STABILITY CONDITIONS AND
QUIVERS

Tom Bridgeland

1/34



SPACES OF STABILITY CONDITIONS

Associated to any triangulated category D is a complex manifold
Stab(D) whose points are stability conditions on D, i.e. pairs

Z: Ky(D)—C, P=|JP(¢)CD,
$eR
satisfying some axioms.

(A) Do there exist stability conditions on D?Coh(X) when

(B) Given a fixed stability condition on D, can we construct good
moduli stacks of semistable objects E € P(¢)?

(¢) Does the manifold Stab(D) carry any natural geometric
structures (particularly in the CY;3 case)?
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1. Quivers with potential



(QUIVERS WITH POTENTIAL

Let (Q, W) be a quiver with potential. Thus

(1) Q is an oriented graph,
(11) W is a formal sum of oriented cycles in Q.

We always assume that @ has no loops or oriented 2-cycles.
Associated to (Q, W) is a triangulated category D?(Q, W)

By definition, D®(Q, W) is the subcategory of the derived category
of the complete Ginzburg dg-algebra consisting of objects with
finite-dimensional total cohomology.
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NON-COMPACT CALABI-YAU THREEFOLD

EXAMPLE (LOCAL P?)

Consider the quiver with potential

X1,Y1,21
e —— O
W = g €t Xi ViZ.
X3,y3,’23\ %,yza ijkXiYjZk
—
. lXI7

Viewing the total space of the line bundle wp2 as a non-compact
Calabi-Yau threefold, there is an equivalence

D*(Q, W) = D}, Coh(wp2),

where on the right we consider the subcategory of objects supported
on the zero-section.

] 5/ 34



GENERAL PROPERTIES OF D = Db(Q, W)

(A) D has the CY;3 property:
Hom*(E, F) = Hom* *(F, E)".
(B) D is generated by objects S; indexed by the vertices of Q, and
Hom*(S;, S;) = C% & C[-1] @ C¥[-2] & C%[-3],

with a;; the number of arrows in Q from vertex i to vertex j.

(¢) There is a standard heart A C D, which is finite-length, and
whose simple objects are precisely the ;.
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EULER FORM AND POISSON TORUS

Define N = Ky(D) = Z% and set
T = Homg(N,C*) = (C*)".
The Euler form of D defines a skew-symmetric form
(—, =) NxN—=Z,
(e, ) = aji — ay,
which induces an invariant Poisson structure on T

{x* x"} = (a, B) - x*TP.
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TILTING AND MUTATION

Let (Q, W) be a QWP and choose a vertex i of Q. Write S = S;.
(S)={S®*":n>0}Cc A, *(S)={E e A:Hom(E,S)=0}.

There is a mutation (Q'W’) = 1;(Q, W) and an equivalence

AQW) D4(Q. W)
S (sh) H(S) (5) =
AQ', W) Db(Q, W)
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EXCHANGE GRAPHS

Let D = D®(Q, W) with W a generic potential.
(A) The heart exchange graph EGo(D) has

(1) vertices the finite-length hearts in D,
(11) edges connecting hearts related by a simple tilt.

(B) Each simple object S; is spherical and defines an
auto-equivalence Tws,. The subgroup

Sph(D) = (Tws,, -+, Tws,) C Aut(D)
is invariant under mutation.

(C) The cluster exchange graph of Q is the quotient
EG(Q) = EGo(D)/ Sph(D)
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STABILITY SPACE VERSUS CLUSTER VARIETY

(A) For each heart A € EGo(D) there is a cell H" C Stab(D).

|J ®"cstab(D).

A€EEGo (D)

Note that the different cells only meet in their closures.

(B) The cluster variety is a union of tori glued by birational maps

xQ= U T

AGEGQ’)(D)

xP s xP (14 x*) @),
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2. Examples from triangulated
surfaces



FROM TRIANGULATIONS TO QUIVERS

Fix a surface S of genus g with a set M = {py,--- ,pq} C S.
Consider triangulations of S with vertices at the points p;.

