# STABILITY AND WALL-CROSSING

# Tom Bridgeland

University of Sheffield



# WHAT'S IT ALL ABOUT?

- (1) Calculating motivic invariants of moduli spaces of coherent sheaves on Calabi-Yau threefolds, e.g. DT invariants.
- (2) Understanding the dependence of these invariants on the stability parameters.



# WITH THANKS TO ...



Reineke



Joyce



Toda



Kontsevich



Soibelman

# 1. Introduction

#### MOTIVIC INVARIANTS

The word motivic refers to invariants of varieties which satisfy

$$\chi(X) = \chi(Y) + \chi(U),$$

whenever  $Y \subset X$  is closed and  $U = X \setminus Y$ .

EXAMPLE: THE EULER CHARACTERISTIC

$$e(X) = \sum_i (-1)^i \dim_{\mathbb{C}} H^i(X^{an}, \mathbb{C}) \in \mathbb{Z}.$$

#### DEFINITION

The Grothendieck group  $K(Var/\mathbb{C})$  is the free abelian group on the set of isomorphism classes of varieties, modulo the scissor relations

$$[X] = [Y] + [U],$$

whenever  $Y \subset X$  is closed and  $U = X \setminus Y$ .

#### CURVE COUNTING INVARIANTS

Let X be a Calabi-Yau threefold. Fix  $\beta \in H_2(X, \mathbb{Z})$  and  $n \in \mathbb{Z}$ .

$$\mathsf{Hilb}(\beta, n) = \left\{ \begin{matrix} \mathsf{closed subschemes } C \subset X \text{ of } \dim \leqslant 1 \\ \mathsf{satisfying } [C] = \beta \text{ and } \chi(\mathcal{O}_C) = n \end{matrix} \right\},$$

$$\mathsf{DT}^{\mathsf{naive}}(\beta, n) = e(\mathsf{Hilb}(\beta, n)) \in \mathbb{Z}.$$

The genuine DT invariants are a weighted Euler characteristic

$$\mathsf{DT}(\beta, n) = e(\mathsf{Hilb}(\beta, n); \nu),$$

where  $\nu$ : Hilb $(\beta, n) \rightarrow \mathbb{Z}$  is Behrend's constructible function, and

$$e(\mathsf{Hilb}(\beta, n); \nu) := \sum_{n \in \mathbb{Z}} n \cdot e(\nu^{-1}(n)) \in \mathbb{Z}.$$

#### EFFECT OF A FLOP ON DT INVARIANTS

Consider Calabi-Yau threefolds  $X_{\pm}$  related by a flop:



THEOREM (TODA)

The expression

$$\frac{\sum_{(\beta,n)} \mathsf{DT}^{\mathsf{naive}}(\beta,n) x^{\beta} y^{n}}{\sum_{(\beta,n):f_{*}(\beta)=0} \mathsf{DT}^{\mathsf{naive}}(\beta,n) x^{\beta} y^{n}}$$

is the same on both sides of the flop, under the natural identification  $H_2(X_+,\mathbb{Z})\cong H_2(X_-,\mathbb{Z}).$ 

#### DEFINITION OF STABLE PAIR INVARIANTS

Given  $\beta \in H_2(X,\mathbb{Z})$  and  $n \in \mathbb{Z}$ , consider maps

$$f: \mathcal{O}_X \to E$$

of coherent sheaves on X such that

- (A) *E* is pure of dimension 1 with  $ch(E) = (0, 0, \beta, n)$ ,
- (B) dim<sub> $\mathbb{C}$ </sub> supp coker(f) = 0.

There is a fine moduli scheme  $Pairs(\beta, n)$  for such maps, and we put

$$\mathsf{PT}^{\mathsf{naive}}(\beta, n) = e(\mathsf{Pairs}(\beta, n)) \in \mathbb{Z}.$$

Genuine stable pair invariants can be defined by weighting with the Behrend function as before.

#### DT VERSUS STABLE PAIR INVARIANTS

Let X be a projective Calabi-Yau threefold.

**THEOREM (TODA)** (I) For each  $\beta \in H_2(X, \mathbb{Z})$  there is an identity  $\sum_{n \in \mathbb{Z}} \mathsf{PT}^{\mathsf{naive}}(\beta, n) y^n = \frac{\sum_{n \in \mathbb{Z}} \mathsf{DT}^{\mathsf{naive}}(\beta, n) y^n}{\sum_{n \ge 0} \mathsf{DT}^{\mathsf{naive}}(0, n) y^n}.$ (II) This formal power series is the Laurent expansion of a rational function of y, invariant under  $y \leftrightarrow y^{-1}$ .

