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1. INTRODUCTION 

Economic models which estimate the relative costs and benefits of alternative technologies 

are an essential element of the National Institute for Health and Care Excellence’s (NICE’s) 

Technology Appraisal (TA) process. Such models are designed to estimate the mean costs 

and benefits of alternative health technologies for the population likely to be affected by a 

particular decision. In some cases a single decision is made for the whole population falling 

within the scope of the TA, whilst in other cases, where the costs and benefits are expected to 

differ within the population, different decisions are made for different subgroups of the 

population specified in the scope. However, in both cases the TA Committee’s guidance is 

based on the average costs and benefits across some specified population rather than the 

individual outcomes occurring at the patient level.  

 

Economic models can use either a patient-level or cohort-level modelling approach to 

estimate the expected costs and outcomes across a particular population. In a patient-level 

simulation, the outcomes are modelled for individual patients and then the average is taken 

across a sufficiently large sample of patients, whilst in a cohort-level model the outcomes are 

estimated for the cohort as a whole without considering the outcomes for individual patients 

within that cohort. The optimal approach will depend on the particular nature of the decision 

problem being modelled and therefore needs to be assessed on a case-by-case basis.2 It is 

important that the choice between using a patient-level simulation and a cohort-level 

modelling approach is given careful consideration and is properly justified in the model 

description, as the models used to inform NICE TAs have sometimes been criticised on this 

basis.3   

 

The decisions of NICE Technology Appraisal Committees are dependent on both the mean 

expected costs and benefits and the uncertainty in those means, arising from uncertainty in 

the evidence used to inform the economic model. Therefore it is important that decision 

uncertainty is correctly estimated regardless of the choice of model structure.4 The standard 

way to assess the decision uncertainty associated with the model parameters is through 

probabilistic sensitivity analysis (PSA), in which samples are taken from distributions 

reflecting the uncertainty in the model parameters and this uncertainty is propagated through 

the model. In the past this has been viewed as a barrier to the use of patient-level simulation 

due to the computational requirements of simulating both a large number of patients to obtain 
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a precise estimate of the expected costs and benefits, and a large number of parameter 

samples to evaluate the uncertainty surrounding the expected costs and benefits.5 However, 

we describe here how patient-level simulation can be combined with PSA to meet the 

information needs of NICE TA Committees. 

The aims of this Technical Support Document (TSD) on patient-level simulation are to: 

 Increase awareness of patient-level modelling approaches and highlight the key 

differences between patient-level and cohort-level modelling approaches. 

 Provide guidance on situations in which patient-level modelling approaches may be 

preferable to cohort-level modelling approaches. 

 Provide a description of how to implement a patient-level simulation illustrated with 

example models.  

 Provide guidance on good practice when developing and reporting a patient-level 

simulation to inform a NICE TA. 

 

The example models are built in the standard software packages (Microsoft Excel®, TreeAge 

Pro®, R6) accepted by NICE without prior agreement.7,8 We have also provided one example 

of a discrete event simulation implemented in a bespoke simulation package (SIMUL8®). It 

should be noted that permission from NICE must be sought in advance to submit a model 

implemented in a non-standard software package such as a bespoke simulation package. 

 

The focus of this document is on the use of economic models to inform NICE TAs. Systems 

incorporating interactions between patients are not a common feature within TA and 

therefore this document focuses on the application of patient-level simulation to systems 

where patients can be assumed to be independent. However, a brief discussion of the 

application of patient-level simulation to situations involving patient interaction is given in 

section 3.5.  

 

 

2. A TAXONOMY OF MODELLING APPROACHES 

2.1.  DEFINING PATIENT-LEVEL AND COHORT MODELLING APPROACHES 

Economic models estimate the costs and benefits across the target population by considering 

the outcomes for a group of patients which represent the target population. Here we define a 
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patient-level simulation as any model which estimates the mean costs and benefits for that 

group of patients by considering the costs and benefits of each individual within the group. 

(These types of models have sometimes been referred to as ‘individual sampling models’).9,10 

Conversely a cohort model is any model which estimates the outcomes for the group of 

patients without explicitly considering the outcomes of each individual patient. A cohort 

model may allow for some variability in patient outcome according to patient characteristics 

defined at the start of the model, but it is not a patient-level simulation unless the outcomes 

are evaluated at the patient-level. For example, a cohort model may evaluate outcomes for a 

group of patients in which 40% of the starting cohort is female and may apply different 

mortality rates for males and females, or it may allow different treatment pathways for 

subgroups who are unable to tolerate a particular second-line treatment. In both cases this 

would require certain subgroups of the cohort to be tracked separately through the model. 

Therefore, a cohort modelling approach does not imply that there is no variation in patient 

characteristics or outcomes within the cohort, although any variation in outcomes is likely to 

be captured for broad categories of patients rather than at an individual level. 

 

2.2. DEFINITION OF STOCHASTIC AND ANALYTIC EVALUATION 

Models that can be evaluated without the need to randomly sample from parameter 

distributions are said to be evaluated analytically. Stochastic evaluation refers to the process 

of allowing certain values within the model to vary randomly according to a specified 

distribution and taking the mean model outcome over a large number of model runs. 

Stochastic evaluation allows the distribution of outcomes to be estimated in addition to their 

mean value, which may also be of interest to decision makers. Different types of stochastic 

variation can be incorporated within a decision analytic model.  

 

In models which consider individual-level patient heterogeneity, stochastic variation can be 

incorporated at the level of patient characteristics. In such models, the mean model outcomes 

are estimated across a group of patients whose starting characteristics are sampled from 

distributions.  

 

Stochastic variation may also occur at the decision node, state-transition or time-to-event 

level allowing random variation in the model trajectory for an individual patient, in a manner 
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which does not necessarily depend on the patient’s characteristics at the start of the model. 

This type of stochastic variation is referred to here as stochastic uncertainty. 

