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TOM BRIDGELAND

These are the lecture notes for the introductory school on derived categories

in Warwick, September 2014. They cover some basic facts about derived

categories of coherent sheaves on smooth projective varieties, assuming some

kind of familiarity with the definition of a derived category. There are bound

to be some mistakes that I haven’t found yet: please feel free to let me know

about them.

1. The derived category of an abelian category

In this section we summarize the most important properties of the derived

category of an abelian category. We illustrate some of these by considering

the duality functor for coherent sheaves on A2.

1.1. Basics. Let A be an abelian category, e.g. Mod(R) or Coh(X). Let

C(A) denote the category of cochain complexes in A. A typical morphism

f • : M • → N • in this category looks as follows

· · · −−−→ M i−1 di−1

−−−→ M i di−−−→ M i+1 −−−→ · · ·yf i−1

yf i yf i+1

· · · −−−→ N i−1 di−1

−−−→ N i di−−−→ N i+1 −−−→ · · ·

Recall that such a morphism f • : M • → N • is called a quasi-isomorphism

if the induced maps on cohomology objects

H i(f •) : H i(M •)→ H i(N •)

are all isomorphisms. The derived category D(A) is obtained from C(A) by

formally inverting quasi-isomorphisms. Thus there is a localisation functor

Q : C(A)→ D(A)

which is universal with the property that it takes quasi-isomorphisms to iso-

morphisms. The objects of D(A) can be taken to be the same as the objects

of C(A).
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It is immediate from the universal property that there are well-defined

functors H i : D(A) → A sending a complex to its cohomology objects. The

bounded derived category is defined to be the full subcategory

Db(A) = {E ∈ D(A) : H i(E) = 0 for |i| � 0} ⊂ D(A).

There is an obvious functor A → D(A) which sends an object E ∈ A to

the corresponding trivial complex with E in position 0:

E ∈ A 7−→ (· · · −→ 0 −→ E −→ 0 −→ · · · ) ∈ D(A).

This functor is full and faithful. Its essential image is the full subcategory

{E ∈ D(A) : H i(E) = 0 unless i = 0}.

Objects of this subcategory are said to be concentrated in degree 0. We shall

always identify the category A with its image under this functor.

Two objects in D(A) with the same cohomology objects need not be iso-

morphic (in much the same way as two modules with the same composition

series need not be isomorphic). The extra information determining an object

can be thought of as a ‘cohomological glue’ holding the cohomology objects

together. If this glue vanishes then

E ∼=
⊕
i∈Z

H i(E)[−i]

∼= (· · · −→ H i−1(E)
0−→ H i(E)

0−→ H i+1(E) −→ · · · ).

Well-behaved functors between abelian categories F : A → B induce derived

functors F : D(A)→ D(B). The composite functors

A ∈ A 7→ H i(F(A)) ∈ A

are the classical derived functors of F .

1.2. Example: Duality for modules. When R = C the dualizing functor

D(M) = HomR(M,R)

defines an anti-equivalence

D : Modfg(R) −→ Modfg(R)

satsifying D2 ∼= id. What happens when R is a more interesting ring?
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Consider the case R = C[x, y]. Of course Modfg(R) = Coh(A2
C). Defining

a dualizing functor exactly as above we get an anti-equivalence

D : Projfg(R)→ Projfg(R)

satisfying D2 ∼= id. (You may find it comforting to note that by the Quillen-

Suslin theorem, any finitely-generated projective R-module is in fact free).

But this functor is not an anti-equivalence on the full category Modfg(R)

since, for example, if M = R/(x) then

D(M) = HomR(R/(x), R) = (0).

To try to remedy this, let us consider also the classical derived functors

Di(M) = ExtiR(M,R), i > 0.

To compute these we replace M = R/(x) by a free resolution

0 −→ R
x−→ R −→ 0

and apply D(−) = HomR(−, R) to get

0←− R
x←− R←− 0.

Taking cohomology gives

Di(M) =

{
M if i = 1,
0 otherwise,

so we have D1(D1(M)) ∼= M .

Similarly, if we take the module M = R/(x, y) then

Di(M) =

{
M if i = 2,
0 otherwise,

and once again we have D2(D2(M)) ∼= M .

But suppose now that we consider modules M fitting into a short exact
sequence

(1) 0 −→ R/(x, y) −→M −→ R/(x) −→ 0.

Then from the long exact sequence in Ext-groups

Di(M) =

{
R/(x) i = 1,
R/(x, y) i = 2,
0 otherwise.
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However M is not uniquely determined by the sequence (1), since

Ext1
R(R/(x), R/(x, y)) = C.

We conclude that we cannot recover M from the objects Di(M).

The solution (of course) is to consider the derived functor of D, which defines

an anti-equivalence

D : Db Modfg(R) −→ Db Modfg(R)

On the level of objects this means ‘replace a complex by a quasi-isomorphic

complex of projective modules and then dualize’. It is immediate that D2 ∼= id

because we already know that duality works well for projective modules. If

M ∈ Modfg(R) then we have

Di(M) = ExtiR(M,R) = H i(D(M)),

but as we saw above, these cohomology modules are not in general enough to

determine the object D(M), nor to recover the module M .

1.3. Structure of D(A). The category D(A) has two important structures

which it is important to keep separate in one’s mind.

