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Method

The two level EVSI algorithm

The general algorithm to calculate EVSI involves setting up decision model for the possible interventions, characterising uncertainty with probability distributions, simulating a variety of results for a proposed collection of further data, synthesising the existing (prior) evidence with the simulated collected data, and finally evaluating the impact of the data collected on the decision between the interventions.  Box 1 describes the detailed structure of the algorithm.

	Box 1:  General Algorithm to Calculate EVSI

0. Set up a decision model –to compare the costs and health benefits of different interventions, including adoption decision rule, e.g. “select strategy if marginal cost per QALY is < $50,000”, enabling net benefits (i.e. $50,000 * QALYs – Cost) to be calculated.

1. Characterize uncertainty – for each model parameter ((i) identify appropriate probability distributions to characterise existing evidence and uncertainty e.g. % response rate to drug is beta (a, b) 

2. Work out the ‘baseline decision’ given current evidence – use the probabilistic sensitivity analysis approach to simulate, say 10,000 sample sets of, uncertain parameter values by Monte Carlo sampling. Use the decision model to identify the intervention that provides highest net benefit on average over the simulations. 

3. Define a proposed data collection - decide on a proposed sample size for collecting data on each of the parameters of interest (e.g. a trial of n=100 to collect data on the % response rate to a drug). 

4. Begin a loop to simulate the possible variety of results from the proposed data collection. –                There are two sources of variety in the possible results.  The first is the uncertainty about the true underlying value of the parameter of interest.  The second is that, even given the true underlying value of the parameter of interest, there is random chance associated with data collection of a specific finite sample size. Both need to be accounted for in the simulation.                                                            Sample the data collection: 

a) sample the true underlying value for parameter of interest ((i) from its prior uncertainty          (e.g. use Monte Carlo to sample the true underlying value for the % response rate to a drug from the probability distribution identified in step 1, say sample 1 for (i= 60%) 

b) sample simulated data (Xi) given the sampled true underlying value of parameter of interest        (e.g. sample the mean value for the response rate found in a trial of n=100, given (i= 60%). 

5. Synthesise existing evidence with simulated data - for each parameter, combine the prior knowledge with the simulated data collection using Bayesian updating techniques.  The result is a simulated posterior probability distribution for true value of the parameter of interest. Typically, the posterior has a revised mean and a smaller variance than the prior probability distribution.

6. Examine the impact of the simulated data collection on the decision between interventions -           Re-run the probabilistic sensitivity analysis on the decision model. Allow parameters of interest to be sampled from their posterior probability distributions (step 4) and remaining parameters (those with no additional collected data) to be sampled from prior probability distributions (step 1).  Identify the ‘revised decision’ - the intervention that provides the highest net benefit on average over the simulations, and compare this to the ‘baseline decision’. 
7. Quantify the added value of the simulated data collection – if the ‘revised decision’ is different to the ‘baseline decision’ then the simulated data collection has added value.                                                 The value of simulated data =              the expected net benefit of the ‘revised decision’ (step 6)                                        .                                                minus   the expected net benefit of the ‘baseline decision’ (step 2).        Record the ‘revised decision’ and its average net benefit.  Then, loop back to repeat steps 4 to 7, say 1,000 times, in order to simulate the variety of results from the proposed data collection.

8. Quantify the Expected Value of the Sample Information (EVSI) for the proposed data collection –After all of the loops to simulate the variety of possible results from the proposed data collection, the EVSI is simply the average of the results obtained in step 7.                                                               Hence,                                                                                                                                                     EVSI for proposed data collection =      average net benefit provided by the ‘revised decisions’               .                                                minus     average net benefit provided by the ‘baseline decision’. 




Mathematical formulation

The general algorithm is reflected in the detailed mathematical formulation for the EVSI calculations as described below.

Let,

(
be the set of uncertain parameters for the model, with defined prior probability distributions

d
be the set of possible decisions i.e. interventions

NB(d,() be the net benefit function for decision d, which also depends on the parameters (
E[f(x)]
denote the expected value of a function f(x)

(i
be the parameters of interest for possible data collection

(-i
be other parameters, for which there will be no further data collection.  Note {(}  ≡  {(i} U {(-i}
p((i)
be the prior probability distribution for the true underlying value of (i

p((-i)
be the prior probability distribution for the true underlying value of (-i
X(i
be the (simulated) data collected on (i

p((i|X(i)
be the posterior probability distribution for the value of (i having obtained the data X(i
First, consider the situation where we have only the current existing evidence (prior information). Given current information we will evaluate the expected net benefit of each decision strategy in turn and then choose the baseline decision that gives the highest expected net benefit.

Expected net benefit of ‘baseline decision’ = 
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(1)

Next, consider a proposal to collect further information on the subset of parameters of interest, (i.  Any data collected would be used to update our understanding about the true underlying value of (i, giving a new probability distribution with a revised posterior mean and typically a smaller standard deviation.   Given a particular simulated dataset X(i, the ‘revised decision’ can be made by evaluating each decision strategy in turn and then choosing the one with the highest expected net benefit i.e. 
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The variety of possible results of the data collection means this expression needs to be evaluated across all possible results for the data collection exercise.  That is, the overall expected net benefit following the proposed data collection is given by:

Expected net benefit of ‘revised decision’ |proposed data: =
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This expression clearly shows the two levels of expectation involved.  The outer expectation relates to the variety of possible results of the proposed data collection exercise (i.e. the loop which begins at step 4 in the algorithm).  The inner expectation relates to the evaluation of the decision model under remaining uncertainty having obtained the proposed data (i.e. step 6 in the algorithm where the ‘revised decision’ is evaluated using the probabilistic sensitivity analysis approach allowing the parameters of interest to be sampled from their posterior probability distributions p((i|X(i) and the remaining parameters (those with no additional collected data) to be sampled from their prior probability distributions p((-i)).