 

Finally, stochastic variation can occur at the parameter level, where parameter values are 

sampled from a distribution reflecting the uncertainty in their population mean value and this 

uncertainty is propagated through the model to determine the resulting uncertainty in the 

expected model outcomes. This type of stochastic evaluation of parameter uncertainty is 

generally referred to in this context as probabilistic sensitivity analysis (PSA).11 PSA is a 

requirement of models submitted to the NICE Technology Appraisal Programme.1 

 

Care should be taken when discussing the appropriate modelling approach to distinguish 

between the different types of stochastic evaluation that can be incorporated within the model 

to avoid confusion between patient heterogeneity, stochastic uncertainty and parameter 

uncertainty.12 For example, it is important not to include parameters which reflect patient 

heterogeneity within the PSA.  Koerkamp et al. provide a clear description of the different 

types of stochastic variation that can be incorporated and combined within a health economic 

evaluation and how these can be evaluated to provide different information on the uncertainty 

and variability associated with expected model outcomes.12 

 

2.3. DECISION TREE ANALYSIS 

Decision tree analysis estimates the likelihood of various outcomes occurring using a 

probability tree and then applies associated pay-offs, the costs and benefits in this context, for 

each branch of the tree. Decision tree analysis does not explicitly model the timing of 

outcomes, making it necessary for the analyst to adjust pay-offs for events occurring in the 

future to allow for discounting. In the past, decision tree analysis was commonly employed to 

model a cohort of homogeneous patients analytically using mean parameter values.5 

However, NICE’s requirement for PSA has resulted in probabilistic evaluation of parameter 

uncertainty becoming common place. It should however be noted that decision trees can also 

be evaluated stochastically allowing each individual to follow a unique path through the 

decision tree based on samples drawn from statistical distributions, as opposed to estimating 

the proportion following each path in the traditional manner.10 Therefore, a decision tree 

framework can be compatible with a patient-level simulation approach.  
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2.4. STATE-TRANSITION MODELS 

State-transition models consist of a discrete set of mutually exclusive health states which are 

evaluated at regular intervals to determine the population of each health state. The flow of 

patients through the model over time is determined by the application of a transition matrix 

which defines the probability of moving between each state within one cycle. State-transition 

models are often synonymously referred to within a health economic context as ‘Markov 

models’, although strictly the use of the term ‘Markov’ should be limited to models which 

display the ‘Markovian property’ in which transitions are dependent only on the state in 

which the patient resides and not on anything that occurred before they arrived in that state or 

the duration of time they have occupied that state. This is sometimes referred to as a 

‘memoryless’ process. The simplest form of a state-transition model is one in which a fixed 

transition matrix is applied every cycle giving a time homegenous Markov chain, although 

this approach can also be extended to give a Markov process in which time varying transition 

matrices are allowed. The term ‘Markov model’ has often been used synonymously with the 

term ‘cohort model’ within the health economic context because Markov state-transition 

models are so often employed to model cohorts of patients. Cohort state-transition models 

evaluate the proportion of patients within the cohort who reside within each of the model 

states for each model cycle. They are also widely combined with PSA to provide an estimate 

of the distribution of costs and benefits expected for a cohort of homogeneous patients with 

average characteristics. However, as with decision trees, they can also be evaluated 

stochastically using samples drawn from statistical distributions to determine whether an 

individual patient experiences a particular transition given the probability of that transition 

occurring in that particularly cycle.13 Therefore, a state-transition model framework is also 

compatible with a patient-level simulation approach. 

 

Guidance on developing state-transition models has been produced by the ISPOR-SMDM 

Modeling Good Research Practices Task Force.14 

 

2.5. DISCRETE EVENT SIMULATION    

A discrete event simulation (DES) is concerned with the events that occur during the lifetime 

of individual entities. As the individual entities are usually patients in this context, DESs are 

inherently patient-level and the expected outcome for the population of interest can only be 
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reliably estimated by simulating a sufficiently large number of patients. The simulation 

maintains a list of the time to each possible event, as sampled for each individual patient, and 

the simulation clock is advanced from one event to the next. Therefore, unless events are 

scheduled to happen at regular intervals, the simulation clock will step forward at irregular 

intervals which are dependent on the sampled times between subsequent events. The 

simulation tracks patient attributes (both continuous and categorical) and global variables 

such as total costs and quality adjusted life-years (QALYs). These are updated each time an 

event occurs. Individual entities can experience an event of the same type more than once if 

after the first event is processed another event of the same type is scheduled. The time to 

future events can be made dependent on patient attributes including their history of previous 

events. Continuous patient attributes can be updated at specified time intervals by setting up 

events which occur at regular intervals such as annual increases in age.  

 

It is also possible within a DES framework to allow patients to interact with other patients or 

with other entities which are defined as resources within the simulation such as doctors, 

appointment slots, equipment etc. These resources may be constrained leading to the 

formation of queues where the next event can only be processed when a particular resource is 

available. Such flexibility allows for very complex systems to be modelled incorporating 

factors such as infection and service capacity, although these are often not necessary within a 

TA context.15 (See section 3.5 for a brief discussion of model structures which are suitable 

for modelling systems with interaction between individuals or constrained resources.) 

 

Discrete event simulations are inherently patient-level and must be evaluated stochastically to 

produce precise estimates of the expected costs and benefits across a specific patient 

population. This is the key trade-off against the increased level of flexibility they provide. 

The main model inputs driving flow through the model are the distributions of time-to-event 

for each event type. In DES these time-to-event values are sampled for individual patients 

from probability distributions. 

 

One of the benefits of using a DES approach is that it may have more face validity with 

clinicians and patients who may appreciate the transparency of being able to visualise (or, 

with some software packages, see animations of) individual patients experiencing disease 

outcomes and accruing costs and health benefits. Although care should be taken that this 
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additional realism does not result in more trust being placed in the model than is warranted 

and that the desire for face validity does not result in models that are unnecessarily complex.  

