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Spaces of stability conditions

Associated to any triangulated category D is a complex manifold
Stab(D) whose points are stability conditions on D, i.e. pairs

Z : K0(D)→ C, P =
⋃
φ∈R

P(φ) ⊂ D,

satisfying some axioms.

(a) Do there exist stability conditions on DbCoh(X ) when
dimC(X ) > 3?

(b) Given a fixed stability condition on D, can we construct good
moduli stacks of semistable objects E ∈ P(φ)?

(c) Does the manifold Stab(D) carry any natural geometric
structures (particularly in the CY3 case)?
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1. Quivers with potential



Quivers with potential

Let (Q,W ) be a quiver with potential. Thus

(i) Q is an oriented graph,

(ii) W is a formal sum of oriented cycles in Q.

We always assume that Q has no loops or oriented 2-cycles.

Associated to (Q,W ) is a triangulated category Db(Q,W )

By definition, Db(Q,W ) is the subcategory of the derived category
of the complete Ginzburg dg-algebra consisting of objects with
finite-dimensional total cohomology.
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Non-compact Calabi-Yau threefold

Example (Local P2)

Consider the quiver with potential

• x1,y1,z1 // •
x2,y2,z2

��
•

x3,y3,z3

\\

W =
∑
i ,j ,k

εijkxiyjzk .

Viewing the total space of the line bundle ωP2 as a non-compact
Calabi-Yau threefold, there is an equivalence

Db(Q,W ) ∼= Db
P2 Coh(ωP2),

where on the right we consider the subcategory of objects supported
on the zero-section.

5 / 34



General properties of D = Db(Q,W )

(a) D has the CY3 property:

Homk(E ,F ) ∼= Hom3−k(F ,E )∗.

(b) D is generated by objects Si indexed by the vertices of Q, and

Hom∗(Si , Sj ) = Cδij ⊕ Caij [−1]⊕ Caji [−2]⊕ Cδij [−3],

with aij the number of arrows in Q from vertex i to vertex j .

(c) There is a standard heart A ⊂ D, which is finite-length, and
whose simple objects are precisely the Si .
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Euler form and Poisson torus

Define N = K0(D) = ZQ0 and set

T = HomZ(N ,C∗) ∼= (C∗)n.

The Euler form of D defines a skew-symmetric form

〈−,−〉 : N × N → Z,

〈ei , ej〉 = aji − aij ,

which induces an invariant Poisson structure on T

{xα, xβ} = 〈α, β〉 · xα+β.
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Tilting and mutation

Let (Q,W ) be a QWP and choose a vertex i of Q. Write S = Si .

〈S〉 = {S⊕n : n > 0} ⊂ A, ⊥〈S〉 = {E ∈ A : Hom(E , S) = 0}.

There is a mutation (Q ′W ′) = µi (Q,W ) and an equivalence

〈S [1]〉 ⊥〈S〉 〈S〉 · · ·· · ·

Db(Q,W )

Db(Q ′,W ′)

∼=

A(Q ′,W ′)

A(Q,W )
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Exchange graphs

Let D = Db(Q,W ) with W a generic potential.

(a) The heart exchange graph EG♥(D) has

(i) vertices the finite-length hearts in D,
(ii) edges connecting hearts related by a simple tilt.

(b) Each simple object Si is spherical and defines an
auto-equivalence TwSi

. The subgroup

Sph(D) = 〈TwS1 , · · · ,TwSn〉 ⊂ Aut(D)

is invariant under mutation.

(c) The cluster exchange graph of Q is the quotient

EG(Q) = EG♥(D)/ Sph(D)
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Stability space versus cluster variety

(a) For each heart A ∈ EG♥(D) there is a cell Hn ⊂ Stab(D).⋃
A∈EG♥(D)

Hn ⊂ Stab(D).

Note that the different cells only meet in their closures.

(b) The cluster variety is a union of tori glued by birational maps

X (Q) =
⋃

A∈EG♥(D)

T.

xβ 7→ xβ · (1 + xα)〈α,β〉.
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2. Examples from triangulated
surfaces



From triangulations to quivers

Fix a surface S of genus g with a set M = {p1, · · · , pd} ⊂ S .

Consider triangulations of S with vertices at the points pi .