These results also hold for genuine invariants.

#### OVERALL STRATEGY

- (A) Describe the relevant phenomenon via a change of stability condition in an abelian or triangulated category C.
- (B) Write down an appropriate identity in the Hall algebra of C.
- (C) Apply a ring homomorphism  $\mathcal{I}$ : Hall $(\mathcal{C}) \to \mathbb{C}_q[K_0(\mathcal{C})]$  to obtain an identity of generating functions.

The first two steps are completely general, but the existence of the integration map  $\mathcal{I}$  requires either

- (I) C has global dimension  $\leq 1$ : Ext $^{\geq 2}(M, N) = 0$ ,
- (II) C satisfies the CY<sub>3</sub> condition:  $\operatorname{Ext}^{i}(M, N) \cong \operatorname{Ext}^{3-i}(N, M)^{*}$ .

# 2. Hall algebras

#### HALL ALGEBRAS: THE BASIC IDEA

Let C be an abelian category. For definiteness take C = Coh(X). Introduce

(I) The stack  $\mathcal{M}$  of objects of  $\mathcal{C}$ .

(II) The stack  $\mathcal{M}^{(2)}$  of short exact sequences in  $\mathcal{C}$ .



Applying a suitable 'cohomology theory' to our stacks gives

 $m \colon H^*(\mathcal{M}) \otimes H^*(\mathcal{M}) \to H^*(\mathcal{M}).$ 

#### GROTHENDIECK GROUPS OF STACKS

As 'cohomology theory' take a relative Grothendieck group of stacks

$$H^*(\mathcal{M}) := K(\operatorname{St}/\mathcal{M}) := \big(\bigoplus \mathbb{C} \cdot [\mathcal{S} \stackrel{t}{\longrightarrow} \mathcal{M}]\big)/\sim$$

where  $\sim$  denotes the scissor relations

$$[\mathcal{S} \xrightarrow{f} \mathcal{M}] \sim [\mathcal{T} \xrightarrow{f|_{\mathcal{T}}} \mathcal{M}] + [\mathcal{U} \xrightarrow{f|_{\mathcal{U}}} \mathcal{M}],$$

for  $\mathcal{T} \subset \mathcal{S}$  a closed substack with complement  $\mathcal{U} = \mathcal{S} \setminus \mathcal{T}$ .

- (I) All our stacks are Artin stacks, locally of finite type over  $\mathbb{C}$ , with affine stabilizer groups.
- (II) In the definition of K(St / M), we consider only stacks S of finite type over  $\mathbb{C}$ .

## The Motivic Hall Algebra

Unwrapping this definition, the motivic Hall algebra is

$$\mathsf{Hall}_{\mathrm{mot}}(\mathcal{C}) := \mathsf{K}(\mathsf{St}\,/\mathcal{M}),$$

with product given explicitly by

$$[\mathcal{S}_1 \xrightarrow{f_1} \mathcal{M}] * [\mathcal{S}_2 \xrightarrow{f_2} \mathcal{M}] = [\mathcal{T} \xrightarrow{b \circ h} \mathcal{M}],$$

where h is defined by the Cartesian square

$$\begin{array}{cccc} \mathcal{T} & \stackrel{h}{\longrightarrow} & \mathcal{M}^{(2)} & \stackrel{b}{\longrightarrow} & \mathcal{M} \\ & & & & \downarrow^{(a,c)} \\ \mathcal{S}_1 \times \mathcal{S}_2 & \stackrel{f_1 \times f_2}{\longrightarrow} & \mathcal{M} \times \mathcal{M} \end{array}$$

#### FIBRES OF THE CORRESPONDENCE

Consider again the crucial correspondence

$$\mathcal{M}^{(2)} \xrightarrow{b} \mathcal{M}$$

$$\downarrow^{(a,c)}$$

$$\mathcal{M} \times \mathcal{M}$$

(II) The fibre of *b* over  $B \in \mathcal{M}$  is the Quot scheme  $Quot_X(B)$ .

(III) The fibre of (a, c) over  $(A, C) \in \mathcal{M} \times \mathcal{M}$  is the quotient stack

 $[\operatorname{Ext}^{1}(C, A) / \operatorname{Hom}(C, A)].$ 

#### LESS REALISTIC BUT MORE FUN ...

We now discuss a much less high-powered class of Hall algebras, where it is easy to make explicit calculations.