 

Guidance on developing DES has been produced by the ISPOR-SMDM Modeling Good 

Research Practices Task Force.16 

 

 

2.6. HANDLING OF TIME WITHIN THE MODEL 

Decision tree analysis estimates the likelihood of various outcomes occurring and the 

associated pay-offs without explicitly modelling the timing of outcomes. It is therefore 

generally used to model events occurring over a short time-horizon or where the exact timing 

of the event is unimportant. State-transition models employ a discrete time approach to 

estimate the number of patients experiencing particular health states at fixed time-points 

which are determined by the cycle length and the time horizon. Given that real-life clinical 

events can occur at any point in time, the discrete time approach employed within a state-

transition model essentially provides a numerical approximation to the real-life scenario. The 

accuracy of the approximation can be increased by incorporating continuity corrections such 

as a half-cycle correction and by reducing the cycle length.17 Reducing the cycle length until 

there is no appreciable effect on the model outcomes is recommended.17 This may be 

achieved at longer cycle lengths if a continuity correction is applied.17 Discrete event 

simulations progress through the times at which specific events happen for particular 

individual entities, based on samples from discrete or  continuous distributions, allowing 

events to occur at any time point. However a DES cannot be considered to be a true 

continuous time model as it simulates events according to intervals in which the state of the 

system is known to have changed.18  
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3. IDENTIFYING WHEN A PATIENT-LEVEL SIMULATION MAY BE 

PREFERABLE TO A COHORT APPROACH 

3.1. MODEL NON-LINEARITY WITH RESPECT TO HETEROGENEOUS PATIENT 

CHARACTERISTICS 

If there are factors which vary between patients (e.g. age) which have a non-linear 

relationship with the model outcomes (e.g. costs and QALYs), then estimating the model 

outcomes for a cohort of patients using only average characteristics (e.g. mean age at starting 

treatment) will provide a biased estimate of the average outcome across the population to be 

treated. 

 

Where such factors can be identified in advance of starting treatment, it may be possible to 

conduct subgroup analysis to determine the average outcome in subgroups of patients defined 

using broad categories of the factor of interest (e.g. 5 year age bands), provided the outcomes 

within those subgroups are expected to be reasonably homogeneous. This would allow either 

for separate recommendations to be made for each subgroup, or for a weighted average to be 

taken across the subgroups to make a single recommendation across the whole population. 

The latter may be necessary in situations where legal or ethical considerations would make 

separate recommendations unacceptable. 

 

In some cases it is known that a certain factor affects outcomes, but it cannot be determined 

which patients will be affected prior to treatment initiation, making separate 

recommendations impossible. Griffin et al. give disease progression rate, within the context 

of a cancer screening program, as an example of one such variable.5 It may not be possible to 

know which patients are likely to experience faster disease progression prior to offering 

screening, but if disease progression has a non-linear relationship with outcomes, it would be 

necessary to include the variability in disease progression within the model to obtain an 

unbiased estimate of the mean outcomes across the cohort offered screening. In these 

situations an approximate solution may sometimes be obtained by averaging across 

analytically evaluated models, in a manner similar to the averaging of outcomes across 

subgroups described above.  
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The use of subgroup analysis and model averaging to address patient heterogeneity becomes 

problematic when the number of categories required to define groups with homogeneous 

outcomes becomes large, either due to the presence of continuous variables requiring 

granular categorisation or due to the presence of many interacting factors. In such cases, a 

patient-level simulation may be preferable, as a group of patients can be simulated with 

characteristics sampled from the relevant population distributions. The expected costs and 

benefits across the sampled group should then provide an unbiased estimate provided that a 

sufficiently large sample is simulated and any covariance between the different patient 

characteristics is correctly taken into account.  

 

When deciding on an appropriate modelling approach, consideration should be given to the 

likely relationship between characteristics which may vary within the population and the 

model outcomes. In some cases it may be possible to see before building the model that such 

a non-linear relationship exists by considering the proposed model structure and the 

functional form of any relationships that are to be included within the model. In other cases it 

may be necessary to build the model and test it for linearity with respect to patient 

characteristics. Where the relationship between patient characteristics and model outcomes is 

found to be, or could reasonably be expected to be non-linear, a patient-level simulation 

which incorporates patient heterogeneity should be conducted to obtain an unbiased estimate 

of the mean outcomes unless this can be avoided through appropriate subgroup analysis.  

 

3.2. PATIENT FLOW DETERMINED BY TIME SINCE LAST EVENT OR HISTORY OF 

PREVIOUS EVENTS 

As described earlier, state-transition models often employ a Markovian assumption in which 

it is assumed that future events are independent of past events. This makes it difficult to 

model situations where the likelihood of future state transitions is dependent on the time since 

a previous transition (e.g. time on current treatment) or the history of previous events (e.g. 

previous fracture increases risk of further fractures). Additional states are sometimes added to 

state-transition models in order to allow the patients’ progress through the model to be 

dependent on their history as well as their current health state. The history of previous events 

may be incorporated by replicating states so that patients who have a particular history are 

handled within a separate replicate state.  The dependence on time since the last transition 

may be incorporated by using a series of replicate states allowing the patient to move to a 
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different state each cycle to record the passage of time even though there is no change in their 

actual health state. These are sometimes referred to as ‘tunnel states’. Ultimately there is a 

limit on how many such replicate states can be incorporated before the cohort Markov state-

transition approach becomes unwieldy.  

 

One solution is to keep the state-transition framework but to evaluate the model using a 

patient-level simulation in which a single patient moves between health states stochastically. 

As only one patient is evaluated at any one time, fewer health states need to be defined as a 

time /history dependent transition matrix can be employed where the transition matrix for 

later cycles is dependent on the occupation of health states by that individual patient at earlier 

time points. In this case the need for a stochastic evaluation is being traded against a 

reduction in the number of unique health states that are required to be enumerated explicitly 

as part of the model. It should be noted that, depending on the complexity of the clinical 

scenario being modelled, the number of logical rules required to make the transition matrices 

dependent on the patient’s previous history, or the occupation time within each state, may 

make programming errors difficult to detect if the model is implemented within a spreadsheet 

package. When implemented in TreeAge (“Microsimulation mode”), tracker variables can be 

used to capture prior events of significance and to drive the transition matrix in a more 

transparent manner. 

 

One innovative approach that allows factors such as time or patient history to be incorporated 

in a cohort state-transition model is to define the transition matrix as a multi-dimensional 

array. This allows a cohort model to be implemented where the transition probability is 

dependent on more factors than just the start and finishing state giving a non-Markov cohort 

state-transition model. The additional dimensions may be time since a particular event, 

patient characteristics or the patient’s history of previous events. Hawkins et al. used this 

approach when modelling epilepsy treatments, where the probability of treatment failure 

declines over time.19 In their model a unique probability was defined for each possible 

transition, for each model cycle, giving a 3 dimensional transition matrix (dimensions are 

starting state, finishing state and time cycle). This method requires the use of software which 

can support multi-dimensional arrays, and in this case the model was implemented in the 

statistical programming language R.6 This approach eliminates the need for stochastic 

evaluation, and could in theory be applied in more complex situations where other 

dimensions are used to incorporate patient history or characteristics. However, populating 
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and validating such a complex transition matrix may prove more difficult that implementing a 

stochastic patient-level simulation. 