(a) The category D(A) is triangulated : it has a shift functors

[n] : D(A)→ D(A),

M •[n]i = M i+n, diM•[n] = (−1)ndi+nM• ,

and a collection of distinguished triangles

(2) A
f

// B

g
��

C

h

ZZ

obtained from the mapping cone construction. Any such triangle is a

sequence of maps

· · · −→ C[−1]
h[−1]−→ A

f−→ B
g−→ C

h−→ A[1] −→ · · · .

Distinguished triangles in a triangulated category play a very similar

role to short exact sequences in an abelian category. All derived func-

tors are triangulated: they commute with the shift functors and takes

distinguished triangles to distinguished triangles.
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Given objects E,F ∈ D(A) we define

Homi
D(A)(E,F ) := HomD(A)(E,F [i]).

If E,F ∈ A then these agree with the usual Ext-groups:

ExtiA(E,F ) = HomD(A)(E,F [i]).

It follows from the axioms of a triangulated category that if E is a

fixed object and (2) is a distinguished triangle then there is a long

exact sequences of abelian groups

(3) · · · → Homi
D(A)(E,A)→ Homi

D(A)(E,B)→ Homi
D(A)(E,C)→

→ Homi+1
D(A)(E,A)→ Homi+1

D(A)(E,B)→ · · · .

There is a similar long exact sequence involving Hom groups into E.

(b) The category D(A) comes equipped with the standard t-structure. In

particular, there is a full and faithful embedding A ↪→ D(A) and

cohomology functors H i : D(A)→ A as discussed above.

A short exact sequence

(4) 0 −→ A
f−→ B

g−→ C −→ 0

in A becomes a distinguished triangle of the form (2) in D(A). The

extra morphism h ∈ Ext1
A(C,A) is the extension-class defined by the

sequence. Conversely, any distinguished triangle (2) induces a long

exact sequence in cohomology objects

· · · → H i(A)→ H i(B)→ H i(C)→ H i+1(A)→ · · · .

Also important are the truncation functors τ6i : D(A) → D(A) de-

fined by

τ6i(M
•) =

(
· · · →M i−1 → ker(di)→ 0→ · · ·

)
.

Note that

Hj(τ6i(M
•)) =

{
Hj(M •) j 6 i,
0 otherwise.

There is an obvious natural map of complexes τ6i−1(M •) → τ6i(M
•)

which induces isomorphisms in cohomology in degree 6 i− 1. Taking

the cone C on this map, and applying the long exact sequence in
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cohomology, we see that C is concentrated in degree i. We thus have

distinguished triangles

(5) τ6i−1(M •) // τ6i(M
•)

zz

H i(M •)[−i]

ee

This is to be interpreted as saying that every object of D(A) has a

canonical ‘filtration’ whose ‘factors’ are shifts of objects of A.

Note that genuinely derived functors do not preserve the standard

t-structures. In fcat, a triangulated functor D(A) → D(B) that pre-

serves the standard t-structures induces an exact functor A → B, and

conversely, an exact functor A → B induces a functor D(A) → D(B)

in a trivial way. We often say that such functors are exact and hence

‘do not need to be derived’.

1.4. Grothendieck groups. The Grothendieck group K0(D) of a triangu-

lated category D is the free abelian group on isomorphism classes of objects

modulo relations

[B] = [A] + [C]

for distinguished triangles

A // B

��

C

ZZ

It follows from the ‘rotating triangle’ axiom that [E[n]] = (−1)n[E].

Suppose that D = Db(A). The inclusion A ↪→ D clearly induces a group

homomorphism

I : K0(A)→ K0(D).

It follows immediately from the existence of the filtration (5) that I is in fact

an isomorphism, with inverse map P given by

P ([E]) =
∑
i∈Z

[H i(E)[i]] =
∑
i∈Z

(−1)i[H i(E)]

1.5. Problems.
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1.5.1. Two-step complexes. Fix objects A,B ∈ A and consider objects E ∈ D(A) such that

Hj(E) =

{ A if j = −1
B if j = 0
0 otherwise.

Show that any such object fits into a distinguished triangle

A[1] // E

��

B

η

[[

Use this to give a complete classification of the isomorphism classes of such objects in terms

of the group Ext2
A(B,A).

1.5.2. Consider the two-step complexes obtained by applying the functor D to the modules

M which fit into a short exact sequence of the form (1). How is the extension class defining

this short exact sequence reflected in the structure of D(M)?

1.5.3. Let A be an abelian category of global dimension 1, i.e.

ExtpA(M,N) = 0 for all p > 1 and all M,N ∈ A.

Prove that every E ∈ Db(A) satisfies E ∼=
⊕

i∈ZH
i(E)[−i].

2. Derived categories of coherent sheaves

This lecture focuses on the derived category of coherent sheaves on a smooth

projective variety. We introduce the basic abstract properties of this category

and consider the example of the projective line.

2.1. Basic properties. Let X be a smooth complex projective variety of di-

mension d. We set D(X) = Db Coh(X). Note that this is a C-linear category:

the Hom sets are all vector spaces over C, and the composition maps are

bilinear. From Section 1.4 we know that

K0(D(X)) = K0(Coh(X)) = K0(X)

is the usual Grothendieck group of X. Since X is smooth and projective

this also coincides with the Grothendieck group of locally-free sheaves K0(X).

This is a commutative ring, with multiplication induced by tensor product of

vector bundles.
The category D(X) has three very important properties

(a) Finiteness. D(X) is of finite type: for all objects E,F ∈ D(X)

dimC
⊕
i∈Z

Homi
D(X)(E,F ) <∞.
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This enables us to define

χ(E,F ) =
∑
i∈Z

(−1)i dimC Homi
D(X)(E,F ).