#### BASIC ASSUMPTION

Suppose that  $\ensuremath{\mathcal{C}}$  is an abelian category such that

- (I) Every object has only finitely many subobjects.
- (II) All groups  $Ext^{i}(E, F)$  are finite.

#### EXAMPLE

Let A be a finite dimensional algebra over  $k = \mathbb{F}_q$  and take

 $\mathcal{C} = \operatorname{mod}(A)$ 

to be the category of finite dimensional left A modules.

## DEFINITION OF FINITARY HALL ALGEBRAS

DEFINITION

We define the finitary Hall algebra as follows

$$\mathsf{\widetilde{H}all}_{\mathrm{fty}}(\mathcal{C}) = ig\{ f \colon (\mathsf{Obj}(\mathcal{C})/\cong) o \mathbb{C} ig\},$$

$$(f_1*f_2)(B)=\sum_{A\subset B}f_1(A)\cdot f_2(B/A).$$

This is an associative, usually non-commutative, algebra.

We also define a subalgebra

$$\mathsf{Hall}_{\mathrm{fty}}(\mathcal{C}) \subset \widehat{\mathsf{Hall}}_{\mathrm{fty}}(\mathcal{C}),$$

consisting of functions with finite support.

#### EXAMPLE: CATEGORY OF VECTOR SPACES

Let C be the category of finite dim. vector spaces over  $\mathbb{F}_q$ . Let  $\delta_n \in \operatorname{Hall}_{\operatorname{fty}}(C)$ 

be the characteristic function of vector spaces of dimension n.

$$\delta_n * \delta_m = |\operatorname{Gr}_{n,n+m}(\mathbb{F}_q)| \cdot \delta_{n+m},$$

$$\mathsf{Gr}_{n,n+m}(\mathbb{F}_q)| = \frac{(q^{n+m}-1)\cdots(q^{m+1}-1)}{(q^n-1)\cdots(q-1)} = \binom{n+m}{n}_q$$

It follows that there is an isomorphism of algebras

$$\mathcal{I}$$
: Hall<sub>fty</sub> $(\mathcal{C}) \to \mathbb{C}[x], \qquad \mathcal{I}(\delta_n) = \frac{x''}{(q^n - 1) \cdots (q - 1)}$ 

## THE QUANTUM DILOGARITHM

There is a distinguished element  $\delta_{\mathcal{C}} \in \widehat{\mathsf{Hall}}_{\mathrm{fty}}(\mathcal{C})$  satisfying

 $\delta_{\mathcal{C}}(E) = 1$  for all  $E \in \mathcal{C}$ .

The isomorphism  $\mathcal{I}$  maps this element  $\delta_{\mathcal{C}} = \sum \delta_n$  to the series

$$\Phi_q(x) = \sum_{n \ge 0} \frac{x^n}{(q^n - 1) \cdots (q - 1)} \in \mathbb{C}[[x]].$$

This series is known as the quantum dilogarithm, because as q 
ightarrow 1

$$\log \Phi_q(x) = \frac{1}{(q-1)} \cdot \sum_{n \ge 1} \frac{x^n}{n^2} + O(1).$$

#### A SAMPLE HALL ALGEBRA IDENTITY

Given a fixed object  $P \in C$  define elements of  $\widehat{Hall}_{fty}(C)$  by

$$\delta^{\mathcal{P}}_{\mathcal{C}}(E) = |\operatorname{Hom}_{\mathcal{C}}(\mathcal{P}, E)|, \quad \operatorname{Quot}^{\mathcal{P}}_{\mathcal{C}}(E) = |\operatorname{Hom}_{\mathcal{C}}^{\twoheadrightarrow}(\mathcal{P}, E)|,$$

where  $\operatorname{Hom}_{\mathcal{C}}^{\twoheadrightarrow}(P, E) \subset \operatorname{Hom}_{\mathcal{C}}(P, E)$  is the subset of surjective maps.

LEMMA (REINEKE)

There is an identity  $\delta_{\mathcal{C}}^{\mathcal{P}} = \operatorname{Quot}_{\mathcal{C}}^{\mathcal{P}} * \delta_{\mathcal{C}}.$ 

#### PROOF.

Evaluating on an object  $E \in C$  gives

$$|\operatorname{Hom}_{\mathcal{C}}(P,E)| = \sum_{A \subset E} |\operatorname{Hom}_{\mathcal{C}}^{\twoheadrightarrow}(P,A)| \cdot 1,$$

which holds because every map factors uniquely via its image.