 

An individual patient-level methodology is likely to provide a more efficient and 

parsimonious solution than trying to implement a cohort model in situations where there is 

substantial non-Markovian behavior due to its ability to track individual patients and record 

their event history and use this to update their risk of future events. A further advantage of the 

DES framework is that where the risk of certain events occurring changes over time, this can 

be handled by sampling a single time to event estimate from a non-exponential time-to-event 

distribution which is easier and more efficient than calculating time-dependent transition 

probabilities for each cycle in a patient-level state-transition model. 

 

3.3. AVOIDING LIMITATIONS ASSOCIATED WITH USING A DISCRETE TIME 

INTERVAL  

As described earlier, a state-transition model is essentially a discrete time approximation to a 

continuous real-life process. The application of this approximation may introduce bias if not 

implemented correctly. For example, the transition matrix needs to reflect the fact that 

multiple transitions may occur within a single cycle giving a non-zero probability for some 

transitions which cannot occur as a direct transition. Soares et al. describe how bias can be 

introduced by incorrectly discretising a continuous flow process.17 This bias is reduced if the 

cycle length is shortened to a value where multiple transitions within one cycle are extremely 

unlikely and therefore theoretically the bias could be avoided simply by selecting a small 

enough cycle length. However, as pointed out by Caro, some diseases combine periods of 

rapid events with long periods where no events occur.20 In such cases the need for very short 

time cycles to accurately capture rapidly occurring events may make the model large and 

slow to evaluate over the required time frame. As the simulation clock within a DES steps 

forward in time from one event to the next, it may prove to be a more efficient modelling 

framework in situations such as these where multiple events can occur in quick succession 

followed by periods of inactivity. 
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3.4. DEVELOPING A FLEXIBLE MODEL AS AN INVESTMENT FOR FUTURE 

ANALYSES 

Discrete event simulations are particularly flexible models which can be easily adapted to 

incorporate additional events or patient attributes and as such may lend themselves to 

iterative decision making processes or repeated use. Adapting decision tree or state-transition 

models to include additional health states or patient attributes can be time consuming, 

particularly if the model is implemented within a spreadsheet package, and this may limit the 

ability of the decision analysts to respond to criticisms raised during the TA process.  

 

If a whole disease model is required which may be used across a range of different decision 

problems such as prevention, treatment and screening decisions, then it may be easier to 

develop that whole disease model using a patient-level simulation approach,21 and in 

particular a DES framework, as these types of models are generally easier to adapt. Such an 

investment in a whole disease model may not seem worthwhile in the context of a single 

technology appraisal, where the economic model is developed by the manufacturer or 

sponsor of the technology to inform guidance on a single technology with a single indication. 

However, it may be justifiable for multiple technology appraisals, where Technology 

Assessment Groups develop models to assess the cost-effectiveness of more than one 

technology for one or more indications and these models are sometimes updated and re-used 

across several different TAs. In this context, the development of flexible whole disease 

models which can be easily adapted to inform several different decisions would increase 

decision making consistency across NICE’s work programme by allowing a consistent set of 

model assumptions to be applied within a particular disease area. (A similar argument could 

be made for the development of flexible whole disease models within NICE’s Clinical 

Guideline Programme). 

 

3.5. MODELLING SYSTEMS WHERE PEOPLE INTERACT WITH RESOURCES OR 

OTHER PEOPLE 

Patient-level simulations may be particularly useful when modelling situations where people 

interact with other people or compete for resources that are constrained in some way such as 

healthcare staff, appointment slots or equipment. Systems incorporating patient interaction 

are not a common feature within Technology Appraisals, but are mentioned here for 
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completeness. State-transition models built using TreeAge can be run as patient-level 

simulations in parallel to capture interactions between patients or with system resources.  

However other modelling approaches may be better suited to problems where these are 

significant components. A DES is an obvious choice of modelling framework in such 

situations although there are some alternative model structures. The ISPOR-SMDM 

Modelling Good Research Practices Taskforce highlight dynamic transmission, DES and 

agent-based models as being applicable in situations where there are interactions between 

individuals, which may be due to disease transmission or due to the allocation of constrained 

resources.2 Both DES and agent-based approaches model at the patient-level whereas many 

dynamic transmission models employ a cohort-level system dynamics approach.2,22 Readers 

are referred to Brennan et al.’s paper on model taxonomy which includes a list of questions 

that can be used to select an appropriate model.10   

 

3.6. NEED FOR PROBABILISTIC SENSITIVITY ANALYSIS TO ASSESS DECISION 

UNCERTAINTY 

The need for PSA has in the past been cited as a reason for choosing a model structure which 

allows analytic rather than stochastic evaluation of the model outcomes.5 When evaluating 

the decision uncertainty in a patient-level simulation using PSA it is usually necessary to run 

two nested simulation loops. The inner loop evaluates the outcomes across the simulated 

population for the given parameter values, and the outer loop samples those parameter values 

to reflect uncertainty in the model inputs.  In a cohort-level model, only the outer loop is 

required, thus PSA computation time for a cohort-level model is likely to be lower than for an 

equivalent patient-level model. However with modern PC specifications this additional 

computation time may not be overly restrictive. Furthermore, the computation time for the 

inner loop may be reduced by keeping the patient-level simulation as efficient as possible. A 

DES, where calculations occur only at the times when events occur is likely to be much more 

efficient to evaluate stochastically than a patient-level state-transition model where 

calculations are needed every cycle for every simulated patient.  

 

Further advice on conducting PSA and the relative importance of first and second order 

uncertainty within patient-level models can be found in section 5.3 and 5.4. 
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4. IMPLEMENTING A SIMPLE MODEL WHICH INCORPORATES 

PATIENT HISTORY USING DIFFERENT APPROACHES 

Here we introduce a simple model for assessing the cost-effectiveness of osteoporosis 

treatments in order to demonstrate how such a model could be represented using a variety of 

modelling frameworks. This model is not a comprehensive model for assessing osteoporosis 

treatments, but it is intended only as a teaching example. The key model assumptions are: 

 Patients start with a history of no previous fractures and a baseline utility of 0.7  

 The only types of fractures that can occur are hip fractures and vertebral fractures 

 Patients can experience up to one hip fracture 

 Patients can experience up to two vertebral fractures 

 Fractures result in one-off costs which are incurred at the time of the fracture (£7000 

for hip and £3000 for vertebral) 

 Fractures result in a life-long utility multiplier being applied to the patient’s pre-

fracture utility (0.75 for hip fracture, 0.90 for first vertebral fracture, 1 for second 

vertebral fractures). So for example, a patient who has had a hip fracture and two 

vertebral fractures will have a utility of 0.7x0.75x0.9x1 =0.4725 

 Patients in the control arm incur no costs other than those associated with fractures 

 Patients in the intervention arm incur a fixed cost per day for treatment from the start 

of the model until death (equivalent to £500 p.a.) 

