STABILITY AND
WALL-CROSSING 3

Tom Bridgeland

] 1/32



1. Stability in triangulated
categories



STABILITY IN TRIANGULATED CATEGORIES

DEFINITION
A stability condition on a tri. cat. D is a pair (Z,.A) where

(1) A C D is a heart,
(1) Z: Ko(A) — C is a group homomorphism,
such that Z defines a stability condition on A with the HN property.

An object E € D is defined to be semistable if E = A[n] for some
Z-semistable A € A. The phase of E is then ¢(E) := ¢(A) + n.
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SPACE OF STABILITY CONDITIONS

We consider only stability conditions satisfying the extra conditions
(A) The central charge Z: Ko(D) — C factors via our fixed map
ch: Ko(D) — N = 7",
(B) Thereis a K > 0 such that for any semistable object E € D
Z(E) > K - ||ch(E))|.
The set Stab(D) of such stability conditions has a natural topology.
THEOREM

Sending a stability condition to its central charge defines a local
homeomorphism

Stab(D) — Homz(N,C) = C".
In particular, Stab(D) is a complex manifold.
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CHARGE LATTICE AND ASSOCIATED TORUS

(A) Consider a smooth projective Calabi-Yau threefold X and set
D = D" Coh(X).
(B) Define the charge lattice
N =im (ch: Ko(D) — H*(X,Q)) = Z°".

The Euler form (—, —) gives a skew-symmetric form on N.

(C) Introduce the algebraic torus
T = Homgz(N,C*) = (C*)",
with its Poisson structure
X, X7} = {a, B) - x*.
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WHAT WE EXPECT

(A) The space of stability conditions Stab(D) is non-empty.
(B) For each stability condition o € Stab(D) there are stacks
M?*(a) = {E € D : E is o-semistable with ch(E) = o}
of finite type, and corresponding DT invariants DT,(«) € Q.

(¢) As we vary o € Stab(D) the invariants DT, («) € Q undergo
discontinuous changes governed by the Kontsevich-Soibelman
wall-crossing formula.

] 6 / 32



THE ACTIVE RAYS

For each stability condition o € Stab(D) there is a countable
collection of active rays

¢ =Rogexp(img) C C

for which there exist semistable objects of phase .

Z(F) \ Z(E)
>0//

/ v
Z(ET1]) \ Z(F11])

As o varies, the active rays move and may collide and separate.
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ENCODING DT INVARIANTS

To each active ray is associated a formal function on T

DT, = Z DT, (a)x®.

Z(a)el
lgnoring convergence issues, there is a corresponding automorphism

Sy = exp({DT,, —}) € Aut(T).

Z(F) \ Z(E)
>//
/ v
Z(ET1]) \ Z(F11])
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WALL-CROSSING FORMULA

For any convex sector A C C, the clockwise product over active rays

S = H Sy € AUt(T)
e
remains constant as o varies, providing no active ray crosses 0A.

/N
This all makes good sense in a suitable completion C[[N.]].
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2. lrregular connections and
Stokes data



STOKES MATRICES AND ISOMONODROMY

The wall-crossing formula resembles an isomonodromy condition for
an irregular connection with values in the infinite-dimensional group

G = Aut{_,_}(T)

of Poisson automorphisms of the torus T = (C*)".

We first explain such phenomena in the finite-dimensional case, so set

As a warm-up we start with the case of regular singularities.
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A FUCHSIAN CONNECTION

We will consider meromorphic connections on the trivial G-bundle
over the Riemann sphere CP'.

Consider a connection of the form

k
V:d_2314,dz

— Z — ad;
=1

(1) a; € C are a set of k distinct points,

(1) A; € g are corresponding residue matrices.

Then V has regular singularities at the points a;, and also at oc.
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ISOMONODROMIC DEFORMATIONS

For each based loop
v: St = C\{a1, - ,ak}

there is a corresponding monodromy matrix Mon, (V) € G.

If we move the pole positions a; € C, we can deform the residue
matrices A; so that all monodromy matrices remain constant. Such
deformations are called isomonodromic.

Isomonodromic deformations are described by a system of partial
differential equations called the Schlessinger equations.
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A CLASS OF IRREGULAR CONNECTIONS

Introduce the decomposition

g=hag™, =P, O={—e}tch"

acd

Consider a connection of the form

Vzd—(ﬂJrZ)dz,

Z2 z

(1) U =diag(u1,--- ,u,) € b is diagonal with distinct eigenvalues,

(11) V € g°? has zeroes on the diagonal.

Then V has an irregular singularity at 0 and a regular one at oo.
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STOKES DATA OF THE CONNECTION

The Stokes rays for the connection V are the rays
Roo- (i —u)) =Rso-U(a), a=e¢€ —e¢.

ui-u3

Associated to each Stokes ray ¢ is a Stokes factor

Sg:exp( Z ea)Eexp( @ ga)CG.

U(a)el U(a)el
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CANONICAL SOLUTION ON A HALF-PLANE

Given a non-Stokes ray r, there is a canonical flat section X, of V on
the orthogonal half-plane H,, uniquely defined by the condition that

X, (t)-e¥t - 1ast—0inH,.

As the ray r varies, the flat section X, remains unchanged until r
crosses a Stokes ray, where it jumps by

Xr l—)Xr-Sg.
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ISOMONODROMY IN THE IRREGULAR CASE

If we now vary the diagonal matrix U, we can deform the matrix V
so that the Stokes factors remain constant. Such deformations are
called isomonodromic. More precisely:

For any convex sector A C C* the clockwise product

SA:HSKEG,

ey
remains constant unless a Stokes ray crosses the boundary of .