#### GEOMETRIC VERSION OF THE IDENTITY

Let us consider the case C = Coh(X) and  $P = O_X$ . Define

- (A) The stack  $\mathcal{M}^{\mathcal{O}}$  parameterizing sheaves  $E \in Coh(X)$  equipped with a section  $s \colon \mathcal{O}_X \to E$ .
- (B) The scheme Hilb parameterizing sheaves  $E \in Coh(X)$  equipped with a surjective section  $s : \mathcal{O}_X \twoheadrightarrow E$ .

#### THEOREM

There is an identity in  $\mathsf{Hall}_{\mathrm{mot}}(\mathcal{C})$ 

$$[\mathcal{M}^{\mathcal{O}} \stackrel{f}{\longrightarrow} \mathcal{M}] = [\mathsf{Hilb} \stackrel{g}{\longrightarrow} \mathcal{M}] * [\mathcal{M} \stackrel{\mathsf{id}}{\longrightarrow} \mathcal{M}],$$

where f and g are the obvious forgetful maps.

#### START OF PROOF OF THE GEOMETRIC CASE

The product on the RHS is defined by the Cartesian square



The points of the stack  $\mathcal{T}$  over a scheme S are diagrams



of S-flat sheaves on  $S \times X$  with  $\gamma$  surjective.

# 3. Integration map

#### DEFINITION OF THE EULER FORM

Let  $\ensuremath{\mathcal{C}}$  be an abelian category. From now on we assume

- (A) C is linear over a field k,
- (B) C is Ext-finite.

#### EXAMPLE

We can take C = Coh(X) with X smooth and projective.

#### DEFINITION

The Euler form is the bilinear form

$$\chi(-,-) \colon \mathcal{K}_0(\mathcal{C}) \times \mathcal{K}_0(\mathcal{C}) \to \mathbb{Z}$$
  
 $\chi(E,F) = \sum_{i \in \mathbb{Z}} (-1)^i \dim_k \operatorname{Ext}^i(E,F).$ 

#### DEFINITION OF THE CHARGE LATTICE

It is often convenient to fix a group homomorphism

ch:  $K_0(\mathcal{C}) \longrightarrow N$ 

with  $N \cong \mathbb{Z}^{\oplus n}$  a free abelian group of finite rank.

EXAMPLE When C = Coh(X), with X smooth and projective, we can take  $ch: K_0(C) \rightarrow N = im(ch) \subset H^*(X, \mathbb{Q}),$ 

to be the Chern character.

#### WE ALWAYS ASSUME:

(I) The Euler form descends to a bilinear form

$$(-,-)\colon \mathsf{N} imes\mathsf{N} o\mathbb{Z}.$$

We also consider the skew-symmetrization of this form

$$\langle -, - \rangle \colon \mathbf{N} \times \mathbf{N} \to \mathbb{Z}.$$

(II) The character ch(E) is locally-constant in families. This gives a decomposition

$$\mathcal{M} = \bigsqcup_{\alpha \in \mathsf{N}} \mathcal{M}_{\alpha},$$

into open-closed substacks, and induces a grading

$$\mathsf{Hall}_{\mathrm{mot}}(\mathcal{C}) = \bigoplus_{lpha \in \mathsf{N}} \mathsf{K}(\mathsf{St} \, / \mathcal{M}_{lpha}).$$

#### DEFINITION OF THE QUANTUM TORUS

Define a non-commutative algebra over the field  $\mathbb{C}(t)$  by

$$\mathbb{C}_t[N] = \bigoplus_{\alpha \in \mathbb{N}} \mathbb{C}(t) \cdot x^{lpha} \qquad x^{lpha} * x^{\gamma} = t^{-(\gamma, \alpha)} \cdot x^{lpha + \gamma}.$$

This is a non-commutative deformation of the ring

$$\mathbb{C}[N] \cong \mathbb{C}[x_1^{\pm 1}, \cdots, x_n^{\pm 1}],$$

which is the co-ordinate ring of the algebraic torus

$$\mathbb{T}=\mathsf{Hom}_{\mathbb{Z}}(N,\mathbb{C}^*)\cong (\mathbb{C}^*)^n.$$

We use the notation  $q = t^2$ .