Note that the long exact sequence (3) shows that this expression is

additive: given a distinguished triangle (2) we have

χ(E,B) = χ(E,A) + χ(E,C).

It follows that it descends to give a bilinear form

K0(X)×K0(X)→ Z

which is known as the Euler form.

(b) Riemann-Roch. The Chern character defines a ring homomorphism

ch: K0(X)→ H∗(X,Q)

ch(E) =
(
c0(E), c1(E),

1

2
c1(E)2 − c2(E), · · ·

)
.

The Riemann-Roch theorem states that for all E,F ∈ D(X)

χ(E,F ) = [ch(E)∨ · ch(F ) · td(X)]2d.

In this formula ch(E)∨ denotes the sum
∑

i(−1)i chi(E),

td(X) = 1 +
1

2
c1(X) +

1

12
(c1(X)2 + c2(X)) + · · ·

is the Todd class of X, and [ · · · · · · ]2d means take the projection to the

top degree component H2d(X,Q) = Q.

(c) Serre duality. There are functorial isomorphisms

Homi
D(X)(E,F ) ∼= Homd−i

D(X)(F,E ⊗ ωX)∗

for all objects E,F ∈ D(X). Here ωX denotes the canonical line bundle

of X, and d = dimC(X). If E,F ∈ Coh(X) this implies in particular

that

ExtiX(E,F ) = 0 for i > d.

Note that if X is Calabi-Yau (meaning that ωX ∼= OX is trivial)

then the category D(X) has the CYd property:

Homi
D(X)(E,F ) ∼= Homd−i

D(X)(F,E)∗.

The Euler form χ(−,−) is then (−1)d–symmetric.
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Numerical Grothendieck group. Serre duality shows that the left- and

right-kernels of the Euler form are the same: for a given class γ ∈ K0(X) we

have

χ(α, γ) = 0 ∀α ∈ K0(X) ⇐⇒ χ(γ, β) = 0 ∀β ∈ K0(X).

The numerical Grothendieck group is defined to be the quotient

N (X) = K0(X)/ kerχ(−,−).

It is a finitely-generated free abelian group. Note that it is not clear that

the Chern character descends to N (X) (this has to do with the standard

conjectures), but this is certainly true for example when dimC(X) 6 2.

Serre functor. The functor SX : D(X)→ D(X) defined by

SX(−) = (−⊗ ωX)[d]

is called the Serre functor. Serre duality may be trivially restated as the

property that there are bifunctorial isomorphisms

HomD(X)(E,F ) ∼= HomD(X)(F, SX(E))∗

for all objects E,F ∈ D(X). It is easy to see using the Yoneda Lemma that

this property determines SX uniquely up to isomorphism of functors.

2.2. Coherent sheaves. Objects of Coh(X) can be thought of as ‘vector

bundles with varying fibres’. The fibre of E ∈ Coh(X) at a closed point

x ∈ X is
E(x) = Ex ⊗OX,x

C.

It is a simple consequence of Nakayama’s Lemma that the subsets

Si(E) = {x ∈ X : dimCE(x) > i} ⊂ X

are closed. Setting Vi(E) = Si(E) \ Si+1(E) we get a stratification of X into

disjoint, locally-closed subvarieties Vi(E), such that each restriction E|Vi(E) is

locally-free. In particular, given E ∈ Coh(X) the support of E is the closed

subset
supp(E) = S0(E) ⊂ X

consisting of points where E has nonzero fibre. A sheaf E is torsion-free if

supp(A) = X for all A ⊂ E. Note that a subsheaf of a torsion-free sheaf is

automatically torsion-free.

To form non-stacky moduli spaces of coherent sheaves we must first restrict

attention to a class of stable sheaves. There are several notions of stability,

but for simplicity in what follows we will only consider µ-stability. To define
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this we must first fix a polarization of X: a class ω ∈ H2(X,Z) which is the

first Chern class of an ample line bundle. The degree of a sheaf E is then

defined to be

d(E) = c1(E) · ωd−1,

and the slope of a torsion-free sheaf is µ(E) = d(E)/r(E). A torsion-free sheaf

is said to be µ-semistable if

0 6= A ( E =⇒ µ(A) 6 µ(E).

Replacing the inequality with strict inequality gives the notion of µ-stability.

Theorem 2.1. (a) Fix a Chern character v such that sheaves of this class

have r(E) and d(E) coprime. Then there is a fine projective moduli

scheme MX,ω(v) for µ-stable torsion-free sheaves of this class.

(b) Every torsion-free sheaf E has a unique Harder-Narasimhan filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

whose factors Fi = Ei/Ei−1 are µ-semistable with descending slopes:

µ(F1) > µ(F2) > · · · > µ(Fn).

(c) If E and F are µ-semistable and µ(E) > µ(F ) then HomX(E,F ) = 0.

(d) If E and F are µ-stable of the same slope then any nonzero map E → F

is an isomorphism.

(e) If E is µ-stable then EndX(E) = C.

Proof. Part (a) comes from geometric invariant theory. The given assumptions

ensure that for torsion-free sheaves of class v the notions of µ-stability and µ-

semistability coincide, leading to a projective moduli space. They also ensure

that this moduli space is fine. Part (b) is fairly easy. For (c) consider a nonzero

map f : E → F and factor it via its image

0→ K ↪→ E � I ↪→ F � Q→ 0.