Finally then, the expected value of sample information (EVSI) for the proposed data collection exercise is given by the expected net benefit of the ‘revised decision’ given the proposed data collection (2) minus the expected net benefit of the ‘baseline decision’ (1). 
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Bayesian Updating - synthesising the existing evidence with the simulated data

Technically, the most demanding part of undertaking EVSI calculations is synthesising the existing prior evidence with the simulated data to form a simulated posterior probability distribution for the parameter of interest.  The generalised mathematical equation is given by Bayes theorem (reference useful books from Tony’s preliminary reading list on Bayes).  The complexity of the synthesis required depends upon the form of the probability distributions for both the parameter concerned and the related data.  For a limited set of distributions, the synthesis of existing evidence and simulated data can be done using a simple formula.  These so-called conjugate distributions are such that the functional form of the probability distribution does not change as new data is added.  Examples (detailed below), include the normal, beta (binomial), gamma (poisson) and lognormal distributions.  Other conjugate distributions include ….. (Tony / Samer complete).  For more complex or non-conjugate distributions, simple analytic formulae for Bayesian updating are not possible and the only approach is to use estimation methods.  The most commonly used estimation method uses the mathematics of Markov Chain Monte Carlo (reference Spiegelhalter / MCMC papers) to estimate a posterior probability distribution.  Typically, this involves a potentially time consuming MCMC simulation (at step 5 in the algorithm) using freely available software such as WinBUGS (refs and website).  

Bayesian updating: Normal distribution

The normal distribution can represent uncertain cost-effectiveness model parameters, which are continuous variables distributed symmetrically around a mean value (no skewness), and which might include both positive and negative values.  The exact shape of the probability distribution is determined by the two normal distribution parameters, the mean μ and standard deviation σ.  The normal distribution is particularly useful when representing the uncertainty in an average.  An example of a cost-effectiveness model parameter that might take a normal distribution could be the mean utility change for patients who respond to a drug treatment.  Typically, the value of such a cost-effectiveness model parameter might be estimated from a clinical trial or observational study of individual patients’ utilities before and after treatment.  This individual patient level data (or the mean and 95% confidence interval from a published report of the study) would be used to estimate the prior mean μ0 and prior standard deviation σ0 for the cost-effectiveness model parameter, given current evidence.

Box 2 part A provides the mathematics for the process of Bayesian updating for normal distributions and three worked examples using illustrative data on a model parameter: utility gain for drug responders.  The process begins with the prior mean μ0 and standard deviation σ0 assigned from existing evidence, where necessary incorporating expert opinion.  For the normal distribution updating formula a third parameter is needed, that is the population level standard deviation σpop, which represents patient level uncertainty. (E.g. the individual patient level uncertainty in the utility gain for drug responders σpop may be 0.2 but the uncertainty in the mean σ0 may be 0.1, lower because the uncertainties of many patients will average out to give less uncertainty in the mean).  The next step is to simulate a data collection exercise of the chosen sample size.  For some other distributions it is necessary to simulate sample data at the individual patient level, but for the normal distribution the process can be shortcut by simulating the sample mean.  First, sample a true underlying value for the cost-effectiveness model parameter μ0sample from the prior probability distribution Normal(μ0, σ02).  Second, simulate the mean of the data collected 
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 given this sampled true underlying value μ0sample from the probability distribution Normal(μ0sample, σ2pop/n).  Thus, we account firstly, for the uncertainty in the true value of the parameter, and secondly, for the random variation in data collection due to the sample size n, which has greater effect for a smaller chosen sample size n.  The final step is to synthesise the simulated data with the prior information using the formulae in (j) and (k).  

The worked examples show that as new simulated data is obtained, the estimated mean of the parameter is adjusted and the standard deviation (uncertainty in the mean of the parameter) is reduced.  Figure 1 illustrates the results for 3 separate simulated data samples, showing the impact on the mean and variance of the model parameter.  We observe that the posterior mean can take values across the full range of the prior probability distribution.  The posterior variance is the exactly same for all 3 simulated data sets and examining the formula shows that the posterior variance is independent of the simulated data 
[image: image6.wmf]X

 but depends only on the size of the sample n.  The formula also shows that shows the posterior variance is always lower than the prior variance.  Finally, there is a clear relationship between the proposed sample size n and the posterior variance. If the sample size is very small, the posterior variance approaches the prior variance i.e. we have little additional certainty.  As the sample size approaches infinity, the posterior variance approaches zero and we are nearing ‘perfect information’.  

Insert Figure 1.

