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1. Stability in triangulated

categories



Stability in triangulated categories

Definition
A stability condition on a tri. cat. D is a pair (Z ,A) where

(i) A ⇢ D is a heart,

(ii) Z : K0(A) ! C is a group homomorphism,

such that Z defines a stability condition on A with the HN property.

An object E 2 D is defined to be semistable if E = A[n] for some
Z -semistable A 2 A. The phase of E is then �(E ) := �(A) + n.

A[1] A A[�1]

· · ·· · · D

R

�=0 �=�1�=1�=2
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Space of stability conditions

We consider only stability conditions satisfying the extra conditions

(a) The central charge Z : K0(D) ! C factors via our fixed map

ch : K0(D) �! N ⇠= Z�n.

(b) There is a K > 0 such that for any semistable object E 2 D

Z (E ) > K · kch(E )k.

The set Stab(D) of such stability conditions has a natural topology.

Theorem
Sending a stability condition to its central charge defines a local
homeomorphism

Stab(D) �! HomZ(N ,C) ⇠= Cn.

In particular, Stab(D) is a complex manifold.
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Charge lattice and associated torus

(a) Consider a smooth projective Calabi-Yau threefold X and set

D = Db Coh(X ).

(b) Define the charge lattice

N = im
�
ch : K0(D) ! H⇤(X ,Q)

� ⇠= Z�n.

The Euler form h�,�i gives a skew-symmetric form on N .

(c) Introduce the algebraic torus

T = HomZ(N ,C⇤) ⇠= (C⇤)n,

with its Poisson structure

{x↵, x�} = h↵, �i · x↵+�.
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What we expect

(a) The space of stability conditions Stab(D) is non-empty.

(b) For each stability condition � 2 Stab(D) there are stacks

Mss(↵) =
�
E 2 D : E is �-semistable with ch(E ) = ↵

 

of finite type, and corresponding DT invariants DT�(↵) 2 Q.

(c) As we vary � 2 Stab(D) the invariants DT�(↵) 2 Q undergo
discontinuous changes governed by the Kontsevich-Soibelman
wall-crossing formula.
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The active rays

For each stability condition � 2 Stab(D) there is a countable
collection of active rays

` = R>0 exp(i⇡�) ⇢ C

for which there exist semistable objects of phase �.

Z(E)

Z(E [1])

Z(F )

Z(F [1])

As � varies, the active rays move and may collide and separate.
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Encoding DT invariants

To each active ray is associated a formal function on T

DT` =
X

Z(↵)2`

DT�(↵)x
↵.

Ignoring convergence issues, there is a corresponding automorphism

S` = exp({DT`,�}) 2 Aut(T).

Z(E)

Z(E [1])

Z(F )

Z(F [1])
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Wall-crossing formula

For any convex sector � ⇢ C, the clockwise product over active rays

S� =
Y

`2�

S` 2 Aut(T)

remains constant as � varies, providing no active ray crosses @�.

�

This all makes good sense in a suitable completion C[[N+]].
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2. Irregular connections and

Stokes data



Stokes matrices and isomonodromy

The wall-crossing formula resembles an isomonodromy condition for
an irregular connection with values in the infinite-dimensional group

G = Aut{�,�}(T)

of Poisson automorphisms of the torus T ⇠= (C⇤)n.

We first explain such phenomena in the finite-dimensional case, so set

G = GL(n,C), g = gl(n,C).

As a warm-up we start with the case of regular singularities.
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A Fuchsian connection

We will consider meromorphic connections on the trivial G -bundle
over the Riemann sphere CP1.

Consider a connection of the form

r = d �
kX

i=1

Ai dz

z � ai

(i) ai 2 C are a set of k distinct points,

(ii) Ai 2 g are corresponding residue matrices.

Then r has regular singularities at the points ai , and also at 1.
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Isomonodromic deformations

For each based loop

� : S1 ! C \ {a1, · · · , ak}

there is a corresponding monodromy matrix Mon�(r) 2 G .