Then K = ker(f) satisfies µ(K) < µ(E), which by the additivity of rank and

degree implies that µ(E) < µ(I). On the other hand, I = Im(f) is a subsheaf

of F and hence satisfies µ(I) 6 µ(F ). This implies that µ(E) < µ(F ), a

contradiction. The same argument works for part (d). Part (e) then holds

because EndX(E) is a finite-dimensional division algebra over C. �
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2.3. Derived category of P1. By Exercise 1.5.3 every object in D(P1) is a

sum of its cohomology sheaves. Exercise 2.3.1 shows that any indecomposable

sheaf is either a vector bundle or a fattened skyscraper. A well-known result

(see Exercise 2.3.2) states that the only indecomposable vector bundles on

X = P1 are the line bundles O(i) for i ∈ Z.

We can represent the category D(P1) graphically by drawing its Auslander-

Reiten quiver: this has a vertex for each indecomposable object of D(P1), and

an arrow for each irreducible morphism (a morphism is called irreducible if it

cannot be written as a composition g◦h with neither g nor h an isomorphism).

In fact the same category can be described in a different way. Consider the

Kronecker quiver Q and the abelian category Rep(Q) of its finite-dimensional

representations. It is easy enough to show that for all n > 1 there is a unique

(up to isomorphism) indecomposable representation of Q of dimension vector

(n, n − 1) and (n − 1, n), and a P1 worth of indecomposable representations

of dimension vector (n, n). Categories of representations of quivers (without

relations) always have global dimension 1, so Exercise 1.5.3 applies again, and

we can draw the Auslander-Reiten quiver as before.

The pictures suggest that the categories D(P1) and D(Q) are equivalent.

In fact, if we choose a basis for HomP1(O,O(1)) ∼= C2 we can define a functor

F : Coh(P1)→ Rep(Q) by the rule

E 7→
(

HomP1(O(1), E) =⇒ HomP1(O, E)
)
.

The associated derived functor is then an equivalence D(P1) → D(Q) which

matches up the two pictures as in the diagram.

Note that the underived functor F is definitely not an equivalence since it

kills the objects O(i) for i < 0. In fact, the abelian categories Coh(P1) and

Rep(Q) are not equivalent: to see this note that the simple objects in Coh(P1)

are the skyscraper sheaves Ox and the only finite-length objects are sheaves

supported in dimension 0, whereas the category Rep(Q) is a finite-length

category with only two simple objects (0, 1) and (1, 0) up to isomorphism.

We can use the above equivalence to identify the two derived categories and

think of a single triangulated category D. But we then have two different

abelian subcategories Coh(P1) ,Rep(Q) ⊂ D. There is an interesting auto-

equivalence of D which corresponds to tensoring with O(1) in D(P1). This

auto-equivalence preserves the subcategory Coh(P1) ⊂ D but not Rep(Q) ⊂
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D, illustrating the fact that the derived category of an abelian category can

have extra symmetries not visible at the underived level.

Tilting objects. Let X be a smooth projective variety. An object T ∈ D(X)

is called a tilting object if

ExtiX(T, T ) = 0 unless i = 0 and Hom•
X(T,E) = 0 =⇒ E ∼= 0.

It follows that the (usually non-commutative) finite-dimensonal C-algebra A =

EndX(T ) is of finite global dimension, and the derived functor

RHomX(T,−) : Db(Coh(X))→ Db(Modfg(A))

is an equivalence. In the above example T = O ⊕ O(1), and A is the path

algebra of Q. All known examples of tilting objects on smooth projective vari-

eties are of the form T =
⊕

iEi for some exceptional collection (E1, · · · , En).

It is not known whether this is always the case.

Problems.

2.3.1. Let X be a curve. Prove that any indecomposable object E ∈ Coh(X) is either

locally-free, or is of the form Onx for some x ∈ X and n > 1.

2.3.2. Prove that every indecomposable vector bundle on X = P1 is a line bundle as follows.

First prove using the Harder-Narasimhan filtration and Serre duality that every indecom-

posable vector bundle is stable. Next use Serre duality to show that any stable vector bundle

E is rigid, i.e. satisfies Ext1
X(E,E) = 0. Finally use Riemann-Roch to get the result.

2.3.3. Suppose that X is an elliptic curve and E ∈ Coh(X) is locally-free. Prove that

E µ-stable =⇒ E indecomposable =⇒ E µ-semistable.

Conclude that if ch(E) = (r, d) with gcd(r, d) = 1 then all three notions coincide.

2.3.4. Let MX(2, 1) be the moduli space of indecomposable vector bundles on an elliptic

curve X of rank 2 and degree 1. Prove that MX(2, 1) ∼= X by showing that every such

bundle is an extension of line bundles of degrees 0 and 1 respectively.

3. Fourier-Mukai transforms

In this lecture we introduce integral functors and state the famous Bondal-

Orlov theorem, which gives a criterion for when such a functor is an equiva-

lence.



Db(Intro) 13

3.1. Integral functors. Let X, Y be smooth projective varitieties. For each

y ∈ Y we denote by iy : X ↪→ Y ×X is the inclusion x 7→ (y, x). We can view

an object P ∈ D(Y ×X) as defining a family of objects

Py = Li∗y(P) ∈ D(X)

parameterised by y ∈ Y . Here Li∗y denotes the left derived functor of the right

exact functor i∗y. Of course this is very familiar when P is a locally-free sheaf.

