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1. Stability conditions and
wall-crossing



GENERALIZED DT THEORY

Let (X, L) be a smooth, polarized projective CY3 over C.

Generalized (unrefined) DT theory (Joyce, Kontsevich-Soibelman)
produces numbers DTx ;(v) € Q for classes v € Kyum(X).

They can be thought of as virtual Euler characteristics of the stack
M 1(7) of Gieseker semistable sheaves.

When there are no strictly semistables and M x ((7) is smooth
DTxi(y) = (—1)meMt0) . e(Mx (7)),

but in general the definition is much more complicated.

These numbers are invariant under deformations of (X, L), and
satisfy an interesting wall-crossing formula as L is varied.
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STABILITY CONDITIONS

A different context in which to study wall-crossing behaviour is
provided by stability conditions on triangulated categories.

Let D be a triangulated category. A stability condition consists of
(1) A map of abelian groups Z: Ky(D) — C,

(11) An R-graded full subcategory P = UyerP(¢) C D,

together satisfying some axioms.

The map Z is called the central charge, and the objects of the
subcategory P(¢) are said to be semistable of phase ¢.
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AXIOMS FOR A STABILITY CONDITION

(A) if 0# E € P(¢) then Z(E) € Rug - exp(imd),

(B) P(¢+1) =P(o)[1] for all ¢ € R,

(C) if ¢1 > ¢ and A; € P(¢;) then Homp (A1, Ay) = 0,

(D) for each 0 # E € D there is a finite collection of triangles

0=f—EFH—...—E,_1——E,=E

N X
\ \
\ \

A1 An

WIthO?éAJG,P(QSJ) and ¢1 > ¢ > -+ > @,
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STABILITY MANIFOLD
Fix an abelian group homomorphism
ch: Ko(D) — I =2 7%
and insist that all central charges factor through ch.
Consider only stability conditions satisfying the support property:
3C > 0suchthat 0 # E € P(¢) = |Z(E)| > C- || ch(E)|,

where || - || is a fixed norm on I @z R = R”.

THEOREM

There is a complex manifold Stab(D) whose points are the stability
conditions on D. The forgetful map defines a local homeomorphism

Stab(D) — Homy(l',C) = C".
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ACTIVE RAYS

For each stability condition o € Stab(D) there is a countable
collection of active rays

¢ =Rygexp(imp) C C

for which there exist semistable objects of phase ¢.

As o varies, the active rays move and may collide and separate.
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WALL-AND-CHAMBER STRUCTURE

For a fixed class v € T, there is a locally-finite collection of real
codimension one submanifolds

W = Uy W, C Stab(D)

such that the subcategory of semistable objects of class « is constant
in each connected component of the complement of W.

e
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DT INVARIANTS AND WALL-CROSSING

Assume that our triangulated category D satisfies the CY3 property:
Hom/y(A, B) = Hom3; (B, A)*.
In many examples there then exist generalized DT invariants
DT,(v) € Q, v €T and o € Stab(D)

associated to moduli spaces of o-semistable objects of class 7.

AMAZING FACT (JOYCE)

Knowing the full collection of invariants DT, () at one point
o € Stab(D) completely determines them at all other points.
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QUIVERS WITH POTENTIAL

When D = DP Coh(X) with X a smooth projective Calabi-Yau
threefold it is expected that Gieseker stability arises as a large volume
limit of points in Stab(D).

But constructing stability conditions on D is very difficult.

A more tractable class of examples is provided by quivers with
potential (Q, W). Recall

(1) Q is an oriented graph,

(11) W is a C-linear combination of oriented cycles in Q.

We always assume that @ has no loops or oriented 2-cycles.

Associated to (@, W) is a triangulated category D?(Q, W)
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LocAL P?: A NON-COMPACT CY3

Consider the quiver with potential

X1,Y1,21
o—"" .o
W = E EiikXiViZl.
X3,y3,’23\ %,yz,a ijkXiYjZk
s
. ”J!

Viewing the total space of the line bundle wp2 as a non-compact
Calabi-Yau threefold, there is an equivalence

D*(Q, W) = Dg, Coh(wg2),

where on the right we consider the subcategory of objects supported
on the zero-section.
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(QUIVERS FROM TRIANGULATIONS

Fix a surface S of genus g with a set M = {py,--- ,pg} C S.
Consider triangulations of S with vertices at the points p;.

Associated to any such triangulation is a quiver:

Choose a generic potential W and set D = D*(Q, W).
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QUADRATIC DIFFERENTIALS

THEOREM (-, IVAN SMITH)
Stab(D)/ Aut(D) = Quad(g, d).