 Time (in years) to hip fracture is described as a Weibull distribution with shape of 4 

and scale of 10. 

 Time (in years) to vertebral fracture is described as a Weibull distribution with shape 

2 and scale of 8. 

 Intervention doubles the expected time to hip fracture and expected time to first 

vertebral fractures (Note this is not equivalent to a hazard ratio of 0.5. See section 

4.5.4 on calculating acceleration factors from hazard ratios when assuming Weibull 

time to event distributions) 

 Intervention has no effect on time to second vertebral fracture 

 Hip fractures have a 0.05 probability of resulting in death at the time of fracture 

 Time (in years) to death is normally distributed with mean 12 and standard deviation 

of 3. 

 No side-effects of treatment are modelled 
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 No treatment withdrawal is modelled 

 Costs and benefits are discounted at 3.5% per annum 

 Time horizon is patients lifetime (with the exception of the patient-level state-

transition model, when a 30 year horizon is applied) 

 

It should be noted that this example model has been adapted from a model previously used by 

the authors to teach DES and therefore the model assumptions have been framed with a DES 

implementation in mind. This DES implementation is described in section 4.1 to 4.3 and an 

equivalent patient-level state-transition implementation is described in section 4.4.  

  

4.1. GENERAL DISCRETE EVENT FRAMEWORK 

Within a discrete event framework, events are used to update the patient’s health status. 

Therefore, when specifying a DES model, it is necessary to translate the clinical pathway into 

a series of sequential events. Events which update the patient’s health status are analogous to 

transitions between health states within a state-transition model. These events are likely to 

result in a change in the patient’s utility value and / or a change in the costs they incur and /or 

a change in their future event probabilities. 

 

When deciding how to convert the clinical pathway into a series of sequential events, care 

should be taken to ensure that any competing risks are not ignored. For example, if there is a 

risk of death during a six month period of chemotherapy treatment, then specifying ‘starting 

chemotherapy’ as a separate event from ‘finishing chemotherapy’ would allow the competing 

event of death to occur between those two events. Simply specifying ‘chemotherapy’ as a 

single event which lasts for six months would fail to incorporate the competing risk of death 

as during that period no other events would occur. 

 

Attributes are variables which are specific to the individual patient, such as their utility, or 

their history of previous events. Global variables are those which are not specific to an 

individual patient. These may be parameters which are fixed for the whole simulation e.g. the 

cost of hip fracture, or they may be output variables which are updated during the simulation, 

such as a running total of the costs and QALYs accrued across the whole simulated 

population. Events are used to update both patient attributes and global variables. For 

example, when an event occurs, it is necessary to update the running total of costs and 
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QALYs accrued so far to represent those accrued since the last event, and to update the 

attributes that track the patient’s health status, such as their utility value, so that information 

is available for later updates of the global variables. In our example model; 

Events that can occur are: 

 hip fracture, 

 vertebral fracture 

 death due to hip fracture 

 death due to other cause.  

Patient attributes are: 

 Time to death 

 Time to hip fracture 

 Time to vertebral fracture 

 Current utility 

 History of vertebral fracture  

 History of hip fracture 

 Time of last event (used to determine duration of time since last event for calculating 

costs and QALYs accrued since last event) 

 Time to next event (this is a dynamic attribute which is updated according to which 

event is sampled to occur next) 

 Router (variable used to route patients from one event to the next) 

Global variables are: 

 Parameters for each of the time-to-event distributions 

 Costs for each fracture type 

 Baseline utility 

 Utility multipliers for each fracture type 

 Intervention costs 

 Intervention effects (e.g. acceleration factor or hazard ratio) 

 Discounting factors 

 Total costs (discounted and undiscounted) 

 Total QALYs (discounted and undiscounted) 

 Number of patients in simulation 
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The processes described in Figure 1 can be implemented using bespoke simulation packages, 

such as ARENA® (Rockwell Automation, Inc, Wexford, PA, USA) or SIMUL8 (Simul8 

Corporation, Boston, MA, USA), or generic programming languages such as Visual Basic, 

C++ or the statistical language R amongst others.6 TreeAge Pro 2014 now includes time-to-

event functionality which may be used to implement a DES. Whilst earlier (pre-2014) 

versions of TreeAge did not include this explicit DES functionality, there is at least one 

example of a DES being implemented in TreeAge (TreeAge Pro 2009) using the Markov 

node function as a cycling facility to resample times between possible events.23 (Further 

details on the range of simulation software available is provided by the OR-MS Today survey 

which is regularly updated.24) 
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Figure 1: Key model logic for a DES (when simulating one patient at a time) 
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The simulation can be processed once for the intervention arm and then once for the control 

arm (serial processing) or it can be processed in parallel by putting the same patient (i.e. one 

sampled to have the same characteristics and time-to-event samples) through both the 

intervention and control arms concurrently. The use of common random numbers to allow 

alternative configurations, in this case treatments, to be compared “under similar 

experimental conditions” is a popular variance reduction technique which can be used to 

decrease the number of patients that need to be sampled.25 In bespoke simulation packages, 

the random number streams can be controlled to ensure that the same patient characteristics 

and pathways through the model are sampled each time, allowing serial processing of the 

intervention and control arms. When using a generic programming language, the same can be 

achieved either by processing the patients in parallel or by manually controlling the random 

number streams to ensure that the same patient attributes are sampled for intervention and 

control.  

 

4.2. IMPLEMENTING A DES IN A GENERIC PROGRAMMING LANGUAGE 

Code is provided in Appendices A and B demonstrating how to implement the example 

osteoporosis model in Visual Basic (as a Microsoft Excel module) and R respectively. 

(Accompanying files can also be downloaded from the DSU website, www.nicedsu.org.uk).  

