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WHAT’S IT ALL ABOUT?

(1) Calculating motivic invariants of moduli spaces of coherent
sheaves on Calabi-Yau threefolds, e.g. DT invariants.

(2) Understanding the dependence of these invariants on the
stability parameters.

] 2/ 32



WITH THANKS TO ...

Joyce

Kontsevich Soibelman

3/ 32



1. Introduction



MOTIVIC INVARIANTS

The word motivic refers to invariants of varieties which satisfy
X(X) = x(Y) + x(U),
whenever Y C X is closed and U = X\ Y.
EXAMPLE: THE EULER CHARACTERISTIC
e(X) =) (~1)'dimc H'(X*",C) € Z.

i

DEFINITION

The Grothendieck group K(Var/C) is the free abelian group on the
set of isomorphism classes of varieties, modulo the scissor relations

(X]=1Y1+[U],
whenever Y C X is closed and U = X'\ Y.
] 5/ 32



CURVE COUNTING INVARIANTS
Let X be a Calabi-Yau threefold. Fix 5 € Hy(X,Z) and n € Z.

Hilb(3, n) = closed subschemes C C X of dim <1
VS = 0 satisfying [C]=p8and x(O¢c)=n |’

DT""¢(3, n) = e(Hilb(3, n)) € Z.
The genuine DT invariants are a weighted Euler characteristic

DT(8, n) = e(Hilb(3, n); v),

where v: Hilb(3, n) — Z is Behrend’s constructible function, and

e(Hilb(3,n);v) :=> n-e(v*(n)) € Z.

nez
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EFFECT OF A FLOP ON DT INVARIANTS

Consider Calabi-Yau threefolds Xy related by a flop:

X, X_
N
Y

THEOREM (ToODA)

The expression
Z(ﬁ,n) DT™"(3, n) xBy"
Z(ﬁ,n):f*(ﬁ):o DT™"(3, n) xPyn
Is the same on both sides of the flop, under the natural identification

Hy (X1, Z) = Hy(X_, Z).
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DEFINITION OF STABLE PAIR INVARIANTS

Given 8 € Hy(X,Z) and n € Z, consider maps
f:0x — E
of coherent sheaves on X such that

(A) E is pure of dimension 1 with ch(E) = (0,0, 3, n),
(B) dim¢ supp coker(f) = 0.

There is a fine moduli scheme Pairs(/3, n) for such maps, and we put
PT"V(3, n) = e(Pairs(3, n)) € Z.

Genuine stable pair invariants can be defined by weighting with the
Behrend function as before.
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DT VERSUS STABLE PAIR INVARIANTS

Let X be a projective Calabi-Yau threefold.

THEOREM (ToDA)
(1) For each 8 € Hy(X,Z) there is an identity

Znez D-l-naive(ﬁ7 n)yn
Zn>0 DTnalve(O’ n)y”

Z PTnaive(ﬁ’ n)yn _

nez

(11) This formal power series is the Laurent expansion of a rational
function of y, invariant under y < y~1.

These results also hold for genuine invariants.
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OVERALL STRATEGY

(A) Describe the relevant phenomenon via a change of stability
condition in an abelian or triangulated category C.

(B) Write down an appropriate identity in the Hall algebra of C.

(¢) Apply a ring homomorphism Z: Hall(C) — C,[Ko(C)] to obtain
an identity of generating functions.

The first two steps are completely general, but the existence of the
integration map Z requires either

(1) C has global dimension < 1: Ext®*(M, N) = 0,
(11) C satisfies the CY3 condition: Ext'(M, N) = Ext*~'(N, M)*.
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2. Hall algebras



HALL ALGEBRAS: THE BASIC IDEA

Let C be an abelian category. For definiteness take C = Coh(X).

Introduce
(1) The stack M of objects of C.

(11) The stack M) of short exact sequences in C.

0O-A—-B—-C—0

AC)/ \B

(A,
Mx M &2 p@ Ly py
Applying a suitable ‘cohomology theory’ to our stacks gives

m: H* (M) @ H* (M) — H*(M).
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(GROTHENDIECK GROUPS OF STACKS

As ‘cohomology theory’ take a relative Grothendieck group of stacks
H*(M) = K(St /M) := (D CT-[S — M])/ ~
where ~ denotes the scissor relations
S 5 M)~ [T 25 M)+ 2 M,

for 7 C S a closed substack with complement U/ =S\ T

(1) All our stacks are Artin stacks, locally of finite type over C, with
affine stabilizer groups.