The space Quad(g, d) parameterizes pairs (S, ¢) with
(A) S is a Riemann surface of genus g,

(B) D=3¢, p;is a reduced divisor,
(c) ¢ € H(S,ws(D)®?) has simple zeroes.

One can calculate DT invariants in these examples in terms of counts
of finite-length trajectories of the corresponding quadratic differential.
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2. BPS structures and the
wall-crossing formula.



THE OUTPUT OF (UNREFINED) DT THEORY

A BPS structure (', Z, Q) consists of
(A) An abelian group I' = Z®" with a skew-symmetric form

(—,—=): TxI—>Z
(B) A homomorphism of abelian groups Z: I — C,
(¢) Amapofsets Q: T — Q.
satisfying the conditions:

(1) Symmetry: Q(—~) = Q(v) for all v €T,
(11) Support property: fixing a norm || - || on the finite-dimensional
vector space ' ®z R, there is a C > 0 such that

Q) #0 = [Z(N] > C- 1,
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POISSON ALGEBRAIC TORUS

Consider the algebraic torus with character lattice I':
T, = Homg(l,C*) = (C*)"

ClT.] = @C'X’Y = C[Xlilv"' >X3[n]-

yel

The form (—, —) induces an invariant Poisson structure on T
{Xa, X3} = (0, B) - X4 - X3.

More precisely we should work with an associated torsor

T_={g:T > C :g(n+7)=(-1)""2gn) g()}
which we call the twisted torus.

L G



DT HAMILTONIANS

The DT invariants DT(7) € Q of a BPS structure are defined by

DT(7) = > )

n2

Y=no

For any ray / =R - z C C* we consider the generating function

DT(¢) = ) DT(y)-x,.

Z(v)eL

A ray ¢ C C* is called active if this expression is nonzero.

We would like to think of the time 1 Hamiltonian flow of the function
DT(¢) as defining a Poisson automorphism S(¢) of the torus T.
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MAKING SENSE OF S(/)

FORMAL APPROACH
Restrict to classes 7 lying in a positive cone '™ C I, consider

C[Xitla e 7X;|:1] D) C[le' o 7Xn] C C[[Xh' o aXn]]7

and the automorphism S(¢)* = exp{DT(¢), —} of this completion.

ANALYTIC APPROACH
Restrict attention to BPS structures which are convergent:

3R > 0 such that Z 1Q(7)] - e R0 < 0.
yel
Then on suitable analytic open subsets of T the sum DT(¢) is
absolutely convergent and its time 1 Hamiltonian flow S(¢) exists.
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BIRATIONAL TRANSFORMATIONS

Often the maps S(¢) are birational automorphisms of T. Note

Xn
P { > —}(xﬁ) =g+ (1= ,)07.

n>1

Whenever a ray ¢ C C* satisfies

(1) only finitely many active classes have Z(v;) € ¢,
(11) these classes are mutually orthogonal (v;,7;) =0,
(111) the corresponding BPS invariants Q(v;) € Z.

there is a formula

S(0)*(xg) = H (1 — x,)R0)B),

Z(v)et
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VARIATION OF BPS STRUCTURES

A framed variation of BPS structures over a complex manifold S is a
collection of BPS structures (I', Z, ;) indexed by s € S such that

(1) The numbers Zs(7) € C vary holomorphically.

(11) For any convex sector A C C* the clockwise ordered product

=[] S:(¢) € Aut(T)

leA

is constant whenever the boundary of A remains non-active.
Part (ii) is the Kontsevich-Soibelman wall-crossing formula.

The complete set of numbers () at some point s € S determines
them for all other points s € S.
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EXAMPLE: THE A, CASE

Let [ = Z% = Ze; ® Ze, with (e, &) = 1. Then
C[T] = Clx™, 5],  {x,%} =x1 - x.
A central charge Z: I — C is determined by z; = Z(e;). Take
S=b>={(z1,2): z € h}.

Define BPS invariants as follows:
(A) Im(z2/z1) > 0. Set Q(+e1) = Q(£e) = 1, all others zero.
(B) Im(z/z) < 0. Set Q(+e1) = Q(£(e1 + &)) = Q(+e) = 1.
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WALL-CROSSING FORMULA: A, CASE

Two types of BPS structures appear, as illustrated below

Z(e1+e)s Z(e1te)
1

Z(e2) / Z(er) Z(e1) Z(e2)

2 active rays 3 active rays

The wall-crossing formula is the cluster pentagon identity

Co.) © G100 = C,0) © ) © Co,1)-

Co: Xg > x5 - (1 — x5) @2,
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3. An analogy: iso-Stokes
deformations of differential
equations.



STOKES MATRICES AND ISOMONODROMY

The wall-crossing formula resembles an isomonodromy condition for
an irregular connection with values in the infinite-dimensional group

G = Aut{_v_}(’]I‘)

of Poisson automorphisms of the torus T = (C*)".