Figure 1. Bayesian Updating

Part A Normal distribution:  Posterior distributions after sampling 50 cases
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Part B Beta distribution:  Posterior distributions after sampling 50 cases
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Part C Gamma distribution:  Posterior distributions after sampling 50 cases
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Bayesian updating: Beta (Binomial) distribution

The beta distribution can represent uncertain cost-effectiveness model parameters, which are proportions, probabilities or percentages.  The beta distribution is fundamentally linked to data for which the answer is either “yes” or “no”, i.e. binomial data often expressed with only the values 0 and 1 (). The exact shape of the probability distribution is determined by the two beta distribution parameters, a and b.  An example of a cost-effectiveness model parameter that might take a beta distribution could be the percentage of patients who respond successfully to a drug.  At an individual level, each patient has only two possible results, “response” or “no response”. Again, existing evidence from clinical trial or observational study data should be used to quantify the prior distribution e.g. percentage responders will be a distribution Beta(a0,b0) where a0 is the number of patients who responded, b0 is the number of patients who did not respond, and the prior mean for the response rate is a0/(a0 + b0).

Box 2 part B provides the mathematics for the process of Bayesian updating for beta distributions and three worked examples using illustrative data on another model parameter: drug response rate.  The process begins with the quantifying the prior parameters a0 and b0.  The next step is to simulate a data collection exercise of the chosen sample size.  First, sample a true underlying value for the response rate parameter resp_rate0sample from the prior probability distribution Beta(a0,b0).  Second, simulate the number of responders y, which might arise from the proposed sample size n given this sampled true underlying value resp_rate0sample from the probability distribution Binomial (n, resp_rate0sample).  Again, we account firstly, for the uncertainty in the true value of the parameter, and secondly, for the random variation in data collection due to the sample size n, which has greater effect for a smaller chosen sample size n.  The final step is to synthesise the simulated data with the prior information to give the posterior distribution using the very simple formula posterior is Beta(a0+y, b0+n-y).  

The worked examples show that as new simulated data is obtained, the estimated mean of the parameter is adjusted and the standard deviation (uncertainty in the mean of the parameter) is reduced.  Figure 1 part B illustrates the results for 3 separate simulated data samples, showing the impact on the mean and variance of the model parameter.  We observe that the Beta distribution based on small sample sizes (as in the prior) is skewed but as larger samples are obtained it appears (and can be approximated by) normal.  As with the updated normal distribution, the posterior mean can take values across the full range of the prior probability distribution.  The posterior variance is not exactly the same for all 3 simulated data sets because mathematically it depends on the sampled data, and in these examples the closer that sample is to a response rate of 100%, the smaller the posterior variance.  Finally, again there is a relationship between the proposed sample size n and the posterior variance. If the sample size is very small, the posterior variance approaches the prior variance i.e. we have little additional certainty.  As the sample size approaches infinity, the posterior variance approaches zero and again we are nearing ‘perfect information’.  

Bayesian updating: Gamma (Poisson) distribution

The Poisson distribution is often used to model the number of events happening during a specified unit of time, working under the assumption that event occurrence is random but with a constant mean event rate λ. The gamma distribution is related and can be used to express the uncertainty in the mean event rate λ.  The exact shape of the probability distribution is determined by the two gamma distribution parameters, a and b and thus λ ~ Gamma (a,b).  An example of a cost-effectiveness model parameter that might take a gamma distribution could be the mean number of side effects experienced by patients in a year.  At an individual level, each patient will experience a discrete number of side effects.  The mean number of side effects cannot be negative, and the distribution may be skewed as most patients will experience some side effects but a few may experience many. Again, existing evidence from clinical trial or observational study data should be used to quantify the prior distribution for the average rate e.g. mean number of side effects experienced by patients in a year will be a distribution Gamma(a0,b0) where a0 is prior side-effect rate multiplied by the prior sample size reported from existing evidence, and b0 is 1divided by the prior sample size.  The resulting prior mean is a0*b0 and the prior variance is a0*b02. 

Box 2 part C provides the mathematics for the process of Bayesian updating for gamma distributions and three worked examples using illustrative data on a model parameter: mean side-effect rate for drug.  The process begins with the quantifying the prior parameters a0 and b0.  The next step is to simulate a data collection exercise of the chosen sample size.  First, sample a true underlying value for the side-effect rate parameter sideeffect_rate0sample from the prior probability distribution Gamma(a0,b0).  Second, given this sampled true underlying value, simulate the number of side effects (y1, y2, … yn) for each of the n patients in the proposed sample from the probability distribution Poisson(sideeffect_rate0sample).  This is slightly different from the normal and beta distributions because it is necessary to sample individual-level data. Again, we account firstly, for the uncertainty in the true value of the parameter, and secondly, for the random variation in data collection due to the sample size n, which has greater effect for a smaller chosen sample size n.  The final step is to synthesise the simulated data with the prior information, using the simple formulae in Box 2 row9 and row10, to give the posterior distribution for mean number of side effects per person:  

The worked examples show that as new simulated data is obtained, the estimated mean of the parameter is adjusted and the standard deviation (uncertainty in the mean of the parameter) is reduced.  Figure 1 part C illustrates the results for 3 separate simulated data samples, showing the impact on the mean and variance of the model parameter.  We observe that the Gamma distribution based on small sample sizes (as in the prior) is skewed but (check) as larger samples are obtained it appears (and can be approximated by) normal.  As with the updated normal distribution, the posterior mean can take values across the full range of the prior probability distribution.  The posterior variance is not exactly the same for all 3 simulated data sets because mathematically it depends on the sampled data.  Finally, again if the sample size is very small, then the posterior variance approaches the prior variance i.e. we have little additional certainty, whilst if  the sample size approaches infinity, the posterior variance approaches zero and we are nearing ‘perfect information’.  