Associated to any such triangulation is a quiver:
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FLIPS AND THE EXCHANGE GRAPH

A flip of the triangulation induces a mutation of the quiver:

(A) Fomin, Shapiro and Thurston proved that the cluster exchange
graph is the set of (tagged) triangulations, with the edges
corresponding to flips.

(B) Labardini-Fragoso dealt with the potentials associated to
degenerate triangulations.
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SPACE OF STABILITY CONDITIONS

Choose a generic potential W and set D = D?(Q, W).

THEOREM (-, IVAN SMITH)
Stab(D)/ Aut(D) = Quad(g, d).

The space Quad(g, d) parameterizes triples (S, M, ¢) where
(A) S is a Riemann surface of genus g,

(B) M =37, p;is a reduced divisor,

(c) ¢ € H(S,ws(M)®?) has simple zeroes.
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HORIZONTAL STRIP DECOMPOSITION
A quadratic differential defines an unoriented foliation on S

(Vo(p), X) € R, X eT,S.

For a generic point ¢ € Quad(g, d) the trajectories split the surface
into a disjoint union of cells known as horizontal strips.
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(GENERIC DIFFERENTIALS DEFINE QUIVERS

This leads to a triangulation and hence a quiver, together with a
central charge function.

Z(S,-):/W\/aec

=

When Z(S;) becomes real the triangulation degenerates and

undergoes a flip. The heart of the corresponding stability condition
undergoes a mutation.
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CLUSTER VARIETY

Let (S, M) be a marked surface as above, choose a triangulation and
let Q be the corresponding quiver. Set G = PGL(2,C).

THEOREM (FOCK AND GONCHAROV)

The cluster variety X(Q) is a dense open subset of the stack of
labelled G-local systems on S\ M

X(Q) € Loci(S\ M) L5 Locg(S \ M).

The labelling is a choice of a monodromy-invariant section of the
associated P* bundle in a neighborhood of each marked point.
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3. Donaldson-Thomas invariants



THE ACTIVE RAYS

For each stability condition o € Stab(D) there is a countable
collection of active rays

¢ =Rygexp(imp) C C

for which there exist semistable objects of phase ¢.

\\

As o varies, the active rays move and may collide and separate.
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ENCODING DT INVARIANTS

To each active ray is associated a formal function on T

DT,= > DT,(a)-x".

Z(a)el

Ignoring convergence issues, there is a corresponding automorphism
Se = exp({DT,, —}) € Aut(T)

which is the time 1 Hamiltonian flow of the function DT,.
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WALL-CROSSING FORMULA

For any convex sector A C C, the clockwise product over active rays

Sa = H S € AUt(T)
ten
remains constant as ¢ varies, providing no active ray crosses 0A.

S

This all makes good sense in a suitable completion C[[N_,]].



EXAMPLE: THE A, QUIVER

Let A be the abelian category of representations of the A, quiver. It
has 3 indecomposable representations:

0—S —E—5 —0.
We have N = Z%2 = Z[S,] ® Z[S,],
((m1, m), (m2, n2)) = many — myny,
C[N] = Cl4™. %] = C[T],

and the Poisson structure is

{X1; X2} = X1 - X2.
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PENTAGON IDENTITY

The space Stab(.A) is isomorphic to H?, and there is a single wall

W = {Z € Stab(A) : Im Z(5,)/Z(51) € Reo}

w
Z(E) 3 Z(E)
2(52)\ - Z(S1) Z(51) 2(S2)
E unstable E stable

The wall-crossing formula is the cluster identity

Co,1) © C0) = G0y © Ca1y © Con)-
Co: xP 5 XP - (1 + x*)@P) € Aut C[[xy, xo]].
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4. lrregular connections and
Stokes data



STOKES MATRICES AND ISOMONODROMY

The wall-crossing formula resembles an isomonodromy condition for
an irregular connection with values in the infinite-dimensional group

G = Aut{,7,}(T)

of Poisson automorphisms of the torus T == (C*)".