(11) In the definition of K(St /M), we consider only stacks S of
finite type over C.
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THE MoTivic HALL ALGEBRA

Unwrapping this definition, the motivic Hall algebra is
Hall,ot(C) := K(St /M),

with product given explicitly by

boh

[S1 25 M [So 25 M] = [T 22 M,

where h is defined by the Cartesian square

T s MO 2 M

L e

51><82 %MXM
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FIBRES OF THE CORRESPONDENCE

Consider again the crucial correspondence

MO 2 M

l(a,C)

M x M

(11) The fibre of b over B € M is the Quot scheme Quotx(B).
(111) The fibre of (a, c) over (A, C) € M x M is the quotient stack

[Ext'(C, A)/ Hom(C, A)].
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LLESS REALISTIC BUT MORE FUN ...

We now discuss a much less high-powered class of Hall algebras,
where it is easy to make explicit calculations.

BASIC ASSUMPTION

Suppose that C is an abelian category such that
(1) Every object has only finitely many subobjects.
(11) All groups Ext'(E, F) are finite.

EXAMPLE
Let A be a finite dimensional algebra over k = IF, and take
C = mod(A)

to be the category of finite dimensional left A modules.
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DEFINITION OF FINITARY HALL ALGEBRAS

DEFINITION
We define the finitary Hall algebra as follows

Hallyy (C) = {f: (Obj(C)/=) — C},

(A*£)(B) =) fi(A)-KL(B/A).

ACB

This is an associative, usually non-commutative, algebra.

We also define a subalgebra
Hallg,, (C) C Hallgy (C),
consisting of functions with finite support.
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EXAMPLE: CATEGORY OF VECTOR SPACES

Let C be the category of finite dim. vector spaces over IF,. Let
5,», € Ha”fty(C)

be the characteristic function of vector spaces of dimension n.

O3 Oy = || Gl e D)) | © i

o e () .

| Grn,n+m(Fq)| =

It follows that there is an isomorphism of algebras

Xn

("—=1)---(g—1)

Z: Hallgy (C) = Clx],  Z(6,) =
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THE QUANTUM DILOGARITHM

There is a distinguished element §; € ﬁa\”fty(C) satisfying
dc(E)=1 forall E €C.

The isomorphism Z maps this element §c = > §, to the series

n

%09 =3 gy g ) © S

n=0

This series is known as the quantum dilogarithm, because as g — 1
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A SAMPLE HALL ALGEBRA IDENTITY
Given a fixed object P € C define elements of ﬁa\”fty(c) by

5E(E) = | Home(P, E)],  Quotf(E) = | Homg (P, E)],
where Hom/ (P, E) C Hom¢(P, E) is the subset of surjective maps.

LEMMA (REINEKE)

There is an identity §; = Quotp * dc.

PROOF.
Evaluating on an object E € C gives

|Home(P,E)| = > [Hom; (P, A)| - 1,

ACE

which holds because every map factors uniquely via its image. []
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(EOMETRIC VERSION OF THE IDENTITY

Let us consider the case C = Coh(X) and P = Ox. Define

(A) The stack M© parameterizing sheaves E € Coh(X) equipped
with a section s: Ox — E.

(B) The scheme Hilb parameterizing sheaves E € Coh(X) equipped
with a surjective section s: Ox — E.

THEOREM
There is an identity in Hall .o (C)

MO L5 M] = [Hilb &5 M] « [M —% M,

where f and g are the obvious forgetful maps.
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START OF PROOF OF THE GEOMETRIC CASE
The product on the RHS is defined by the Cartesian square

T = MO i M

l [

gxid

Hilb xM —— M x M

The points of the stack 7 over a scheme S are diagrams

OSXX

J{ s
g
.

0 »yA—— B B>C » 0

of S-flat sheaves on § x X with v surjective.
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3. Integration map



DEFINITION OF THE EULER FORM

Let C be an abelian category. From now on we assume
(A) C is linear over a field k,

(B) C is Ext-finite.

