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1. Hearts and tilting



DEFINITION OF A TORSION PAIR

Let A be an abelian category.

A torsion pair (7,F) C A is a pair of full subcategories such that:

(A) Hom(T,F)=0for T € T and F € F.

(B) for every object E € A there is a short exact sequence

0 s T —E —F —0

for some pair of objects T € T and F € F.

A
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DEFINITION OF A HEART

Let D be a triangulated category.
A heart A C D is a full subcategory such that:

(A) Hom(A[j], B[k]) =0 for all A,B € A and j > k.
(B) for every object E € D there is a finite filtration

O=E,—E1—--—E,_1—E,=E

with factors F; = Cone(E;_; — E;) € A[—J].

Al1] A | A1
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PROPERTIES OF HEARTS

It would be more standard to say that A C D is the heart of a
bounded t-structure on D. But any such t-structure is
determined by its heart.

The basic example is A C D?(A).
In analogy with that case we define H,(E) := Fj[j] € A.
A is automatically an abelian category.

The short exact sequences in A are precisely the triangles in D
all of whose terms lie in A.

The inclusion functor gives an identification Ky(A) = Ky(D).
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THE TILT OF A HEART AT A TORSION PAIR
Suppose A C D is a heart, and (7, F) C A a torsion pair.

We can define a new, tilted heart A* C D as in the picture.

A

A<

T |\FR T F | 7T-1]

At
An object E € D lies in A* C D precisely if
H(E)e F, HYE)eT, H,(E)=0 otherwise.
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EXAMPLE OF TILTING: THREEFOLD FLOP

Coh(X3)
X, 2 o1 /A A
‘ Per+(\)/<+/Y)
% =
[ Per™(X_/Y)
X_ F_[1] T- F_
Coh\(/X_)

Db(X,)

112

DH(X_)
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STABLE PAIRS AS QUOTIENTS IN A TILT
Consider tilting A = Coh(X) C D(X) with respect to the torsion pair
T = {E € Coh(X) : dim¢ supp(E) = 0},

F ={E € Coh(X) : Homx(O,, E) =0 for all x € X}.

T F 7'[_]_]

Note that Ox € F C A We claim that

_ [ quotients Ox —» E in A
Palrs(67 n) o { with Ch(E) = (070767 n) }
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PROOF OF THE CLAIM ABOUT STABLE PAIRS

Given a short exact sequence in the category A?

f

0—J—0x — E—Q0,

we take cohomology with respect to the standard heart A C D.

0 — HY(J) = Ox - HY(E) = HY(J) = 0 — HY(E) — 0.

T F T[_]_]

It follows that E € AN A* = F and coker(f) = H4(J) € T.
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LAST TIME ...
(A) Hall algebras: Hallg,(C), Hallpmet(C).

0O—--A—-B—->C—0

AC)/ \B

(A,

(B) Character map ch: Ko(C) — N = Z°".
(¢) Quantum torus: C4[N] =&, . C(t) - x* with

aceN
X x x7 = q_%(%o‘) - Xt
(D) Integration map: Z: Hall(C) — C,[N].
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POSITIVE CONES AND COMPLETIONS

Choosing a basis (e, - , e,) for the group N gives an identification
CIN] = Cp, - 5]

We often need to use the positive cone

Ne={) Xe:X=0}CN,
i=1

and the associated completion
ClINL]I = Clxa, - -+ xa]l.

We can similarly define the completed quantum torus C,[[N_,]].
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SKETCH PROOF OF THE DT /PT IDENTITY

(1) Reineke's identity: 0§ = Quot$ x84 and 0% = QuotS, *6 41

(11) Torsion pair identities: 64 = 67 * 07 and 0 4 = 07 * d7p_q).