Bayesian updating for other distributions

Some other distributions are of related functional forms to the normal, beta and gamma and can use adjustments to the analytic formulae presented in Box 2 for Bayesian updating.  The lognormal distribution (where log(X) ~ N((, ()) is a useful skewed distribution allowing only positive values and can often be used for cost parameters. To update a lognormal parameter, it is necessary to convert into a normal distribution (by raising e to the power of the variable), form the Bayesian posterior for the normal distribution as shown above, and then convert the normal posterior back into a lognormal distribution.  Similarly, the exponential distribution, is a special case of the gamma distribution (a=1) and can use the same updating formula.

Other distributions do not have conjugate properties and cannot use simple formulae for Bayesian updating.  Examples include the Erlang, Gumbel and Weibull distributions.  If there is no simple conjugate based formula for updating the current standard approach is to use simulation approaches to generate an estimate of the posterior distribution.  These simulation approaches are based on mathematics called Markov Chain Monte Carlo  (references).  Freely available software such as WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/) (references) allows the user to input the prior distribution and relevant data, and then run thousands of iterations of Markov Chain Monte Carlo analysis to create a posterior distribution.  This process takes some time depending on the complexity of the prior and the data.

Box 2. Bayesian updating for the Normal, Beta and Gamma Distributions

	
	Mathematical Formulae
	Worked Examples
	
	

	
	Part A: Normal distribution

Example: utility gain of responders
	Sample 1
	Sample 2
	Sample 3

	a 
	(0        = prior mean
	0.3
	0.3
	0.3

	b
	(0        = prior standard deviation
	0.1
	0.1
	0.1

	c
	I0         = 1/σ02    prior precision
	1/0.12= 100
	1/0.12= 100
	1/0.12= 100

	d
	(pop     = patient level standard deviation
	0.2
	0.2
	0.2

	e
	N        = sample size
	50
	50
	50

	f
	μ0sample = random sample from N~((0, (0)
	0.3545
	0.2615
	0.1545

	g
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      = sample mean from N~(μ0sample, σ2pop/n)
	0.3425
	0.2389
	0.1977

	h
	(2X       = (2pop/n = sample variance
	0.22/50 = 0.0008
	0.22/50 = 0.0008
	0.22/50 = 0.0008

	i
	IS          = 1/(2X = precision of the sample mean
	1/0.0008= 1250
	1/0.0008= 1250
	1/0.0008= 1250

	j
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	Part B  Beta distribution 

Example: % response rate for drug
	
	
	

	l
	a0      = number of patients who responded
	7
	7
	7

	m
	b0      = number of patients who did not respond
	3
	3
	3

	n
	(0     = a/(a+b) = prior mean
	70%
	70%
	70%

	o
	(20      = 
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a

b

a

b

a

 = prior variance 
	0.1892
	0.1892
	0.1892

	p
	n       = sample size
	50
	50
	50

	q
	resp_rate0sample  = sample from Beta (a0  b0) 
	50.12%
	70.63%
	90.24%

	r
	 y     = sample no. responders | resp_rate0sample  

           from Binomial (n, resp_rate0sample).  
	28
	34
	43

	s
	a1      = a0 + y 

         = posterior patients who responded
	35
	41
	50

	t
	 b1    = b0 + n – y

         = posterior patients who did not respond
	25
	19
	10

	u
	(1     = a1/(a1+b1) = posterior mean
	58%
	68%
	83%

	v
	(21    = 
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 = posterior variance 
	0.2390
	0.2128
	0.1366

	
	Part C:  Gamma distribution

Example: side effects per annum
	
	
	

	1
	a0     = event rate*(number of patients in study)
	1
	1
	1

	2
	 b0    = 1 / (number of patients in study)
	0.25
	0.25
	0.25

	3
	(0     = a0*b0 = prior mean
	25.00%
	25.00%
	25.00%

	4
	(20    = a0*b02 = prior variance 
	0.0625
	0.0625
	0.0625

	5
	 n = sample size
	50
	50
	50

	6
	sideeffect_rate0sample  = from Gamma(a0, b0) 
	10.07%
	21.66%
	44.11%

	7
	(y1,  yn) = from poisson (sideeffect_rate0sample)
	7
	10
	20
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	0.0185
	0.0185
	0.0185

	9
	(1     = a1*b1 = posterior mean
	14.81%
	20.37%
	38.89%

	10
	(21    = a1*b12  = posterior variance 
	0.0027
	0.0038
	0.0072


Illustrative Model

To test the algorithm and explore the results, a hypothetical cost-effectiveness model was developed comparing two strategies: treatment with drug T0 versus treatment with drug T1.  Figure 2 shows the nineteen model parameters, with prior mean values shown for T0 (column a), T1 (column b) and hence the incremental analysis (column c). Costs for each strategy include “cost of the drug” and cost of hospitalisations - “the percentage of patients receiving the drug who were admitted to hospital” x “days in hospital” x “cost per day in hospital” (e.g. cost of strategy T0 = £1,000 + 10% x 5.20 x £400 = £1,208).  Health benefits are measured as QALY gained and come from two sources: responders receive a utility improvement for a specified duration, and some patients have side effects with a utility decrement for a specified duration (e.g. QALY for strategy T0 = 70% responders x 0.3 x 3 years + 25% side effects x –0.1 x 0.5 years = 0.6175). The threshold cost per QALY (() is set at £10,000 (i.e. net benefit of T0 is = £10,000* 0.6175 – £1,208 = £4,967) and model results using only central estimates show that T1 (£5,405) has greater net benefit than T0 (£4,967), which means that our baseline decision should be to fund T1.  