Figure 1 can be used as a guide to determine the key steps that need to be included in the 

simulation code. However, ultimately the programmer is responsible for determining the 

most efficient way to implement the simulation within the chosen programming language and 

this will depend on the specifics of the individual model.  

 

4.2.1. Visual Basic DES 

In the Visual Basic code, the event list is processed by working sequentially through each of 

the time-to-event samples for the various event types and; 

1. comparing each value against the previous to determine if the next event type occurs 

earlier than the previous one in the list 

2. updating the time-to-next event to the lower value for that pair of events 

3. updating the router variable to record the event type with the lower time-to-event as 

the next event type 
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4. repeating steps 1 to 3 until all event types have been considered such that the time-to-

next event and router have been set to the right values for the earliest event predicted 

from the list of time-to-event data 

[NB: This logic for setting the next event is similar to that implemented within the SIMUL8 

example model described below and is suitable in models where patients do no interact and 

individuals can be evaluated one at a time. More complex logic would be needed to process 

the event list in models where there are multiple entities being processed simultaneously] 

 

The next event is then processed, at which time the costs and QALYs since the previous 

event are accrued and the time-to-last event variable is updated. The event list may also be 

updated when the event is processed. For example, when the first vertebral fracture occurs, 

the time to next vertebral fracture is updated to allow a second vertebral fracture to occur. 

When calculating the time to events that are assumed not to occur e.g. second hip fracture or 

third vertebral fracture,  the time-to-event for that event type is set to a large number which is 

greater than the time horizon to prevent those events recurring. When fatal events occur, 

time-to-last event is again set to a large number, greater than then time horizon, and this is 

used as a flag to end the simulation.  

 

In our Visual Basic code we have included a time horizon variable and logic which ensures 

that if death does not occur before the time horizon, the relevant costs and QALYs are 

accrued from the previous event to the time horizon. This was done to allow comparisons to 

be made between our example individual patient-level state-transition model (see section 4.4) 

and this DES implemented in Visual Basic. It is not generally necessary to specify an explicit 

time horizon for a DES as each patient can be simulated until death, but a time horizon can be 

specified either by using logic similar to ours or by specifying ‘time horizon reached’ as an 

additional event type. Most bespoke packages have a built-in function to end the simulation 

after a particular amount of time has elapsed.  

 

In our example Visual Basic code we process the control and intervention arm in series. We 

generate and store arrays of random numbers to ensure that the patients being simulated are 

identical for each treatment strategy. 
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In additional to the core model outputs (costs and QALYs), we have added other tracker 

variables which record patient-level and cohort-level outcomes in order to facilitate model 

validation and debugging. These additional variables can be added to a watch window to 

allow the programmer to see how they change in real time when stepping through the model. 

Alternatively, the watch window can be used to specify conditions which stop the simulation 

in order to detect model errors (e.g. stop when current utility >1). In addition, we have added 

a debugging mode to the simulation. When the debugging flag is switched to TRUE, the 

simulation stores patient-level results in an array. This slows the model down, but only when 

the debugging mode is switched on, allowing fast cohort-level results to be generated once 

the programmer is satisfied that the model is behaving as expected. 

 

The example Visual Basic model described above and provided in Appendix A is intended to 

demonstrate the basic workings of a DES to people who are familiar with using Visual Basic 

to automate PSA. This is a straightforward approach, but it has the disadvantage that, as 

models become more complex, the coding may become cumbersome and/or difficult to 

follow. An alternative is to adopt an object-orientated approach to implementation, taking 

advantage of Visual Basic’s class-module and user-defined function capabilities to define 

entities (simulated patients) as objects with properties and methods. This is likely to lead to a 

model that is more transparent and more readily amenable to alteration and extension; 

however, it will also usually entail a slightly longer run-time. A version of the Visual Basic 

model implemented in this way is provided on the DSU website (www.nicedsu.org.uk). 

 

4.2.2. DES in R 

In the example R code the time-to event data is handled using a list structure and the list is 

sorted in order of occurrence using a standard R function (order[]). The event list is then 

processed with events being removed from the list until the list is empty. In our example, we 

have used two different elements in the list to handle the first and second vertebral fractures. 

This avoids the need to update this element of the list when the first vertebral fracture event 

occurs and then re-sort the list. However, if we were modelling a situation where an 

unlimited number of similar events could occur e.g. diabetic hypoglycaemia episodes in a 

type 1 diabetes model, it would be more efficient to simply update the event list each time a 

hypoglycaemic episode occurs to add the time to the next episode and re-sort the list.  
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In our example R code the event list for the intervention arm is generated after the event list 

for the control arm and the two groups are processed concurrently (i.e. in parallel). This 

avoids the need to generate and store random number arrays to ensure that similar conditions 

occur for each intervention. We have however set the random number seed to ensure that the 

results are replicable from one run to the next as this is helpful when debugging and 

validating a model.  

 

Where possible, we have used functions to implement identical processes in the intervention 

and control arms. For example, the same functions are used to calculate costs and QALYs 

across the two treatment strategies with only the function inputs differing according to 

whether the treatment or control arm is being processed. This minimises the opportunity for 

errors to be introduced by making changes to one part of the code for the intervention arm, 

but failing to make similar changes to the equivalent control arm code, which is a risk when 

running both arms concurrently. 

 

As with the Visual Basic example, we have added code to facilitate debugging and validation. 

In this case a debugging mode outputs the event list and the accrued costs and QALYs at the 

time of each event. Patient-level results are also saved to an array and output to a ‘.CSV’ file 

for validation purposes.  

 

4.3.  IMPLEMENTING A DES IN TREEAGE PRO 

Here we provide a brief description of how to implement a DES within TreeAge Pro.  The 

2014 version of TreeAge introduced new functionality which simplified creation of time-to-

event models and provides the capability to graphically model both Markov and DES sub-

trees that are part of a larger decision tree. The example model is available from the DSU 

website (www.nicedsu.org.uk) and its structure is shown in Figure 2.  

 

In broad terms, the steps needed to set-up the example model for DES simulation are as 

follows: 

1. Starting with a default decision node, add branches for each treatment strategy 

(Control and Intervention) and add DES nodes at the end of each branch. 