If we move the pole positions ai 2 C, we can deform the residue
matrices Ai so that all monodromy matrices remain constant. Such
deformations are called isomonodromic.

Isomonodromic deformations are described by a system of partial
di↵erential equations called the Schlessinger equations.
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A class of irregular connections

Introduce the decomposition

g = h� god, god =
M

↵2�

g↵, � = {e⇤i � e⇤j } ⇢ h⇤.

Consider a connection of the form

r = d �
✓
U

z2
+

V

z

◆
dz ,

(i) U = diag(u1, · · · , un) 2 h is diagonal with distinct eigenvalues,

(ii) V 2 god has zeroes on the diagonal.

Then r has an irregular singularity at 0 and a regular one at 1.
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Stokes data of the connection

The Stokes rays for the connection r are the rays

R>0 · (ui � uj) = R>0 · U(↵), ↵ = e⇤i � e⇤j .

u1-u2

u2-u1

u2-u3

u3-u2

u1-u3

u3-u1

Associated to each Stokes ray ` is a Stokes factor

S` = exp
� X

U(↵)2`

✏↵
�
2 exp

� M

U(↵)2`

g↵
�
⇢ G .
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Canonical solution on a half-plane

Given a non-Stokes ray r , there is a canonical flat section Xr of r on
the orthogonal half-plane Hr , uniquely defined by the condition that

Xr (t) · eU/t ! 1 as t ! 0 in Hr .

r

Hr

As the ray r varies, the flat section Xr remains unchanged until r
crosses a Stokes ray, where it jumps by

Xr 7! Xr · S`.
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Isomonodromy in the irregular case

If we now vary the diagonal matrix U , we can deform the matrix V
so that the Stokes factors remain constant. Such deformations are
called isomonodromic. More precisely:

For any convex sector � ⇢ C⇤ the clockwise product

S� =
Y

`2⌃

S` 2 G ,

remains constant unless a Stokes ray crosses the boundary of ⌃.

Isomonodromic variations are again described by a system of partial
di↵erential equations.
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Poisson vector fields on T
Consider the group G of Poisson automorphisms of the torus

T ⇠= HomZ(N ,C⇤) ⇠= (C⇤)n,

and the corresponding Lie algebra g. Then g = h� god, where

(a) the Cartan subalgebra

h = HomZ(N ,C),

consists of translation-invariant vector fields on T.
(b) the subspace god consists of Hamiltonian vector fields, and is the

Poisson algebra of non-constant algebraic functions on T

god =
M

↵2N⇥

g↵ =
M

↵2N⇥

C · x↵.
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DT invariants as Stokes data

It is tempting to interpret the elements

S` = exp

✓ X

Z(↵)2`

DT�(↵) · x↵
◆

2 G

as defining Stokes factors for a G -valued connection of the form

r = d �
✓
Z

t2
+

F

t

◆
dt,

for some element F 2 god.

The wall-crossing formula is precisely the condition that this family of
connections is isomonodromic as � 2 Stab(D) varies.
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3. Quivers with potential



Quivers with potential

Let (Q,W ) be a quiver with potential. Thus

(i) Q is an oriented graph,

(ii) W is a formal sum of oriented cycles in Q.

We always assume that Q has no loops or oriented 2-cycles.

Associated to (Q,W ) is a triangulated category Db(Q,W )

By definition, Db(Q,W ) is the subcategory of the derived category
of the complete Ginzburg dg-algebra ⇧(Q,W ) consisting of objects
with finite-dimensional total cohomology.
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General properties of Db
(Q,W )

Let (Q,W ) be a QWP as before, and set D = Db(Q,W ).

(a) D has the CY3 property:

Homk(E , F ) ⇠= Hom3�k(F ,E )⇤.

(b) D is generated by objects Si indexed by the vertices of Q, and

Hom⇤(Si , Sj) = C�ij � Caij [�1]� Caji [�2]� C�ij [�3],

with aij the number of arrows in Q from vertex i to vertex j .