Insert Figure 2 – 

The uncertain model parameters are characterised with normal distributions, standard deviations are shown in columns (d) and (e.). Uncertainty in mean drug cost per patient is very low, but other cost related uncertainties in %admissions, length of stay, cost per day are relatively large.  For health benefits, uncertainties in % response rates are relatively large, uncertainty in mean utility gain for a responder to T1 is less than that for a responder to T0 (short-term trials of the newer treatment T1 have measured the utility gain more accurately), but uncertainty in the duration of response for T1 is higher (long-term observational data on T1 is not as complete as for T0).  The patient level uncertainty for each variable is given in columns (f) and (g).  

The general algorithm for EVSI calculation was applied to the illustrative model using 1000 simulations for both the inner and the outer expectations and the formula for normal distributions Bayesian updating from Box 2.  The simulations were performed in EXCEL, sampling from normal distributions using the RAND and NORMINV functions together with macro programming to loop the process.  EVSI calculations were performed for sample sizes of 10, 25, 50, 100 and 200 in addition to EVPI calculations.  The EVSI was analysed for each individual parameter and also five different proposed data collection exercises based on subgroups of parameters.  The five subgroups were:- a) a proposed randomised controlled clinical trial measuring only response rate parameters (parameters 5,15), b) an observational study on utility only (parameters 6,16), c) a trail combined with utility data collection (parameters 5,6,15,16), d) an observational study of the duration of response to therapy (parameters 7,17) and finally e) a trial combined with utility study alongside an observational study on duration of response (parameters 5,6,7,15,16,17).  
Figure 2: Illustrative Model

	Part a) Model Parameters and Uncertainty

	Model Parameters
	Parameter mean Values
	Uncertainty in Parameter Mean

Standard Deviation
	Individual Patient Level Variability

Standard Deviation

	
	T0
	
	T1
	Incremental
	T0
	T1
	T0
	T1

	
	a
	
	b
	c
	d
	e
	f
	g

	(1) Cost of Drug T0
	£1000
	(11) Cost of Drug T1
	£1500
	£500
	1
	1
	500
	500

	(2) % Admissions on T0
	10%
	(12) % Admissions on T1
	8%
	-2%
	2%
	2%
	25%
	25%

	(3) Days in Hospital on T0
	5.20
	(13) Days in Hospital on T1
	6.10
	0.90
	200
	200
	200
	200

	(4) Cost per day on T0 or T1
	400
	(14) Cost per day on T0 or T1
	400
	-
	200
	200
	200
	200

	(5) % Responding on T0
	70%
	(15) % Responding on T1
	80%
	10%
	10%
	10%
	20%
	20%

	(6) Utility Change on T0
	0.300
	(16) Utility Change on T1
	0.300
	-
	0.100
	0.050
	0.200
	0.200

	(7) Duration of response (yrs) on T0
	3.0
	(17) Duration of response on T1
	3.0
	-
	0.5
	1.0
	1.0
	2.0

	(8) % Side Effects on T0
	25%
	(18) % Side Effects on T1
	20%
	-5%
	10%
	5%
	20%
	10%

	(9) Change in utility if side effect on T0
	-0.10
	(19) Change in utility if side effect T1
	-0.10
	0.00
	0.02
	0.02
	0.10
	0.10

	(10) Duration of side effect (yrs) on T0
	0.50
	(20) Duration of side effect on T1
	0.50
	-
	0.20
	0.20
	0.80
	0.80

	Central Estimate Results
	
	
	
	
	
	
	
	

	Total Cost
	£1208
	
	£1695
	£487
	
	
	
	

	Total QALY
	0.6175
	
	0.7100
	0.0925
	
	
	
	

	Cost per QALY
	£1956
	
	£2388
	£5267
	
	
	
	

	Net Benefit of T1 versus T0
	£4967
	
	£5405
	£437.80
	
	
	
	

	Threshold cost per QALY = £10,000
	
	
	
	
	
	
	
	


Part b) Model Results for Overall Uncertainty

Cost Effectiveness Plane from 1,000 samples    
Cost Effectiveness Acceptability Curves
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Interpolating the EVSI curve

The expected value of sample information for a sample size of 50 should clearly be higher than for that for a simple size of n=10, and lower than EVSI for n=100.  Thus we expect a smooth curve for the relationship between EVSI and n.  The lower bound of EVSI for a sample size of zero is clearly zero (there is no value to be obtained from no data).  The upper bound for the curve is given by the expected value of perfect information (there is no greater value to be obtained than that from an infinite sample which produces perfect accuracy for the value of the uncertain parameter).  Conceptually we expect that the curve will be monotonic (increases with n) and show diminishing returns (the additional value obtained from increasing the sample size from 5,050 to 5,100 is lower than the value obtained by increasing the sample size from 50 to 100.  Given this knowledge, a series of exponential form curves were investigated to determine a common functional form for the relationship between EVSI and sample size n. 