2. Define distributions for time-to-event attributes e.g. Weibull for time to hip 

fracture 
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3. Define variables and set starting values at the root decision node (e.g. set time-to-

event attributes equal to time-to-event distributions, set starting utility, set patient 

history of fractures, utility multipliers, costs, discount rates) 

4. Select the Control DES node as the master and set the time horizon of the 

simulation. 

5. Downstream from this node, create at least one Time node for processing events 

and one Terminal node to Exit the model. 

6. Add branches from the Time node to represent different events: hip fracture, 

vertebral fracture and death.   

7. Add a sub-tree to the hip fracture event to capture the risk of concurrent death 

8. Route the patient back to the Processing Event node or to Exit Model node. 

9. Add an event to capture the end of the time horizon, routing to Exit Model node. 

10. Add tracker variables to count occurrences of fractures. 

11. Set costs and utilities that will be accumulated at selected nodes (apply 

appropriate discounting conversions if required). 

12. Add logic to control adjustment to time-to-event by type of treatment and to 

control maximum allowed number of fractures. 

13. Identify and adjust any distributions that need to be resampled at selected nodes 

(e.g. time to vertebral fracture should be resampled after the first one has 

occurred). 

14. Make the Treatment DES node a clone of the Control node and define variables 

that pass treatment specific values to this sub-tree. 

15. Run the model in Microsimulation mode (Menu options: Analysis > Monte Carlo 

Simulation > Trials (Microsimulation)…) 

  

Further information about building and validating DES models can be found in TreeAge 

Pro’s built-in help documentation. 
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Figure 2: Structure for DES implemented in TreeAge Pro 
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4.4.  DES IN A BESPOKE SIMULATION PACKAGE (SIMUL8) 

Here we provide a brief description of how to implement a DES within a bespoke simulation 

package. The benefits of using a bespoke package include; 

 graphical representations of the simulation 

 easy debugging and validation 

 quick and easy development of new models 

 random number control 

 easy sampling of time-to-event variables from commonly used distributions e.g. 

Weibull, exponential 

There are several bespoke simulation packages that can be used to implement a DES and we 

have chosen to use SIMUL8 purely because this is the package which the authors have access 

to and with which the authors are most familiar. Figure 3 gives a graphical representation of 

the example DES model implemented within the bespoke modelling package SIMUL8. 

 

In broad terms, the steps needed to set up the example DES simulation in SIMUL8 are as 

follows; 

1. Set up a work-entry point which feeds the required number of patients into the 

simulation 

2. Define distributions for time-to-event attributes e.g. Weibull for time to hip fracture 

3. Define attributes and set starting values (e.g. set time-to-event attributes equal to time-

to-event distributions, set starting utility, set patient history of fractures) 

4. Add variables to information store (e.g. utility multipliers, costs, discount rates) 

5. Add visual logic to the work-entry point to set the patient’s route (which work-station 

they go to next) according to the next event 

6. Create a work-station to process each of the event types; hip fracture, vertebral 

fracture and death 

7. Add visual logic to the work-stations which; 

a. Calculates costs and QALYs accrued since the last event (discounted and 

undiscounted) and add these to totals so far. 

b. Updates attributes to record the event that has happened (e.g. Utility, patient’s 

fracture history, set time of last event equal to time of this event) 
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c. Updates event list to reflect changes needed following this event e.g. prevent 

further hip fractures after first hip fracture, sample time to second vertebral 

fracture after first vertebral fracture 

d. Sets the patient’s route out to the appropriate work-station according to the 

next event or alternatively route them to a work-exit point if exit condition met 

(e.g. death due to hip fracture) 

8. Add visual logic for end of run which converts total costs and QALYs to average per 

simulated patient 

 

The full documentation for the SIMUL8 implementation of our example DES model is 

provided in Appendix C and the accompanying model can be downloaded from the DSU 

website (www.nicedsu.org.uk). When reviewing this SIMUL8 model, please note that we 

have set up the DES to step through the events for each patient as efficiently as possible using 

the visual logic to accumulate outcomes according to the time elapsed between events rather 

than holding entities in queues while time elapses on the simulation clock. In our example 

model, the maximum clock time we have specified is sufficient to ensure that all patients will 

have died before the maximum clock time is reached. The time frame of the analysis is 

therefore the lifetime of the population. If results were required for a specific time frame, 

then it would be necessary to add ‘time horizon reached’ as an additional event and to set up 

an additional work station to calculate the costs and QALYs accrued from the patient’s most 

recent event to the end of the time horizon.  
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Figure 3: Graphical representation of example model in SIMUL8 
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4.5. TECHNIQUES REQUIRED TO IMPLEMENT A DES 

4.5.1. Sampling from a distribution 

Commercial simulation packages should provide a reasonable choice of statistical 

distributions for sampling parameters. The following are useful distributions; 

 Uniform 

 Normal 

 Lognormal 

 Gamma 

 Beta 

 Triangular 

 Exponential 

 Weibull 

 

The normal, lognormal, gamma, beta and triangular distributions are commonly used within 

cohort models to characterise parameter uncertainty within PSA, although the triangular 

distribution has historically been over used given its properties.11,26 However, the main 

drivers of patient-level variation within a DES are the time-to-event data which are sampled 

for each patient to give each one a unique pathway through the model. Two related 

distributions that are commonly used to sample time-to-event data are the exponential and 

Weibull distributions. 

 

The exponential distribution can be used to sample the time-to-event when the hazard of an 

event occurring is constant over time. This is analogous to a Markov state-transition model 

with two states (e.g. alive and dead) where the probability of an event occurring is constant 

over time e.g. a 2% risk of death per annum. The survival function gives the likelihood of 

surviving up to a particular time which is equivalent to the predicted population of the ‘alive’ 

state for that point in time when the starting population is one. Table 1 shows the survival 

function for an exponential with a mean time-to-event of β which is often described as the 

scale parameter. The rate is given by the reciprocal of the scale parameter (1/β).  When using 

a generic programming language to implement a DES, the time-to-event can be sampled as 

shown in Table 1, provided that a function is available to compute the natural logarithm and 

to provide a uniformly distributed sampled bounded by 0 and 1. 
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The Weibull distribution can be used when the hazard of an event occurring is either 

decreasing or increasing over time. Its form is similar to that of an exponential, but it includes 

a shape parameter which determines whether the hazard is increasing (shape>1) or decreasing 

(shape <1). Setting the Weibull parameter’s shape parameter to 1 gives an exponential 

distribution. The survival function and the method for calculating samples from the Weibull 

distribution are given in Table 1.  