We first explain such phenomena in the finite-dimensional case, so set
G =GL(n,C), g=gl(n,C).

As a warm-up we start with the case of regular singularities.
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A FUCHSIAN CONNECTION

We will consider meromorphic connections on the trivial G-bundle

over the Riemann sphere CP*.

Consider a connection of the form

(1) a; € C are a set of k distinct points,

(11) A; € g are corresponding residue matrices.

Then V has regular singularities at the points a;, and also at co.
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ISOMONODROMIC DEFORMATIONS

For each based loop
v 51 —>C\{al,--- ,ak}

there is a corresponding monodromy matrix Mon, (V) € G.

If we move the pole positions a; € C, we can deform the residue
matrices A; so that all monodromy matrices remain constant. Such
deformations are called isomonodromic.

Isomonodromic deformations are described by a system of partial
differential equations: the Schlessinger equations.
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A CLASS OF IRREGULAR CONNECTIONS

Introduce the decomposition

g=bog", g =Cg.. O®={eg-¢}ch"

acd
Consider a connection of the form

V:d—(%—FK)dz,
z z

(1) U =diag(us, - ,u,) € b is diagonal with distinct eigenvalues,

(11) V € g°d has zeroes on the diagonal.

Then V has an irregular singularity at 0 and a regular one at oc.
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STOKES DATA OF THE CONNECTION

The Stokes rays for the connection V are the rays

R>0 : (U,‘ — UJ') = R>o : U(a), a = e,f" — ef.

up-uz

We will associate to each Stokes ray ¢ a Stokes factor

S(0) = exp ( Z €a) € exp ( @ g.) CG.

U(a)et U(a)et
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CANONICAL SOLUTION ON A HALF-PLANE

THEOREM (BALSER, JURKAT, LUTZ)

Given a non-Stokes ray r, there is a unique flat section X, of V on
the half-plane H, C C it spans, with the limiting property

X,(t)-eV* - 1ast—0inH,.
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DEFINITION OF STOKES FACTORS

Suppose given two non-Stokes rays r;, r, forming the boundary of a
convex sector A C C. There is a unique S(A) € G with

X, (t) = X,,(t) - S(A), teH, NH,.
The defining property of X, (t) easily gives
S(A) € exp ( @ g.) C G.
U(a)en
In particular S(A) = 1 if A contains no Stokes rays.

As the ray r varies, the canonical section X, remains unchanged until
r crosses a Stokes ray. The section then jumps by the Stokes factor

S(¢) = exp ( Z €a) € exp ( @ ga) CG.

U(a)el U(a)el
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ISOMONODROMY IN THE IRREGULAR CASE

If we now vary the diagonal matrix U, we can deform the matrix V
so that the Stokes factors remain constant. Such deformations are
called isomonodromic. More precisely:

For any convex sector A C C* the clockwise product
S(a)=[]sw €.
ten
remains constant unless a Stokes ray crosses the boundary of A.

Isomonodromic variations are again described by a system of partial
differential equations.
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POISSON VECTOR FIELDS ON T

Consider the group G of Poisson automorphisms of the torus
T = Homgy(l',C*) = (C*)",

and the corresponding Lie algebra g. Then g = h @ g°¢, where
(A) the Cartan subalgebra

b = HomZ(ra C)a

consists of translation-invariant vector fields on T.

(B) the subspace g°d consists of Hamiltonian vector fields, and is the

Poisson algebra of non-constant algebraic functions on T

g°l = @ g, = @ C-x,.

veM\{o} yeM\{o}
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DT INVARIANTS AS STOKES DATA

It is tempting to interpret the elements
= exp( Z DT, ( ) €eG
Z(v)el

as defining Stokes factors for a G-valued connection of the form

Vod- (Z E>dt,
t2 t

where F € g°? depends holomorphically on Z, or equivalently o.

The wall-crossing formula is precisely the condition that this family of
connections is isomonodromic as o € Stab(D) varies.
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How TO CALCULATE F?

We know the Stokes factors S(¢) and would like to find F = F(Z).
To do this we should first find the canonical solutions X,(t).

We can assemble these to make a piecewise holomorphic function
X:C"'— G= Aut{_7_}(']l‘).

This satisfies a Riemann-Hilbert problem: it has known behaviour as
t — 0 and t — 00, and prescribed jumps as t crosses a Stokes ray.
Rather than working with the infinite-dimensional group G, we fix a
point £ € T and compose X, with the map evals: G — T to get

$b: C" = T.
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4. The Riemann-Hilbert problem.



THE RIEMANN-HILBERT PROBLEM

Fix a BPS structure (I', Z,Q) and a point £ € T.