Associated to any such triangulation is a quiver:
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Flips and the exchange graph

A flip of the triangulation induces a mutation of the quiver:

(a) Fomin, Shapiro and Thurston proved that the cluster exchange
graph is the set of (tagged) triangulations, with the edges
corresponding to flips.

(b) Labardini-Fragoso dealt with the potentials associated to
degenerate triangulations.
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Space of stability conditions

Choose a generic potential W and set D = Db(Q,W ).

Theorem (-, Ivan Smith)

Stab(D)/Aut(D) ∼= Quad(g , d).

The space Quad(g , d) parameterizes triples (S ,M , φ) where

(a) S is a Riemann surface of genus g ,

(b) M =
∑d

i=1 pi is a reduced divisor,

(c) φ ∈ H0(S , ωS (M)⊗2) has simple zeroes.
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Horizontal strip decomposition

A quadratic differential defines an unoriented foliation on S

〈
√
φ(p),X 〉 ∈ R, X ∈ TpS .

For a generic point φ ∈ Quad(g , d) the trajectories split the surface
into a disjoint union of cells known as horizontal strips.
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Generic differentials define quivers

This leads to a triangulation and hence a quiver, together with a
central charge function.

Z (Si ) =

∫
γi

√
φ ∈ C.

When Z (Si ) becomes real the triangulation degenerates and
undergoes a flip. The heart of the corresponding stability condition
undergoes a mutation.
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Cluster variety

Let (S ,M) be a marked surface as above, choose a triangulation and
let Q be the corresponding quiver. Set G = PGL(2,C).

Theorem (Fock and Goncharov)

The cluster variety X (Q) is a dense open subset of the stack of
labelled G -local systems on S \M

X (Q) ⊂ Loc∗G (S \M)
2d :1−−−→ LocG (S \M).

The labelling is a choice of a monodromy-invariant section of the
associated P1 bundle in a neighborhood of each marked point.
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3. Donaldson-Thomas invariants



The active rays

For each stability condition σ ∈ Stab(D) there is a countable
collection of active rays

` = R>0 exp(iπφ) ⊂ C

for which there exist semistable objects of phase φ.

Z(E)

Z(E [1])

Z(F )

Z(F [1])

As σ varies, the active rays move and may collide and separate.
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Encoding DT invariants

To each active ray is associated a formal function on T

DT` =
∑

Z(α)∈`

DTσ(α) · xα.

Ignoring convergence issues, there is a corresponding automorphism

S` = exp({DT`,−}) ∈ Aut(T)

which is the time 1 Hamiltonian flow of the function DT`.
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Wall-crossing formula

For any convex sector ∆ ⊂ C, the clockwise product over active rays

S∆ =
∏
`∈∆

S` ∈ Aut(T)

remains constant as σ varies, providing no active ray crosses ∂∆.

∆

This all makes good sense in a suitable completion C[[N+]].
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Example: the A2 quiver

Let A be the abelian category of representations of the A2 quiver. It
has 3 indecomposable representations:

0 −→ S2 −→ E −→ S1 −→ 0.

We have N = Z⊕2 = Z[S1]⊕ Z[S2],

〈(m1, n1), (m2, n2)〉 = m2n1 −m1n2,

C[N] = C[x±1
1 , x±1

2 ] = C[T],

and the Poisson structure is

{x1, x2} = x1 · x2.
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Pentagon identity

The space Stab(A) is isomorphic to H̄2, and there is a single wall

W = {Z ∈ Stab(A) : ImZ (S2)/Z (S1) ∈ R>0}

Z(S1)Z(S2)

Z(E)
W

E unstable E stable

Z(S2)Z(S1)

Z(E)

The wall-crossing formula is the cluster identity

C(0,1) ◦ C(1,0) = C(1,0) ◦ C(1,1) ◦ C(0,1).

Cα : xβ 7→ xβ · (1 + xα)〈α,β〉 ∈ AutC[[x1, x2]].
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4. Irregular connections and
Stokes data



Stokes matrices and isomonodromy

The wall-crossing formula resembles an isomonodromy condition for
an irregular connection with values in the infinite-dimensional group

G = Aut{−,−}(T)

of Poisson automorphisms of the torus T ∼= (C∗)n.