Results 

Para 1 - Basic model results

Using prior mean values for illustrative model parameters, the results show a cost difference of £487, with strategy T1 the more expensive.  Strategy T1 also has better health outcomes, providing 0.0925 more QALYs.  The incremental cost per QALY is £5,267, which is below our decision threshold of £10,000 per QALY. When measured on the net benefit scale, T1 provides £5,405 compared with T0 at £4,967 (difference = £437.80), which means that our baseline decision should be to adopt strategy T1.  Probabilistic sensitivity analysis confirms this and also shows that T1 provides greater net benefits on 54.5% of samples.  So, given our existing uncertainty, there is actually a high chance (45.5%) that the alternative strategy T0 would provide more net benefit than current baseline decision T1.  This suggests that obtaining more data on the uncertain parameters might help us with our decision.  Overall EVPI measures the expected net benefit we would gain if we were to obtain perfectly accurate knowledge about the value of every parameter in the decision model.  Overall EVPI for our illustrative model is £1,352 per patient, which is equivalent to 0.1352 QALYs expected gain if perfect knowledge about every parameter were obtained.

Para 2 - EVSI results for individual parameters, and meaning

The EVSI results (Table 1 part a) show that further data collection on 6 of the 19 individual model parameters would potentially be valuable.  The uncertain parameter with the greatest impact on the current decision is the duration of response on treatment T1.  The partial EVPI for this parameter is £803 and the EVSI for a sample of n-50 is £768.  The duration of response for patients on T0 causes slightly less decision uncertainty - partial EVPI is £267, and EVSI for n=50 is £256.  The second set of important parameters concern utility change if a patient successfully responds to treatment.  Utility change on T0 response is a key uncertain parameter (EVPI £656, EVSI for n=50 is £617). The final parameters causing decision uncertainty are drug response rates, with both T1 and T0 showing EVSI results for n=50 of the order of £200. Each of the other 13 model parameters had EVSI values lower than £5.  For some of the parameters, even small samples would be valuable – some of the EVSI curves (Figure 3) are steep precisely because there is relatively little existing knowledge of the exact values of these important parameters.  EVSI for a parameter is often higher if existing uncertainty is higher e.g. standard deviation for mean utility change on T0 response is twice as high as that for utility change on T1 response, and EVSI results are correspondingly higher.  However, large uncertainty does not always result in high EVSI values because it is only if the decision between strategies is affected that the uncertainty is relevant.  For example, the standard deviation for % side effects on T0 is twice as high as for T1 but both parameters have negligible EVSI results because this uncertainty does not affect the decision.

Para 3 - EVSI results for 4 subgroups, and EVSI results for all 6 parameters (i.e. 5th subgroup)

EVSI results for groups of parameters are often more useful and relevant in practice than those for single individual parameters.  For example, a long-term observational study might measure duration of response for both T0 and T1 (2 model parameters), or a randomised controlled trial might measure response rates and utility changes for both drugs (4 model parameters).  EVSI results for parameter groups (Table 1 part b) show that the duration parameters remain the most important pairing, with EVPI for duration of response to both T0 and T1 at £887 and EVSI (n=50) at £856.  A study of utilities for both is slightly less valuable (EVSI n=50 is £716), whilst a randomised clinical trial measuring response rates to both drugs is considerably less valuable (EVSI n=50 is £330).  A study to measure all 6 of the important model parameters has EVPI of £1,351 and an EVSI for n=50 samples of £1,319.  These results also demonstrate that EVSI for a combination of parameters is not the simple addition of EVSI for individual parameters, because parameters interact in the net benefit functions for each strategy.  The EVSI curves are relatively steep (Figure 4), with 90% to 95% of the EVPI provided by a sample of n=50, 98% by a sample of n=100, and 99% by a sample of 200.

Para 4 - EVSI curve fitting

Investigation of the functional form of the EVSI curves produced a mathematical equation to fit the curves, at least for the illustrative model examined here.  The first equations examined followed the form EVSI(n) = EVPI * exp(-λ/n) and EVSI(n) = EVPI * (1 – 1/ (1+(n)), but neither provided an adequate fit.  The functional form which did fit the curves was EVSI(n) = EVPI * (1 – exp(-(*((n))).  Given the results for 5 different sample sizes, the best fit ( was calculated using EXCEL Solver to minimise the sum of squared differences between the actual data and the fitted curve on a normalised scale (i.e. dividing each curve by the relevant EVPI so that the maximum value is 1.00).  Figure 5 shows the actual data (symbols) and the fitted curve for one parameter, rising form zero and tending to the EVPI.  Figure 6 shows all of the curves, with values of ( ranged from 0.22 to 0.57 for increasing steepness.  The sum of squared difference error statistics ranged from 0.0004 to 0.0033, showing a consistently good fit in our illustrative model.