We first explain such phenomena in the finite-dimensional case, so set
G =GL(n,C), g=gl(nC),

and introduce the decomposition

acd
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A CLASS OF IRREGULAR CONNECTIONS

Consider meromorphic connections on the trivial G-bundle over the
Riemann sphere CP* of the form

Vzd—(ﬂ-i—z)dz,
z

72

(1) U =diag(us, - ,u,) € bis diagonal with distinct eigenvalues,
(11) V € g°d has zeroes on the diagonal.

Then V has an irregular singularity at 0 and a regular one at oc.
The gauge equivalence class of a flat meromorphic connection with
regular singularities is determined by its monodromy

(Riemann-Hilbert correspondence). When irregular singularities are
present one also needs to record Stokes data.
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STOKES DATA OF THE CONNECTION

The Stokes rays for the connection V are the rays
R>0 : (U,‘ — Uj) = R>0 . U(O_/), o = e;‘ — ef.

up-u3

Associated to each Stokes ray ¢ is a Stokes factor

Sg:exp( Z GQ)Eexp( @ ga)CG.

U(a)el U(a)el
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CANONICAL SOLUTION ON A HALF-PLANE

Given a non-Stokes ray r, there is a canonical flat section X, of V on
the orthogonal half-plane H,, uniquely defined by the condition that

X, (t)-e’* = 1last—0inH,.

As the ray r varies, the flat section X, remains unchanged until r
crosses a Stokes ray, where it jumps by

Xr l—)Xr'Sg.
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[SO-STOKES DEFORMATIONS

If we now vary the diagonal matrix U, we can deform the matrix V
so that the Stokes factors remain constant. Such deformations are
called iso-Stokes. More precisely:

For any convex sector A C C* the clockwise product

SA:HSgE G,

tex
remains constant unless a Stokes ray crosses the boundary of ¥.

Such variations are described by a system of partial differential
equations giving the variation of V as a function of U.
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5. Putting it together



POISSON VECTOR FIELDS ON T
Consider the group G of Poisson automorphisms of the torus
T = Homgz(N,C*) = (C*)",

and the corresponding Lie algebra g. Then g = h @ g°?, where
(A) the Cartan subalgebra

[] = HOmz(N, C),

consists of translation-invariant vector fields on T.

(B) the subspace g°¢ consists of Hamiltonian vector fields, and is the
Poisson algebra of non-constant algebraic functions on T

g°d = @ga: @C-xo‘.
aeN> aeN
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DT INVARIANTS AS STOKES DATA

It is tempting to interpret the elements
S, :exp{ > DT,(a) -xa,—} €G
Z(o)el

as defining Stokes factors for a G-valued connection of the form

voa- (Z+5)a

t2

for some element F € g°d.

The wall-crossing formula is then precisely the condition that this
family of connections is iso-Stokes as o € Stab(D) varies.
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[SO-STOKES CONNECTION

Putting the canonical flat sections together should give a map
X: Stab(D) x C* — G.
Equivalently, setting M = T x Stab(D), we expect a map
X: MxC"—T.
The jumping behaviour means that the natural target is X(Q).

(1) How does this work in the cases coming from marked surfaces?
(11) Actually two versions (like Frobenius and tt* in the GL(n) case).
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RELATING Stab(D) TO X(Q)

(1) Non-holomorphic version (Gaiotto-Moore-Neitzke):

/\/l,_,,ggs;> Merri = X(Q)

(51)"l

Stab(D) ~ Quad(g, )ﬁgo By C H°(S, Ks(D)?)

Aut(D) —

(2) Holomorphic version (‘conformal limit'):

Stab(D) ~
Ajt(D) Quad(

PrOJ(g, )—>MBetti = X(Q)

) non—canon.

\

M(g, n)

] 34 /34