Lemma 3.1. The objects Py ∈ D(X) are all sheaves (i.e. they are all con-

centrated in degree 0), precisely if P ∈ D(Y ×X) is a sheaf, flat over Y .

Proof. One implication is easy: if P is a Y -flat sheaf, then Py is just the

usual restricted sheaf P|{y}×X . In the other direction let us assume that all

the objects Py ∈ D(X) are concentrated in degree 0. Let n be the maximum

integer such that Hn(P) 6= 0. Consider the triangle in D(Y ×X)

τ6n−1(P) −→ P −→ Hn(P)[−n].

Applying the derived functor Li∗y(−) gives a triangle

(6) Li∗y(τ6n−1(P)) −→ Py −→ Li∗y(H
n(P))[−n]

in D(X). Since Li∗y is a left derived functor, it ‘spreads things out to the left’,

so the first term is concentrated in degrees 6 n − 1. Taking the long exact

sequence in cohomology we get Hn(Py) = i∗y(H
n(P)) which by assumption

on n is non-zero for some y ∈ Y . Since Py is assumed to be concentrated in

degree 0 we conclude that n = 0.

Taking cohomology of (6) again we see that H−1(Li∗y(H
0(P)) = 0 for all

y ∈ Y , which by the local criterion of flatness tells us that H0(P) is flat over

Y . We now know that the last two terms in (6) are concentrated in degree 0.

Since the first one is concentrated in degrees 6 −1 it must be zero. It follows

that τ6−1(P) = 0 which shows that P is concentrated in degree 0. �

Remark 3.2. The same argument gives a local version of this statement: if

some particular Py is concentrated in degree 0, then for all x ∈ X, the stalk

of H i(P) at (x, y) is zero for i 6= 0, and flat over OY,y for i = 0.

Define projection maps

Y Y ×XπY
oo

πX
// X
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and consider the functor

ΦPY→X(−) = RπX,∗(P ⊗ π∗Y (−)).

Note that we do not need to derive π∗Y because it is an exact functor (the

projection map is flat). The −⊗− means the tensor product in D(X) which

is computed by first replacing the objects by quasi-isomorphic complexes of

locally-free sheaves.

Lemma 3.3. We have the relation

ΦPY→X(Oy) = Py.

Proof. Consider the diagram

X
iy−−−→ X × Y πX−−−→ X

p

y yπY
{y} jy−−−→ Y

First use base-change around the Cartesian square

π∗Y (Oy) = π∗Y (jy,∗(O)) ∼= iy,∗(p
∗(O)) = iy,∗(OX).

Note that these functors are all exact. Now use the projection formula

P ⊗ iy,∗(OX) ∼= iy,∗(Li
∗
y(P)⊗OX) ∼= iy,∗(Py).

Finally, using the fact that πX ◦ iy ∼= idX , we get

ΦPY→X(Oy) = RπX,∗(iy,∗(Py)) ∼= Py.

which completes the proof. �

A functor Φ: D(Y )→ D(X) isomorphic to one of the form ΦPY→X is called

an integral functor. Such functors are very important due to

Theorem 3.4 (Orlov). If X and Y are smooth projective varieties then any

triangulated equivalence Φ: D(Y )→ D(X) is an integral functor. �

3.2. The Bondal-Orlov theorem. The following very useful result allows us

to write down many examples of varieties with equivalent derived categories.

Theorem 3.5 (Bondal, Orlov). Let X and Y be smooth projective varieties.

An integral functor Φ: D(Y )→ D(X) is an equivalence if and only if

(a) Homi
D(X)(Φ(Oy1),Φ(Oy2)) = 0 unless y1 = y2 and 0 6 i 6 dim(Y ),

(b) HomD(X)(Φ(Oy),Φ(Oy)) = C,
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(c) Φ(Oy)⊗ ωX ∼= Φ(Oy).

One can easily check that the conditions of Theorem 3.5 are necessary.

Indeed, using a Koszul resolution, one can compute

ExtiY (Oy1 ,Oy2) =

{ ∧iCd, if y1 = y2

0 otherwise.

If Φ is an equivalence commuting with the shift functors then it preserves the

Homi(−,−) spaces so (a) and (b) must hold. For (c) note that an equivalence

must intertwine the Serre functors on D(Y ) and D(X) since these are uniquely

defined by categorical conditions. Since Oy ⊗ ωX ∼= Oy it follows that the

objects Φ(Oy) must also be invariant under −⊗ωX up to shift. It follows that

they are in fact invaraint under − ⊗ ωX and that moreover X and Y must

have the same dimension.

Example 3.6. Let X be an abelian variety, and let Y = Pic0(X) be the

dual abelian variety. By definition Y parameterizes line bundles L on X with

c1(L) = 0. There is a universal object P on Y × X called the Poincaré line

bundle. The resulting functor ΦPY→X is called the Fourier-Mukai transform; it

was the first non-trivial example of an equivalence betwen derived categories

of coherent sheaves.
The conditions (b) and (c) of Theorem 3.5 are immediate in this example.

To check (a) one needs to know a non-trivial fact, namely that if L ∈ Pic0(X)

is non-trivial then H i(X,L) = 0 for all i. In the dimension one case when X

is an elliptic curve this is easy: H0(X,L) = 0 because any nonzero section

OX → L would have to be an isomorphism, and Serre duality then implies

that also H1(X,L) = 0.