Table 2: EVSI per patient based on 1000 x 1000 Monte Carlo Simulations

	Part a) EVSI Results for Individual Parameters (£ per patient)

	
	Sample Size

	Parameter
	10
	25
	50
	100
	200
	Perfect

	% responding to T0


	172
	194
	215
	222
	223
	230

	Utility change if respond to T0


	526
	588
	617
	644
	644
	656

	Duration of response (years) T0


	207
	244
	256
	261
	266
	267

	% responding to T1


	146
	179
	183
	192
	189
	197

	Utility change if respond to T1


	148
	221
	250
	290
	302
	320

	Duration of response (years) T1


	654
	741
	768
	777
	796
	803

	Part b) EVSI Results for Parameter Groups (£ per patient)
	

	% responding to T0 and T1


	297
	331
	330
	355
	357
	359

	Utility change if response to T0 and T1


	605
	669
	716
	736
	769
	768

	Duration of response to T0 and T1


	690
	815
	856
	855
	860
	887

	% responding and utility change if response to T0 and T1


	776
	853
	878
	877
	907
	916

	% responding, utility change and duration of response to T0 and T1
	1100
	1217
	1277
	1310
	1321
	1350
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Figure 3: EVSI per patient for Individual Parameters
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Figure 4: EVSI per patient for Parameter Groups
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Figure 5: Fitting an Exponential Functional Form to the EVSI curve – Parameter Utility
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Figure 6: Fitting Exponential Functional Forms – All Parameters

Discussion

Para 1 - Summary of the process, show it can be done and the kind of results that can be obtained.

The methodology presented here assesses the potential value of different research designs in terms of expected health and monetary gain accruing from the research.  The approach demands a clear description of the health policy options in a decision model, a quantified characterisation of the uncertain variables, a description of the proposed data collection exercise, and finally the calculation of expected value of sample information via the 2 level monte carlo simulation incorporating Bayesian updating.  The illustrative model demonstrates the feasibility of the approach.  The results presented are typical, showing which research is most valuable to the policy decision and what sample sizes would be large enough to aid the decision maker. 

Para 2 – Effect of thinking this way on model construction

EVSI often has implications for decision model construction and characterisation of uncertainty because possible further data collection forces additional rigour in specifying probability distributions.  This rigour applies to the specification of confidence intervals on parameters.  The simple task of quantifying an implied sample size n0 for these prior confidence intervals can be useful.  For example, we specified a standard deviation of 0.1 for the uncertainty in the mean utility change following response to T0.  Given our specified patient level uncertainty of 0.2, we can use a simple formula for the normal distribution case [(20 = (2pop/n0] to work out the implied sample size of our specified prior uncertainty.  The result is n0=2 for mean utility change following response to T0 and n0=4 for the mean utility change following response to T1, while the equivalent calculations for cost of the drugs gives n0=500.  This explains the high EVSI for utilities parameters in our model and the low EVSI for costs of drugs. The rigour also applies to the mathematical form of the probability distributions.  Triangular distributions may sometimes be considered, but as soon as the analyst considers the properties of the individual patient level data, the triangular specification is often seen to be inappropriate.  We characterised the uncertainty in mean response rate to T0 as a normal distribution, which might be reasonable large sample sizes, as the central limit theorem suggests uncertainty in a sample mean follows a normal distribution.  However, data on an individual patient will measure whether there is response i.e. a Yes or No dichotomous variable, and so it is clear that a Beta distribution is the correct characterisation of uncertainty in mean response rate.  Sometimes analysts might consider expressing the uncertainty in mean utility as a Beta distribution, the rationale being it would lie between 0 to 1 and many probability distribution shapes are possible.  However, we know the Beta distribution must have individual level data that is dichotomous, and it is clear that individual patient level utility data would not just produce 0 or 1 but individual results anywhere on the range between.  A normal distribution may well be the correct approach for characterising uncertainty in mean utility.  

Para 3 Correlation

EVSI also brings into focus the correlation between uncertain parameters.  This can have at least two effects.  Firstly, data collected about one parameter may also provide evidence about another parameter.  For example discovering that the utility change for a responder to T0 is actually at the high end of its prior uncertain range may well imply that the utility change for a responder to T1 may also be higher than expected.  Building correlations into the model of uncertainty would therefore be important.  One way to achieve this is to restructure the model so that utility of T0 is an uncertain parameter and then the difference between T1 and T0 utility is a second uncertain parameter.  Another way would be to sample the 2 parameters as part of a multi-variate joint normal distribution with a specified variance-covariance matrix, incorporating the covariance to reflect our knowledge about correlation. This is less easy in EXCEL but straightforward in software such as R.  Both of these re-parameterisations would affect the C-E plane scatter-plot and the CEAC curve for the decision model.  The second effect is that the extent of correlation itself may be an uncertain variable.  Thus correlation moves from affecting the shape of uncertainty in the C-E plane scatter-plot, to being a parameter within the model itself upon which EVPI and EVSI calculations can be done – how valuable would policy decision makers consider data on correlation between variables?  This may be particularly useful in the context of epidemiological or observational studies, where the underlying causality of disease or health system processes is being explored.  A further intensification of the methodology would involve incorporating the existing evidence on related parameters into a WinBUGs based evidence synthesis to determine an integrated analysis of correlations, variable dependence and probability distributions before the EVSI calculations are performed.