Isomonodromic variations are again described by a system of partial
differential equations.
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POISSON VECTOR FIELDS ON T
Consider the group G of Poisson automorphisms of the torus
T = Homz(N,C*) = (C*)",

and the corresponding Lie algebra g. Then g = § & g°, where
(A) the Cartan subalgebra

hizlﬂoﬁquhqj%

consists of translation-invariant vector fields on T.

(B) the subspace g°? consists of Hamiltonian vector fields, and is the
Poisson algebra of non-constant algebraic functions on T

g°d = @ga: EB(C-XO‘.

aeNX aeN*
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DT INVARIANTS AS STOKES DATA

It is tempting to interpret the elements
Sy = exp ( Z DT, («) -xo‘> €G
Z(a)el

as defining Stokes factors for a G-valued connection of the form

Z F
v-d(Z+5)a
t2 t

for some element F ¢ g°d.

The wall-crossing formula is precisely the condition that this family of
connections is isomonodromic as o € Stab(D) varies.
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3. Quivers with potential



(QUIVERS WITH POTENTIAL

Let (Q, W) be a quiver with potential. Thus

(1) @ is an oriented graph,
(11) W is a formal sum of oriented cycles in Q.

We always assume that @ has no loops or oriented 2-cycles.
Associated to (@, W) is a triangulated category D?(Q, W)

By definition, D?(Q, W) is the subcategory of the derived category
of the complete Ginzburg dg-algebra MN(Q, W) consisting of objects
with finite-dimensional total cohomology.
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GENERAL PROPERTIES OF D?(Q, W)

Let (@, W) be a QWP as before, and set D = D?(Q, W).
(A) D has the CY3 property:

Hom*(E, F) = Hom> *(F, E)*.
(B) D is generated by objects S; indexed by the vertices of Q, and
Hom*(S;, S;) = C% @ C¥[-1] © C¥[-2] ® C%[-3],

with a;; the number of arrows in Q from vertex i to vertex j.

(¢) There is a standard heart A C D, which is finite-length, and
whose simple objects are precisely the S;.
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TILTING AND MUTATION
Let (Q, W) be a QWP and choose a vertex i of Q. Write S = ;.
1S ={Ec A:Hom(E,S) =0}, (S)={S%":n>0}.

Keller and Yang proved that there is an equivalence

A, W) D(Q, W)
- | (S[1]) S (S) =
A(Q’v, W) D>(Q', W)

where (Q', W’) is a new QWP obtained by a process called mutation.
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EXCHANGE GRAPHS

Let (Q, W) be a quiver with a generic potential.
(A) The heart exchange graph EGo(Q, W) has

» vertices the finite-length hearts in Db(Q, W),

» edges connecting hearts related by a simple tilt.

(B) The cluster exchange graph is the quotient
EG(Q) = EGo(Q, W)/ Sph(D)
where Sph(D) = (Twg,, -+, Tws, ) C Aut(D).
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STABILITY SPACE VERSUS CLUSTER VARIETY

(A) For each heart A € EGo(Q, W) there is a cell H” C Stab(D).

Stab(D)/Sph(D) > | ] H".
A€EG(Q)

Note that the different cells only meet in their closures.

(B) The cluster variety is a union of tori glued by birational maps

XQ= |J @)

A€CEG(Q)

XB — XB . (1 _|_ Xa)<aaﬁ>-
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4. Examples from triangulated
surfaces



FROM TRIANGULATIONS TO QUIVERS

Fix a surface S of genus g with aset M ={py,--- ,pqs} C S.
Consider triangulations of S with vertices at the points p;.

Associated to any such triangulation is a quiver:
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FLIPS AND THE EXCHANGE GRAPH

A flip of the triangulation induces a mutation of the quiver:

(A) Fomin, Shapiro and Thurston proved that the exchange graph is
the set of (tagged) triangulations, with the edges being flips.

(B) Labardini-Fragoso dealt with the potentials associated to
degenerate triangulations.
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CLUSTER VARIETY

Let (S, M) be a marked surface as above, choose a triangulation and
let Q be the corresponding quiver. Set G = PGL(2, C).

THEOREM (FOCK AND GONCHAROV)

The cluster variety X(Q) is a dense open subset of the stack of
labelled G-local systems on S\ M

X(Q) € Loci(S\ M) 2L Locg(S \ M).
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SPACE OF STABILITY CONDITIONS

Choose a generic potential W and set D = D?(Q, W).
THEOREM (-, IVAN SMITH)

Stab(D)/ Aut(D) = Quad(g, d).

The space Quad(g, d) parameterizes pairs (S, ¢) with
(A) S is a Riemann surface of genus g,

(B) D=9 p;is a reduced divisor,

(c) ¢ € H(S,ws(D)®?) has simple zeroes.
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HORIZONTAL STRIP DECOMPOSITION
A quadratic differential defines a foliation

(Voé(p), X) eR,  XeT,S.

For a generic point ¢ € Quad(g, d) the trajectories split the surface
into a disjoint union of horizontal strips.
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RELATING Stab(D) TO X(Q)

Two stories (like Frobenius versus tt* in GL(n) case):

(1) Non-holomorphic version (Gaiotto-Moore-Neitzke):

MH/ggs 3 MBetti = X(Q)

(51)”l

oUB) = Quad(g.n) 2By By C H(S. Ks(DY?)

(2) Holomorphic version (‘conformal limit’):

2b0) = Quad(g, n) —————— Proj(g. 1) — Merri = X(Q)

non—canon.

M(g, n)
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