Example 3.7. Take an isomorphism of smooth projective varieties f : Y →
X, a line bundle L ∈ Pic(Y ) and an integer n ∈ Z. Then the functor

F (−) = f∗(L⊗−)[n].

is a Fourier-Mukai equivalence F : D(Y ) → D(X). Functors of this form are

called standard equivalences.

The following result gives a useful characterisation of standard equivalences.

Lemma 3.8. Suppose Φ: D(Y )→ D(X) is a triangulated equivalence. Then

Φ is a standard equivalence precisely if for every point y ∈ Y the object

Φ(Oy) ∈ D(X) is a shift of a skyscraper sheaf.
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Proof. One implication is easily checked so let us assume that Φ takes skyscrap-

ers to shifts of skyscrapers. We can write Φ = ΦPY→X for some object P . By

assumption, the object Py = Li∗y(P) is concentrated in some degree for each

y ∈ Y . By Remark 3.2 it follows that P is concentrated in a fixed degree in

a neighbourhood of each point, and since Y is connected it follows that this

degree is constant, and by composing Φ with a shift we can therefore assume

that P is a sheaf, flat over Y .

Now, by Exercise 3.4.4, X is a fine moduli space for skyscraper sheaves on

X, so there is a morphism f : Y → X and a line bundle L ∈ Pic(Y ) such that

P ∼= (f × idX)∗(O∆)⊗ π∗Y (L) = OΓ(f) ⊗ π∗Y (L)

where Γf ⊂ Y ×X is the graph of f . It follows easily that Φ(−) ∼= f∗(L⊗−).

Since Φ is an equivalence it follows that f is an isomorphism. �

3.3. Auto-equivalences. As well as looking for varieties with equivalent de-

rived categories, it is interesting to study self-equivalences of derived categories

of coherent sheaves. We denote by AutD(X) the group of C-linear, triangu-

lated auto-equivalences of the category D(X), these being considered up to

isomorphism of functors.

The standard auto-equivalences define a subgroup

AutstandD(X) = Z× Aut(X) n Pic(X) ⊂ AutD(X).

The following result shows that in many interesting cases these are all auto-

equivalences.

Lemma 3.9. Suppose ω±1
X is ample and Φ: D(Y ) → D(X) is a triangulated

equivalence. Then Y ∼= X and Φ is a standard equivalence.

Proof. Set Py = Φ(Oy). By condition (c) of the Theorem we have Py ⊗ ωX =

Py. This implies the same for each H i(Py). But by the condition, the only

sheaves invariant under − ⊗ ωX are zero-dimensional. Since EndX(Py) = C
it is indecomposable so we conclude that each H i(Py) is supported at the

same point x ∈ X. Note that any two such sheaves E,F ∈ Coh(X) there are

nonzero maps E → F , because any such sheaf has a filtration with factors Ox.
Now consider the spectral sequence

(7)
⊕
i∈Z

ExtpX(H i(Py), H i+q(Py)) =⇒ Extp+qX (Py,Py).

Since Φ is an equivalence this gives zero unless 0 6 p + q 6 d. If w is the

maximum integer such that there is an i ∈ Z with H i(E) and H i+w(E) both
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nonzero, then we get a nontrivial term E0,−w-term in this spectral sequence

which survives to ∞. Thus w = 0 and Py is concentrated in a fixed degree.

Since the class of Φ(Oy) in N (X) must be primitive it follows that Py is a

shift of a skyscraper. �

3.4. Problems.

3.4.1. Adjoints of integral functors. Using standard adjunctions from algebraic geometry

calculate the left and right adjoints to the functor ΦPY→X . Use your answer to give another

proof that smooth projective varieties with equivalent derived categories have the same

dimension.

3.4.2. Suppose that P is a sheaf on Y × X, flat over Y , and set Φ = ΦPY→X . Using the

cohomology and base-change theorem, show that for any sheaf E ∈ Coh(Y ) and any ample

line bundle L, the image Φ(E ⊗ Ln) is a locally-free sheaf for n� 0.

3.4.3. Prove that there is a well-defined functor

FM: D(Y ×X) −→ Fun(D(Y ), D(X)), P 7→ ΦPY→X .

Show that this functor is not in general faithful, as follows. Take Y = X an elliptic curve

and prove that any morphism of functors id → [2] is zero. On the other hand show using

Serre duality that Ext2
X×X(O∆,O∆) = C.

3.4.4. Moduli of skyscrapers. Prove that the moduli space of skyscraper sheaves on a smooth

variety X is the variety X itself, and that the universal object can be taken to be the

structure sheaf of the diagonal in X ×X.

3.4.5. Integral transforms preserve families. Let S be an arbitrary variety, and Y,X smooth,

projective varieties as usual. An object E ∈ D(S × Y ) is said to be S-perfect if the derived

restrictions Es = E|{s}×Y all have bounded cohomology objects and hence live in D(Y ).

Suppose that Φ: D(Y )→ D(X) is an integral functor. By using a relative integral functor

defined by the projections S × Y ← S × Y × X → S × X, prove that if E ∈ D(S × Y )

is S-perfect then there is an S-perfect object F ∈ D(S ×X) such that Fs = Φ(Es) for all

s ∈ S.