Para 4- Further methods development work Computation time issues are important

Some further development of the method would be useful, particularly how to deal with probability distributions beyond the normal, beta and gamma.  Work is needed on other conjugate distributions, to produce additional formulae for Bayesian updating and to examine their usefulness in the context of real decision models.  For non-conjugate distributions there are two options.  One option for Bayesian updating would be to use MCMC methods (refs   ?include Jim transplantation work), although this would incur significant additional computation on each sample of the possible data collected.  The only other option is to use approximation methods, the topic of our current investigations (Ref both Laplace approximation and Weibull MDM abstracts).  Work is needed also to improve computational efficiency.  In our study on EVPI calculations (ref EVPI paper) we explored the number of outer and inner level simulations required to achieve accurate results in the 2 level algorithm.  The same issues apply in EVSI and work to establish a rule of thumb for the number of inner and outer level simulations would be useful.  For computationally intensive decision models, e.g. patient level simulation models of one hour per model run, the replacing the model with an emulator or meta-model is valuable (ref Paul Simon and Jim’s MS EVI).  The emulator produces similar results but in a fraction of the time enabling 2nd order simulations for EVSI to be undertaken in a reasonable time.  A particularly useful approach is the Gaussian process emulator (Ref Jeremy and Matt) 

Para 5 – Generaliseability

The algorithm and mathematics presented are generalisable to any decision model with any decision rule.  The exponential functional form for EVSI curves is not however.  It has a shape showing even small samples of data would be valuable.  Consider an instance where a moderate amount of clinical trial data already exists and a further very small trial is planned.  Conceptually one would expect that the new very small trial would add little to the policy decision, especially if the trial protocol or setting is slightly different to the earlier study implying the potential for a biased or skewed sample from the underlying population.  If a larger new trial were planned, of size equal to the original, then this may have substantial impact on the decision, for example through formal meta-analysis of the two studies.  If an extremely large trial were planned, say 50 times larger than the original, then one would expect the new study to dominate the evidence and be of considerable value.  This suggests that EVSI curves may be S shaped in some circumstances rather than the inverted exponential shown in our study.  This conceptual thinking also suggests that it may be necessary to extend EVSI calculation methods to incorporate possible bias, or heterogeneity between planned trials and those making up the existing prior evidence. 

Para 6 – Implications - for related fields

How this approach relates to the traditional frequentist approach for calculating sample size for a clinical trial also requires research.  The traditional approach (refs ? Machin,?) specifies a clinically significant difference (, and assesses the probability that such a difference would be found in the trial by pure chance if in fact there were no true difference between treatments.  The traditional levels of significance (() and power (() are used to determine the sample size n, which would show that a true clinically significant difference exists.  There are many issues which Bayesian statisticians view as ill-conceived with this approach, not least the lack of accounting for existing prior evidence.  However, it is used across the world in commercial and governmental contexts and delivers the benefits of simplicity and useability.  It would be useful to research the comparison of sample size results against the EVSI approach.  There is a link - in the traditional approach, the implied decision rule is that clinicians will adopt a treatment with a proven clinically significant difference (.  In the EVSI approach, the decision model rule is that policy makers will adopt a treatment if its cost-effectiveness is below (.  Given the enormous expansion of health economics as an influencing factor over the adoption of new treatments, it is clear that these two modelled decision rules are linked and likely to be coming closer together.  There are likely to be mathematical modelling methods to examine the interaction between the two approaches, as well as more pragmatic studies of how decisions are really made and which decision model is closest to real life. In the first instance, comparison of the implied sample sizes of the two approaches in the design of clinical trials would aid understanding.

A key advantage of the EVSI approach is that is helps consider the value other kinds of data collection, including economic cost and quality of life data, not just clinical efficacy.  The traditional approach on these issues is to consider data collection on resource use and sometimes quality of life data alongside clinical trials.  The illustrative model demonstrates common problems with this, i.e. long-term follow-up on disease progression is often more important than another trial, resource use within clinical trials is often the same between two arms, and quality of life data is necessary.

Para 7 - Importance of this approach 

The EVSI calculations shown here take a societal perspective on the value of the research and are therefore directly relevant to governmental agencies funding health technology assessments.  They are also of value to commercial investors in research because they prefigure the likely cost-effectiveness and uncertainty analysis which governmental reimbursement authorities in many countries use to assess pharmaceuticals.  Thus commercial companies might utilise this approach to predict the likely response of governemental agencies concerning the evidence gaps in a reimbursement analysis, and hence commission related studies to their existing product evidence earlier in the process.  Finally ofcourse, the decision rule used for adoption can be re-examined in terms of commercial incenticves and models of the sales, profit and payback on commercial research incorporated into the framework in order to make explicit decisions in the R&D cycle of product development on the value of further data collection.  (? Ref Neil Hawkins or papers from FF 6).  

Para 8- Sum up the conclusion and importance of this paper.

In summary, this paper presents a clear methodology for assessing the value of different research designs in terms of expected health and monetary gain accruing from the research.  The mathematics and algorithm are generaliseable to many situations and the illustrative model demonstrates the feasibility of the approach.   It is hoped that the approach will now be implemented in many more health economic evaluations, as a relatively simple extension of probabilistic sensitivity analysis.  This in turn, should lead to a more coherent analysis of the prioritisation and design of health technology assessment studies.
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