T F TI=1f) -

(111) Torsion pair identities with sections:
(SEZ = (52 X 5](2 and 55{;1 = 552 %k 52[_1]
(1v) All maps Ox — T[—1] are zero, so 5%_1] = 07-1]-
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CONCLUSION OF THE SKETCH PROOF

(V) Reineke's identity again: 6% = Quotg x0T
(vi) Putting it all together: Quotfz *xO0 = Quot? *O0T * Quot%.

(VIiI) Restrict to sheaves supported in dimension < 1. The Euler form
is then trivial so the quantum torus is commutative. Thus

Z(Quoty) = Z(Quot?) * Z(Quot%,).
(viir) Setting t = %1 then gives the required identity

> DT(B,mxy" => DT(0,n)y"- > PT(B, n)x"y".
B,n n B,n
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2. Generalized DT invariants



MODULI SPACES OF FRAMED SHEAVES

Let X be a Calabi-Yau threefold.

So far we have been discussing moduli spaces of objects in the
category D? Coh(X) equipped with a kind of framing.

EXAMPLE

The Hilbert scheme parameterizes sheaves E € Coh(X) equipped
with a surjective map f: Ox — E.

(1) This framing data eliminates all stabilizer groups, so the moduli
space is a scheme, and therefore has a well-defined Euler

characteristic.

(11) In this context wall-crossing can be achieved by varying the
t-structure on the derived category D? Coh(X).
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WHAT ABOUT UNFRAMED DT INVARIANTS?

Fix a polarization of X and a class o € N, and consider the stack

M?>*(a) = {E € Coh(X) : E is semistable with ch(E) = a}.

(A) In the case when « is primitive, and the polarization is general,
this stack is a C*-gerbe over its coarse moduli space M**(«),

and we set |

DT () = e(M*(«)) € Z.
Genuine DT invariants are defined using virtual cycles or by a
weighted Euler characteristic as before.

(B) In the general case, Joyce figured out how to define invariants
DTnaive(a) c Q

with good properties, and showed that they satisfy wall-crossing
formulae as the polarization is varied.
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(QUANTUM AND CLASSICAL DT INVARIANTS

(A) The generating function for the quantum DT invariants is
G-DT, = Z([M>(1) € M]) € CylIN,]]
(B) The generating function for the classical DT invariants is

DT, = lim(q — 1) - log g-DT, € C[[N,]].

g—1

A difficult result of Joyce shows that this limit exists in general.

(¢) The DT invariants are also encoded by the Poisson
automorphism

S, =exp{DT,,—} € AutC[[N.]].
This coincides with the g =1 limit of conjugation by g-DT ,.
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EXAMPLE: A SINGLE RIGID STABLE BUNDLE

Suppose there is a single rigid stable bundle E of slope 1. Then
M (1) ={E®": n >0} = | |BGL(n,C).
n=>0
Set a = ch(E) € N. Applying the integration map we calculate

(A) The quantum DT generating function is

no

a-DT, = Z (" — 1)X (g —1) € Cq[[N4]]-

n=0

We recognise the quantum dilogarithm ®,(x*).
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A SINGLE STABLE BUNDLE CONTINUED

(B) The classical DT generating function is

no

: o X
DT, = Ilim(qg—1) - log®,(x¥) = Z p

—1
9 n>1

and we conclude that DT(na) = 1/n°.

(¢) The Poisson automorphism S, € Aut C[[N,]] is

no

Su(x”) = exp { Z an : —}(xﬂ) = xP . (14 x)\P)

n>1

where the RHS should be expanded as a power series.
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3. Stability conditions



STABILITY CONDITIONS

Let A be an abelian category.

DEFINITION
A stability condition on A is a map of groups Z: Ky(.A) — C such
that

0£AEc A = Z(E)eH,

where H = H U R_q is the semi-closed upper half-plane.
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PHASES AND STABILITY

DEFINITIONS
(A) The phase of a nonzero object E € A is
1
H(E) = = arg Z(E) € (0,1],
T

(B) An object E € A is Z-semistable if

0#£ACE = ¢(A) < J(E).
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HARDER-NARASIMHAN FILTRATIONS

DEFINITION
A stability condition Z has the Harder-Narasimhan property if every
object E € A has a filtration

O=E CE C---CE,CE
such that each factor F; = E;/E;_; is Z-semistable and
¢(F1) > -+ > o(F).