4. Calabi-Yau examples

This lecture is devoted to working out some of the general theory consid-

ered above in the case of low-dimensional Calabi-Yau varieties, namely elliptic

curves and K3 surfaces.
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4.1. Elliptic curves. In this section we shall prove

Theorem 4.1. Let X be a smooth projective curve of genus 1. Then D(Y ) ∼=
D(X) implies that Y ∼= X, and moreover there is a short exact sequence

(8) 1 −→ Aut(X) n Pic0(X)× Z −→ AutD(X) −→ SL(2,Z) −→ 1.

Proof. The Chern character map descends to the numerical Grothendieck

group and gives an isomorphism

ch: N (X)→ Z⊕ Z, [E] 7→ (r(E), d(E)).

Riemann-Roch shows that the Euler form is

χ(E,F ) = r(E) d(F )− r(F ) d(E).

Any triangulated auto-equivalence ofD(X) induces an automorphism ofN (X)

preserving the Euler form, so we get a group homomorphism

$ : AutD(X)→ SL(2,Z).

Our first aim is to show that this map is surjective.

The dual abelian variety Y = Pic0(X) is non-canonically isomorphic to

X, by mapping x 7→ OX(x − x0) for some base-point x0 ∈ X. The original

Fourier-Mukai transform therefore gives an auto-equivalence Φ ∈ AutD(X).

This satisfies Φ(Oy) = Py. By Exercise 3.4.1, the inverse is given by ΦP
∗

X→Y [1]

and so Φ(P∗y ) = Oy[1]. We conclude that

$(Φ) =

(
0 1
−1 0

)
.

Tensoring with a degree 1 line bundle L gives another auto-equivalence, which

clearly satisfies

$(−⊗ L) =

(
1 0
1 1

)
.

Since these two matrices generate SL(2,Z) the map $ is indeed surjective.

Consider an auto-equivalence Φ lying in the kernel of $. It must take Ox to

an indecomposable object of class (0, 1). Up to shift such an object is a sheaf.

But then it must be a skyscraper. So any such autoequivalence is standard.

Conversely a standard autoequivalence acts trivially on N (X) precisely if the

line bundle L has degree 0 and the shift is even. This gives the above short
exact sequence.

Finally we prove the first part of the statement. Suppose Φ: D(Y )→ D(X)

is an equivalence. Then Φ induces an isomorphism of numerical Grothendieck
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groups; in particular Φ takes skyscrapers to indecomposable objects having

some primitive class (a, b) ∈ N (X). Composing with an element of AutD(X)

we can assume that (a, b) = (0, 1). But any indecomposable object of this class

is a shift of a skyscraper. Thus Φ is standard, and in particular, Y ∼= X. �

4.2. K3 surfaces. Recall that a K3 surface is a smooth surface which is
Calabi-Yau (ωX = OX) and satisfies H1(X,OX) = 0. It is an important fact

that all such surfaces are deformation equivalent as complex manifold and

hence have the same cohomology groups. In particular H2(X,Z) ∼= Z⊕22.

The Hodge decomposition takes the form

H2(X,C) = H0,2(X)⊕H1,1(X)⊕H2,0(X).

where H2,0(X) = H0(ωX) = C. The key point is that the isomorphism class

of a K3 surface is completely determined by the position of the line H2,0(X) in

the complexification of the lattice H2(X,Z). This is called the Torelli theorem:

Theorem 4.2. Two K3 surfaces are isomorphic if they are Hodge isometric,

i.e. if there is an isomorphism

φ : H2(X1,Z)→ H2(X2,Z)

such that φ preserves the intersection form and

(φ⊗ C) (H2,0(X1)) = H2,0(X2).

It is useful to introduce a minor variant of the Chern character called the
Mukai vector

v : K(X)→ H∗(X,Z)

v(E) = ch(E) ·
√

td(X) = (r(E), ch1(E), ch2(E) + r(E)).

We put a symmetric form on

H∗(X,Z) = H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) = Z⊕ Z22 ⊕ Z

by setting

〈(r1, d1, s1), (r2, d2, s2)〉 = D1 ·D2 − r1s2 − r2s1.

The Riemann-Roch theorem now takes the simple form

χ(E,F ) = −〈v(E), v(F )〉.

The map v descends to the numerical Grothendieck group, and allows us to

identify N (X) with the image of this map.
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Theorem 4.3. Fix v = (r,D, s) ∈ N (X) with r > 0. Suppose there is a

polarization ω such that gcd(r,D · ω) = 1. Then the moduli space MX,ω(v)

is a non-empty, smooth, complex symplectic, projective variety of dimension

2 + 〈v, v〉.

Proof. The non-emptiness statement is tricky: one has to consider a defor-

mation to an elliptic K3. For the rest, recall that the tangent space to the

moduli space of sheaves at a point E is given by Ext1
X(E,E). In our case

Riemann-Roch gives

dimC Ext1
X(E,E)− dimC Ext0

X(E,E)− dimC Ext2
X(E,E) = 〈v, v〉.

Since E is stable, EndX(E) = C and Serre duality gives Ext2
X(E,E) ∼=

HomX(E,E)∗. Thus the tangent space to MX,ω(v) has constant dimension

and hence the space is smooth. The symplectic form given by the Serre duality

pairing Ext1
X(E,E) ∼= Ext1

X(E,E)∗. �

These (and deformations of them) are basically the only known examples

of compact complex symplectic manifolds. Suppose now that (v, v) = 0 and

ω can be chosen as in the statement of the Theorem. Then Y = MX,ω(v) is

a smooth projective surface.