(c) There is a standard heart A ⇢ D, which is finite-length, and
whose simple objects are precisely the Si .
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Tilting and mutation

Let (Q,W ) be a QWP and choose a vertex i of Q. Write S = Si .

?S = {E 2 A : Hom(E , S) = 0}, hSi = {S�n : n > 0}.

Keller and Yang proved that there is an equivalence

hS [1]i ?S hSi · · ·· · ·

Db
(Q,W )

Db
(Q 0,W 0

)

⇠
=

A(Q 0,W 0
)

A(Q,W )

where (Q 0,W 0) is a new QWP obtained by a process called mutation.
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Exchange graphs

Let (Q,W ) be a quiver with a generic potential.

(a) The heart exchange graph EG~(Q,W ) has

I
vertices the finite-length hearts in Db

(Q,W ),

I
edges connecting hearts related by a simple tilt.

(b) The cluster exchange graph is the quotient

EG(Q) = EG~(Q,W )/ Sph(D)

where Sph(D) = hTwS1 , · · · ,TwSni ⇢ Aut(D).
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Stability space versus cluster variety

(a) For each heart A 2 EG~(Q,W ) there is a cell Hn ⇢ Stab(D).

Stab(D)/ Sph(D) �
[

A2EG(Q)

Hn.

Note that the di↵erent cells only meet in their closures.

(b) The cluster variety is a union of tori glued by birational maps

X (Q) =
[

A2EG(Q)

(C⇤)n.

x� 7! x� · (1 + x↵)h↵,�i.
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4. Examples from triangulated

surfaces



From triangulations to quivers

Fix a surface S of genus g with a set M = {p1, · · · , pd} ⇢ S .

Consider triangulations of S with vertices at the points pi .

Associated to any such triangulation is a quiver:
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Flips and the exchange graph

A flip of the triangulation induces a mutation of the quiver:

(a) Fomin, Shapiro and Thurston proved that the exchange graph is
the set of (tagged) triangulations, with the edges being flips.

(b) Labardini-Fragoso dealt with the potentials associated to
degenerate triangulations.

28 / 32



Cluster variety

Let (S ,M) be a marked surface as above, choose a triangulation and
let Q be the corresponding quiver. Set G = PGL(2,C).

Theorem (Fock and Goncharov)

The cluster variety X (Q) is a dense open subset of the stack of
labelled G -local systems on S \M

X (Q) ⇢ Loc⇤G (S \M)
2d :1���! LocG (S \M).

29 / 32



Space of stability conditions

Choose a generic potential W and set D = Db(Q,W ).

Theorem (-, Ivan Smith)

Stab(D)/Aut(D) ⇠= Quad(g , d).

The space Quad(g , d) parameterizes pairs (S ,�) with

(a) S is a Riemann surface of genus g ,

(b) D =
Pd

i=1 pi is a reduced divisor,

(c) � 2 H0(S ,!S(D)⌦2) has simple zeroes.
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Horizontal strip decomposition

A quadratic di↵erential defines a foliation

h
p

�(p),X i 2 R, X 2 TpS .

For a generic point � 2 Quad(g , d) the trajectories split the surface
into a disjoint union of horizontal strips.
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Relating Stab(D) to X (Q)

Two stories (like Frobenius versus tt⇤ in GL(n) case):

(1) Non-holomorphic version (Gaiotto-Moore-Neitzke):

M0
Higgs

(S1)n

✏✏

� �
//MBetti

⇠= X (Q)

Stab(D)
Aut(D)

⇠= Quad(g , n) B0
? _fix

C�str .
oo B0 ⇢ H0(S ,KS(D)2)

(2) Holomorphic version (‘conformal limit’):

Stab(D)
Aut(D)

⇠= Quad(g , n)

&&

⇠=
non�canon.

// Proj(g , n)

||

//MBetti
⇠= X (Q)

M(g , n)

32 / 32