## The virtual Poincaré invariant

There is an algebra homomorphism

$$\chi_t \colon \mathcal{K}(\operatorname{St}/\mathbb{C}) \to \mathbb{Q}(t),$$

uniquely defined by the following two properties:

(I) If V is a smooth, projective variety then

$$\chi_t(V) = \sum \dim_{\mathbb{C}} H^i(V^{\operatorname{an}}, \mathbb{C}) \cdot (-t)^i \in \mathbb{Z}[t].$$

(II) If V is a variety with an action of GL(n) then

$$\chi_t([V/\operatorname{GL}(n)]) = \chi_t(V)/\chi_t(\operatorname{GL}(n)).$$

Note that:  $\chi_t(\operatorname{GL}(n)) = q^{\binom{n}{2}} \cdot (q-1) \cdot (q^2-1) \cdots (q^n-1).$ 

#### INTEGRATION MAP FOR CURVES

THEOREM (JOYCE)

When C = Coh(X), with X a curve, there is an algebra map

 $\mathcal{I}$ :  $\operatorname{Hall}_{\operatorname{mot}}(\mathcal{C}) \to \mathbb{C}_{t^2}[N], \quad \mathcal{I}([\mathcal{S} \to \mathcal{M}_{\alpha}]) = \chi_t(\mathcal{S}) \cdot x^{\alpha}.$ 

This works because

$$\dim_{\mathbb{C}} \operatorname{Ext}^{1}(C, A) - \dim_{\mathbb{C}} \operatorname{Hom}(C, A) = -\chi(C, A),$$

so the fibres of the crucial map

$$(a,c)\colon \mathcal{M}^{(2)} o \mathcal{M} imes \mathcal{M}$$

over the substack  $\mathcal{M}_{lpha} imes \mathcal{M}_{\gamma}$  have Poincaré invariant  $q^{-(\gamma, lpha)}$ .

#### INTEGRATION MAP: $CY_3$ CASE

(A) Kontsevich and Soibelman also construct an algebra map

 $\mathcal{I}$ :  $\mathsf{Hall}_{\mathrm{mot}}(\mathcal{C}) \to \mathbb{C}_t[N]$ 

in the case that X is a Calabi-Yau threefold. There are still some technical problems, e.g. the existence of orientation data.

(B) It is harder to describe  $\mathcal{I}$  in this case, but if S is a scheme

$$\lim_{t\to\pm 1} \mathcal{I}([S \xrightarrow{f} \mathcal{M}_{\alpha}]) = \begin{cases} e(S) \cdot x^{\alpha} & \text{if } t \to +1, \\ e(S; f^{*}(\nu)) \cdot x^{\alpha} & \text{if } t \to -1. \end{cases}$$

The integration map  $\mathcal{I}$  therefore turns identities in the motivic Hall algebra into identities involving (naive or genuine) DT invariants.

#### Semi-classical limit: the Poisson torus

(A) The semi-classical limit of the algebra  $\mathbb{C}_t[N]$  at t = 1 is the commutative algebra  $\mathbb{C}[N]$  equipped with the Poisson bracket

$$\{x^{\alpha}, x^{\gamma}\} = \lim_{t \to 1} \frac{x^{\alpha} * x^{\gamma} - x^{\gamma} * x^{\alpha}}{t - 1} = \langle \alpha, \gamma \rangle \cdot x^{\alpha + \gamma}.$$

(B) One can use the formulae from the last slide to define semiclassical versions of the map  $\mathcal{I}$  at  $t = \pm 1$  that are maps of Poisson algebras. This works because

 $(\mathsf{ext}^1(C,A) - \mathsf{hom}(C,A)) - (\mathsf{ext}^1(A,C) - \mathsf{hom}(A,C)) = \chi(A,C).$ 

These Poisson integration maps suffice for applications to classical (i.e. non-refined) DT invariants.

#### OTHER APPLICATIONS OF WALL-CROSSING

There have been several other important applications of the same technology. Some, marked (\*), are still work in progress:

- (A) Caldero–Chapoton formula in cluster theory.
- (B) Oblomkov–Shende conjecture relating DT invariants of plane curve singularities to HOMFLY polynomials.
- (C) Betti numbers of moduli of sheaves on ruled surfaces.
- (D) (\*) Crepant resolution conjecture.
- (E) (\*) Hausel–Letellier–Rodriguez-Villegas formula on Hodge polynomials of character varieties.