(1) If A has finite length this condition is automatic.

(11) When they exist, HN filtrations are necessarily unique, because
the usual argument shows that if F1, F, are Z-semistable then

o(F1) > ¢(F,) = Hom(Fy, F;) =0.
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ANOTHER REINEKE IDENTITY

Let C be a finitary abelian category equipped with a stability
condition Z having the Harder-Narasimhan property. Let

5% () € Hallgy (A)
be the characteristic function of Z-semistable objects of phase ¢ € R.

LEMMA (REINEKE)
There is an identity é¢ = [] g 0%(9).

PROOF.
The product is taken in descending order of phase. The result follows
from existence and uniqueness of the HN filtration. ]
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WALL-CROSSING FORMULA

(A) The LHS of the above identity is independent of Z so given two
stability conditions we get a wall-crossing formula

[[07(0.2) =] 074, Z).
PER HER

(B) If C has global dimension < 1 we can apply the integration map
T to get an identity in the ring C,[[N,]].

(C) We can then take the g = 1 limit and obtain an identity in the
group of automorphisms of the Poisson algebra C[[N*]].
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EXAMPLE: THE A, QUIVER

Let C be the abelian category of representations of the A, quiver. It
has 3 indecomposable representations:

0—S —E—5S5 —0.

We have N = Ky(A) = Z%? = Z[S1] & Z[S,)],
((my, m), (m2, n2)) = many — myny,
and there are isomorphisms
Col[Ny ]l = C((x1,2)) /(2 1 = G - 31 % xo)

ClINL]] = Cllx, %]l {xa 0} =x - .
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QUANTUM PENTAGON IDENTITY

The space Stab(.A) is isomorphic to H? and there is a single wall

W = {Z € Stab(A) : Im Z(5,)/Z(51) € Reo}

where the object E is strictly semistable.

Z(E) »

Z(S2) \ | Z(51)

5fccccacoscoccaancoozanana

E unstable

4%

Z(51) Z(S2)

E stable

The wall-crossing formula in C,[[N.]] becomes the pentagon identity

Py(x2) * Pg(x1) = Pg(x1) * Pu(/q - x1 % x2) * Py(x2).
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SEMI-CLASSICAL VERSION

Z(E) +

E unstable

Z(51)  Z(S2)

E stable

The semi-classical version of the wall-crossing formula is the cluster

identity

Co,1) © G100 = C1,0) © C1,1) © o1y

Co: X7 = X7 - (1 + x) P ¢ Aut C[[x1, xo]].

It can be viewed in the group of birational automorphisms of (C*)2.
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4. Stability in triangulated
categories



STABILITY IN TRIANGULATED CATEGORIES

Let D be a triangulated category.

DEFINITION

A stability condition on D is a pair (Z,.A) where

(1) A C D is a heart,

(1) Z: Ko(A) — C is a group homomorphism,

such that Z defines a stability condition on A with the HN property.

An object E € D is defined to be semistable if E = A[n] for some
Z-semistable A € A. The phase of E is then ¢(E) := ¢(A) + n.

"R

Al | A JA[FT]) - D

$=2 =1 $=0 p=—1
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SPACE OF STABILITY CONDITIONS

We consider only stability conditions satisfying the extra conditions
(A) The central charge Z: Ko(D) — C factors via our fixed map
ch: Ko(D) — N = 7",
(B) There is a K > 0 such that for any semistable object E € D
Z(E) = K- [|ch(E)]]
The set Stab(D) of such stability conditions has a natural topology.
THEOREM

Sending a stability condition to its central charge defines a local
homeomorphism

Stab(D) — Homz(N,C) = C".
In particular, Stab(D) is a complex manifold.
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