EXAMPLE
We can take C = Coh(X) with X smooth and projective.

DEFINITION
The Euler form is the bilinear form

X(—;—): Ko(C) x Ko(C) — Z

X(E,F) =Y (1) dim, Ext'(E, F).

IEZL
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DEFINITION OF THE CHARGE LATTICE

It is often convenient to fix a group homomorphism
ch: Ko(C) — N
with N =2 Z®" a free abelian group of finite rank.

EXAMPLE
When C = Coh(X), with X smooth and projective, we can take

ch: Ko(C) — N =im(ch) € H*(X,Q),

to be the Chern character.
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WE ALWAYS ASSUME:

(1) The Euler form descends to a bilinear form
(—,—=): Nx N —Z.

We also consider the skew-symmetrization of this form
(=, =) Nx N—Z.

(11) The character ch(E) is locally-constant in families. This gives a
decomposition

M= || M.,
achN

into open-closed substacks, and induces a grading

Hall,ot (C) = €D K(St /M.,,).

aeN
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DEFINITION OF THE QUANTUM TORUS

Define a non-commutative algebra over the field C(t) by

Ci[N] = @ C(t)-x*  x¥sx¥ =t ). xoF7,

aeN

This is a non-commutative deformation of the ring
(C[N] = C[Xlila R 7X::1]7

which is the co-ordinate ring of the algebraic torus

T = Homz(N,C*) = (C*)".
We use the notation q = t2.

] 27 / 32



THE VIRTUAL POINCARE INVARIANT

There is an algebra homomorphism

K(5t/C) — Q(¢),

uniquely defined by the following two properties:

(1) If V is a smooth, projective variety then

=Y "dimc H'(V™",C) - (—t)' € Z]t].
(11) If V is a variety with an action of GL(n) then
ve([V/ GL(n)]) = xe(V)/xe(GL(n)).
Note that: x¢(GL(n)) = ¢{8) - (¢ — 1) (¢? — 1)+ (¢" — 1).
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INTEGRATION MAP FOR CURVES

THEOREM (JOYCE)

When C = Coh(X), with X a curve, there is an algebra map

Z: Hallymot(C) = Ce[N], Z([S = M.]) = x:(S) - x*.

This works because
dim¢ Ext'(C, A) — dimg Hom(C, A) = —x(C, A),
so the fibres of the crucial map
(a,c): MP — M x M
over the substack M, x M., have Poincaré invariant g~ (1),
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INTEGRATION MAP: CY3; CASE

(A) Kontsevich and Soibelman also construct an algebra map
Z: Hallphet(C) — Cy[N]

in the case that X is a Calabi-Yau threefold. There are still some
technical problems, e.g. the existence of orientation data.

(B) It is harder to describe Z in this case, but if S is a scheme

im Z([S 1 M.)]) =

t—+1

e(S) - x« if t — +1,
e(S; f*(v)) -x* ift —» —1.

The integration map Z therefore turns identities in the motivic Hall
algebra into identities involving (naive or genuine) DT invariants.
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SEMI-CLASSICAL LIMIT: THE POISSON TORUS

(A) The semi-classical limit of the algebra C,[N] at t = 1 is the
commutative algebra C[N] equipped with the Poisson bracket

X4 % X7 — x7 x x¢

{x* x7} = lim

Fs1 t_]. :<Oz,’y>X

(B) One can use the formulae from the last slide to define semi-
classical versions of the map Z at t = £1 that are maps of
Poisson algebras. This works because

(ext’(C, A) —hom(C, A)) — (ext'(A, C) —hom(A, C)) = x(A, C).

These Poisson integration maps suffice for applications to classical
(i.e. non-refined) DT invariants.
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OTHER APPLICATIONS OF WALL-CROSSING

There have been several other important applications of the same
technology. Some, marked (x), are still work in progress:

(A) Caldero—Chapoton formula in cluster theory.

(B) Oblomkov—Shende conjecture relating DT invariants of plane
curve singularities to HOMFLY polynomials.

(¢) Betti numbers of moduli of sheaves on ruled surfaces.
(D) (x) Crepant resolution conjecture.

(E) () Hausel-Letellier—Rodriguez-Villegas formula on Hodge
polynomials of character varieties.
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