Lemma 4.4. The surface Y is a K3 surface and the functor Φ: D(Y ) →
D(X) defined by the universal object P on Y ×X is an equivalence.

Proof. By the Bondal-Orlov theorem, to check that Φ is an equivalence we just

have to check that if y1 6= y2 are distinct points of Y then ExtiX(Py1 ,Py2) = 0

for all i. There are no maps in degree 0 since these are distinct stable sheaves

of the same slope. Serre duality then shows that there are no maps in degree

2. Since χ(Py1 ,Py2) = −〈v, v〉 = 0 this is enough.

Since any equivalence commutes with Serre functors it is clear that ωY ∼= OY
(this also follows from the fact that Y is complex symplectic). To show that

Y is a K3 surface we must check that H1(Y,OY ) = 0. If we take a sufficiently

ample line bundle L on X then

Homi
Y (Φ−1(L∗),Oy) = Homi

X(L∗,Py) = H i(X,Py ⊗ L)

which is concentrated in degree 0. It follows that Φ−1(L∗) = M is a vector

bundle on Y . Now L (and hence also M) is rigid:

Ext1
Y (M,M) = Ext1

X(L,L) = H1(X,OX) = 0.
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But for any vector bundle on Y the obvious map OY → HomOY
(M,M)

is split by the trace map, which implies that H1(Y,OY ) is a summand of

Ext1
Y (M,M). �

We have now proved one of the implications in the following derived Torelli

result.

Theorem 4.5 (Mukai, Orlov). Let X, Y be K3 surfaces. Then the following

are equivalent

(a) There is a C-linear triangulated equivalence D(Y ) ∼= D(X),

(b) Y ∼=MX,ω(v) is a fine moduli space of µ-stable vector bundles on X,

(c) There is a Hodge isometry

H∗(Y,Z) ∼= H∗(X,Z)

This means an isomorphism of groups which preserves the form 〈−,−〉
and whose complexification takes H0,2(Y ) ⊂ H∗(Y,Z) to H0,2(X) ⊂
H∗(X,Z).

Proof. Above, we proved (b) =⇒ (a). To get (a) =⇒ (c) one must show that

a Foruier-Mukai equivalence induces an isomorphism on the full cohomology

groups (not just the numerical Grothendieck groups, which are the algebraic

part). This can be done by hand in a slightly ad hoc way; a better approach

would be via periodic cyclic homology, but this seems difficult.

The implication (c) =⇒ (a) goes as follows. Let p = (0, 0, 1) denote the

Mukai vector of a skyscraper sheaf. Given an isomorphism ψ : H∗(Y,Z) →
H∗(X,Z) of the required type, put v = ψ(p). Then v is algebraic and integral,

and hence defines a primitive class in N (X). With a bit of jiggery-pokery

involving known auto-equivalences of D(X) we can even assume that v =

(r,D, s) is such that r > 0 and there exists a polarization ω with gcd(r,D ·
ω) = 1. (If we use Gieseker stability instead of slope stability we don’t need

this last condition). Let Z = MX,ω(v) be the resulting fine moduli space,

and Φ: D(Z) → D(X) the corresponding equivalence. Let φ : H∗(Z,Z) →
H∗(X,Z) be the induced Hodge isometry; by definition it takes p to v. Now

ψ−1 ◦φ is a Hodge isometry H∗(Z,Z)→ H∗(Y,Z) which preserves the class p.

But since p⊥/Z·p = H2(X,Z) this then induces a Hodge isometry H2(Z,Z)→
H2(Y,Z). The usual Torelli theorem then implies Y ∼= Z and we are done. �

4.3. Problems.
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4.3.1. Moduli of bundles on an elliptic curve. Let MX(r, d) denote the moduli space of

indecomposable vector bundles on an elliptic curve X of rank r and degree d. Prove that

MX(r, d) ∼= X. (If you are being careful about moduli spaces you might need Exercise

3.4.5).

4.3.2. Auto-equivalences of an abelian surface. Let X be an abelian surface. This is a

smooth projective surface with ωX ∼= OX and H1(X,OX) = C2.

(a) Prove that any nonzero object E ∈ Coh(X) satisfies dimC Ext1
X(E,E) > 2. (When

E is a vector bundle use the argument from the proof of Lemma 4.4, in general use

the Fourier-Mukai trandsform and Exercise 3.4.2).

(b) Use the spectral sequence (7) to show that if Φ: D(Y ) → D(X) is an equivalence

then it takes skyscraper sheaves to shifts of sheaves.

(c) Show that any auto-equivalence which acts trivially onN (X) is standard and hence

determine the kernel of the map AutD(X)→ AutN (X).

4.3.3. Reflection functor. Let X be a K3 surface and let I∆ ∈ Coh(X×X) denote the ideal

sheaf of the diagonal ∆ ⊂ X ×X.

(a) Prove that ΦI∆
X→X defines an auto-equivalence Φ ∈ AutD(X).

(b) Prove that for any E ∈ D(X) there is a distinguished triangle⊕
i∈Z

HomD(X)(OX , E)⊗C OX −→ E −→ Φ(E).

(c) Let φ ∈ AutK0(X) be the effect of D(X) on the Grothendieck group, and set

q = [OX ]. Show that

φ(v) = v − χ(q, v)q.

Conclude that Φ2 ∈ AutD(X) is a non-standard auto-equivalence which acts triv-

ially on K0(X).