We first explain such phenomena in the finite-dimensional case, so set

G = GL(n,C), g = gl(n,C),

and introduce the decomposition

g = h⊕ god, god =
⊕
α∈Φ

gα, Φ = {e∗i − e∗j } ⊂ h∗.
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A class of irregular connections

Consider meromorphic connections on the trivial G -bundle over the
Riemann sphere CP1 of the form

∇ = d −
(
U

z2
+

V

z

)
dz ,

(i) U = diag(u1, · · · , un) ∈ h is diagonal with distinct eigenvalues,

(ii) V ∈ god has zeroes on the diagonal.

Then ∇ has an irregular singularity at 0 and a regular one at ∞.

The gauge equivalence class of a flat meromorphic connection with
regular singularities is determined by its monodromy
(Riemann-Hilbert correspondence). When irregular singularities are
present one also needs to record Stokes data.
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Stokes data of the connection

The Stokes rays for the connection ∇ are the rays

R>0 · (ui − uj ) = R>0 · U(α), α = e∗i − e∗j .

u1-u2

u2-u1

u2-u3

u3-u2

u1-u3

u3-u1

Associated to each Stokes ray ` is a Stokes factor

S` = exp
( ∑

U(α)∈`

εα
)
∈ exp

( ⊕
U(α)∈`

gα
)
⊂ G .
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Canonical solution on a half-plane

Given a non-Stokes ray r , there is a canonical flat section Xr of ∇ on
the orthogonal half-plane Hr , uniquely defined by the condition that

Xr (t) · eU/t → 1 as t → 0 in Hr .

r

Hr

As the ray r varies, the flat section Xr remains unchanged until r
crosses a Stokes ray, where it jumps by

Xr 7→ Xr · S`.
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Iso-Stokes deformations

If we now vary the diagonal matrix U , we can deform the matrix V
so that the Stokes factors remain constant. Such deformations are
called iso-Stokes. More precisely:

For any convex sector ∆ ⊂ C∗ the clockwise product

S∆ =
∏
`∈Σ

S` ∈ G ,

remains constant unless a Stokes ray crosses the boundary of Σ.

Such variations are described by a system of partial differential
equations giving the variation of V as a function of U .
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5. Putting it together



Poisson vector fields on T
Consider the group G of Poisson automorphisms of the torus

T ∼= HomZ(N ,C∗) ∼= (C∗)n,

and the corresponding Lie algebra g. Then g = h⊕ god, where

(a) the Cartan subalgebra

h = HomZ(N ,C),

consists of translation-invariant vector fields on T.

(b) the subspace god consists of Hamiltonian vector fields, and is the
Poisson algebra of non-constant algebraic functions on T

god =
⊕
α∈N×

gα =
⊕
α∈N×

C · xα.
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DT invariants as Stokes data

It is tempting to interpret the elements

S` = exp

{ ∑
Z(α)∈`

DTσ(α) · xα,−
}
∈ G

as defining Stokes factors for a G -valued connection of the form

∇ = d −
(
Z

t2
+

F

t

)
dt,

for some element F ∈ god.

The wall-crossing formula is then precisely the condition that this
family of connections is iso-Stokes as σ ∈ Stab(D) varies.
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Iso-Stokes connection

Putting the canonical flat sections together should give a map

X : Stab(D)× C∗ −→ G .

Equivalently, setting M = T× Stab(D), we expect a map

X : M× C∗ −→ T.

The jumping behaviour means that the natural target is X (Q).

(i) How does this work in the cases coming from marked surfaces?

(ii) Actually two versions (like Frobenius and tt∗ in the GL(n) case).
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Relating Stab(D) to X (Q)

(1) Non-holomorphic version (Gaiotto-Moore-Neitzke):

M0
Higgs

(S1)n

��

� � //MBetti
∼= X (Q)

Stab(D)
Aut(D)

∼= Quad(g , n) B0
? _fix

C−str .
oo B0 ⊂ H0(S ,KS (D)2)

(2) Holomorphic version (‘conformal limit’):

Stab(D)
Aut(D)

∼= Quad(g , n)

&&

∼=
non−canon.

// Proj(g , n)

||

//MBetti
∼= X (Q)

M(g , n)
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