Find a piecewise holomorphic function ®: C* — T satisfying:
(1) (Jumping): When t crosses an active ray ¢ clockwise,

&(t) = S(0)(®(2)).
(11) (Limit at 0): Write ®,(t)) = x,(®(t)). As t — 0,
(1) - e“0 = ().
(111) (Growth at oco): For any v € I there exists k > 0 with

[t| 7% < |®,(t)] < |t|* as t — oo.
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THE A; EXAMPLE

Consider the following BPS structure
(1) The lattice [ = Z - 7y is one-dimensional. Thus (—, —) = 0.
(11) The central charge Z: I — C is determined by z = Z(~) € C*,
(111) The only non-vanishing BPS invariants are Q(+v) = 1.
Then T = C* and all automorphisms S(¢) are the identity.
O, (t) =& -exp(—z/t) e T =C".
Now double the BPS structure: take the lattice ' & 'V with

canonical skew form, and extend Z and 2 by zero. Consider

y(t) =P (t): C = C".
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DOUBLED A; CASE

Consider the case £ = 1. The map y: C* — C* should satisfy
(1) y is holomorphic away from the rays R~ - (£z) and has jumps
y(t) = y(8) - (1= x(8))*, x(t) = exp(—2/t),
as t moves clockwise across them.

(1) y(t) > 1last—0.
(111) there exists k > 0 such that

1t| 7% < |y(t)] < |t|* as t — oo.
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SOLUTION: THE GAMMA FUNCTION

The doubled A; problem has the unique solution

+z \ ™ .
y(t) = A(ﬁ) where  A(w) = e Tw)

in the half-planes +Im(t/z) > 0

This is elementary: all you need is

(e

Mw) -T1—-w)=

MNw+1)=w-T(w),

sin(mw)’
log A(w) ~ wi-2,
°8 ; 2g( 2g )
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THE TAU FUNCTION

Suppose given a framed variation of BPS structures (I, Z,,,) over
a complex manifold S such that

m: S — Homy(I,C) =C", s~ Z,
is a local isomorphism. Taking a basis (y1,---,7,) C I we get local
co-ordinates z; = Z,(y;) on S.

Suppose we are given analytically varying solutions ®.,(z;, t) to the
Riemann-Hilbert problems associated to (I, Z;, €2).

Define a function 7 = 7(z;, t) by the relation

n

0 0
ot log @, (2, t) = Z Ejka_zj log 7(zi, 1), € = (v, W)

j=t

e 444 40 / 44



SOLUTION IN UNCOUPLED CASE

In the A; case the 7-function is essentially the Barnes G-function.

Bog omit\ 62
lOgT(Z’t)NZQg(Qg_2)< . ) )

g>1

Whenever our BPS structures are uncoupled

Qi) #0 = (711,72) =0,

we can try to solve the RH problem by superposition of A; solutions.
This works precisely if only finitely many Q(v) # 0.

By, [ 2mit \ 2 7?
log 7(z, t) £ ( )
~2 Z 2 ( 2g 2)\Z(7)

g>1 ~el
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GEOMETRIC CASE: CURVES ON A CY3

Can apply this to coherent sheaves on a compact Calabi-Yau
threefold supported in dimension < 1. We have

[=H(X,Z)&Z, Z(B,n)=2n(8-wc—n).

Q(B8,n) = GVo(B), Q(0,n) = —x(X).
Since x(—, —) = 0 these BPS structures are uncoupled.

os. deg X(X) Bag Bag—2
T(we, t) RN
= 48 (28 —2) (22 - 2)!

- (2rt)*e 2

27rlw kB

+ > > GV B)< " sin~2(irtk).

BeH(X,Z) k>1

This matches the contribution to the topological string partition
function of the genus 0 GV invariants.
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EXAMPLE: CONIFOLD BPS STRUCTURE

Applying DT theory to the resolved conifold gives a variation of BPS
structures over the space

{(viw)eC?>:w#0and v+dw#0foralld € Z} C C°.

It is given by [ = Z% with (—, —) =0, Z(r,d) = rv + dw and

1 ify=+(1,d) for some d € Z,
Q(y) =4 -2 ify=1(0,d) for some 0 # d € Z,
0  otherwise.
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NON-PERTURBATIVE PARTITION FUNCTION

The corresponding RH problems have unique solutions, which can be
written explicitly in terms of Barnes double and triple sine functions.

T(v,w,t) = H(v,w, t) - exp(R(v, w, t)),

e” —1 et ds
H t) = . L=
(V7 W7 ) eXp (/R+IE eWS _ 1 (ets . 1)2 S >7

w
R(V, w, t) = (ﬁ

) (Lis(e™) — @) + 2 L.

The function H is a non-perturbative closed-string partition function.
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