 

Table 1: Survival functions 

Distribution Survival function Sample Notes 

Exponential (β) 
ܵሺݐሻ ൌ ݁

ష
ഁ   

 ሺܷሻ  β = scale݈݊ߚ-

Weibull (α, β);  
ܵሺݐሻ ൌ ݁

ିሺ
ഁ
ሻഀ

ሾെߚ   ݈݊ሺܷሻሿ
భ
ഀ  α=shape,  

β =scale 

Where U is a uniformly distributed random number between 0 and ln(U) is the natural logarithm of U 

 

Other continuous distributions which may be used to sample time-to-event are the gamma, 

lognormal, Gompertz, and log-logistic. Further details on how to sampled from these and 

other relevant distributions can be found in standard simulation texts.25 

 

When choosing a distribution to describe a particular model parameter, consideration should 

be given to both how well the distribution fits the empirical data and whether the hazard 

functions underlying the distributions are clinically plausible. For example, the exponential 

distribution assumes that the hazard of an event occurring is constant over time which is 

unlikely to be true when modelling human survival.  

 

4.5.2. Sampling time to death from national life-table data 

In a DES it is important to reflect the fact that patients will have different paths through the 

model due to stochastic variability even if there is no patient heterogeneity or parameter 

uncertainty included in the model. So in the case of life-expectancy, there should be variation 

in the time to death for individual patients in the population even if their starting age is the 

same and their mean life-expectancy is known precisely. The interim life-tables for England 

and Wales includes data on the number dying between each birthday (e.g. between age 50 

and age 51) for a starting birth cohort of 100,000, which is referred to as dx in the tables. This 
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provides an empirical frequency distribution for age at death which can be used to sample 

time to death for a particular starting age. Alternatively, a parametric survival model (e.g. 

Weibull, Gompertz) can be fitted to the predicted number of survivors, given by the lx data in 

the tables, and samples can be taken from that parametric survival model. 

  

4.5.3. Calculating discount rates for costs and QALYs accrued over an extended 

time period 

For costs accrued at a single time point, such as the costs of fracture in our example, the 

standard discounting formula can be applied: 

Equation 1:  ݀݁ݐ݊ݑܿݏ݅ܦ	ݐݏܿ ൌ 	

ሺଵାோሻ
 , 

where Ct  is the cost accrued at time t and DR is the annual discount rate (e.g. 3.5%). 

 

However, within the discrete event framework, the costs and QALYs accrued since the last 

event are calculated when the next event occurs. If these costs and QALYs have been accrued 

at a constant rate between times a and b, then the discounted value can be calculated as 

follows; 

Equation 2:      ݀݁ݐ݊ݑܿݏ݅ܦ	ݐݏܿ ൌ 	 ܸ
ሺሾ್ሺషವೃሻሿିሾೌሺషವೃሻሿሻ

ሺିூோሻ
 

 

Where Vab is the value accrued at a constant rate from time a to b and IDR is the 

instantaneous equivalent of the annual discount rate (DR) given by,  

Equation 3:       ܴܦܫ ൌ ln	ሺ1   .ሻܴܦ

 

This formula can be derived by considering that the discount factor, as a continuous function 

of time, is essentially an exponential distribution which can be integrated to give the area 

under the curve from the time since the last event to the time of the current event. If time is 

measured in years, then the first term in equation 2 (Vab) would be the cost per annum for 

cost calculations or the utility value for QALY calculations. Note that this formula results in 

an error if it is evaluated for a discount rate of zero, so it is advisable to have one variable 

tracking discounted outcomes and another variable tracking undiscounted outcomes rather 

than setting the discount rate to zero and re-running the model to obtain undiscounted values.  
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4.5.4. Estimating acceleration factors from hazard ratios when time to event data 

follow a Weibull distribution 

In a DES framework the clinical outcomes which could be modified by effective 

interventions are likely to be specified in terms of the time to various events. In our example 

model the clinical outcomes affected by intervention are the time to hip fracture and the time 

to first vertebral fracture and we have assumed that the effect of the intervention is to double 

the time to event for each of these fracture outcomes. This is consistent with an accelerated 

time failure model with an acceleration factor of 2. This factor can be conveniently applied 

directly to the sampled comparator arm time to event data to give the corresponding time to 

event sample for the intervention arm. However, not all clinical trials which report time to 

event outcomes will use an accelerated time failure model to analyse the intervention effect. 

Instead it is common for them to use a proportional hazards model to analyse the impact of 

the intervention on time to event outcomes, in which the hazard ratio (Hr) between treatment 

and control is assumed to be constant throughout the time frame of the analysis. In the special 

case where it can be assumed that the time to event data for both intervention and control 

follow a Weibull distribution with a common α parameter (or an exponential distribution as 

this is a special case of the Weibull distribution), it is possible to convert between a 

proportional hazards model with hazard ratio, Hr and an accelerated time failure model with 

acceleration factor, γ, as follows; 

Equation 4: 										݊݅ݐܽݎ݈݁݁ܿܿܣ	ݎݐ݂ܿܽ, ߛ ൌ ݁ି ୪୬ሺுೝሻ/ఈ  

 

It is also possible to sample the time to event for the treatment arm directly by including the 

hazard ratio in the formulae to estimate the random variate from Table 1 as shown in Eq 5, 

where α and β are the parameters for the comparator arm survival curve. 

Equation 5: ܹܾ݈݈݁݅ݑ	݁݉݅ݐ	ݐ	ݐ݊݁ݒ݁	݈݁݉ܽݏ ൌ ߚ	 ቂି 
ሺሻ

ுೝ
ቃ
భ
ഀ 

 

If it cannot be assumed that both the intervention and control arm data follow a Weibull 

distribution and that the hazard ratio is constant (i.e the α parameter is common across both 

arms), then an alternative method must be used to apply the efficacy evidence within the DES 

model. For example, it may be necessary to fit separate time to event curves to the data from 

each arm, allowing β and α parameters to be specified separately for each treatment arm. For 

further details on fitting survival curves to patient-level data see TSD 14.27,28 
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4.6. PATIENT-LEVEL STATE-TRANSITION FRAMEWORK 

In a patient-level state-transition framework, the model is constructed in a similar manner to a 

cohort state-transition model, but random numbers are used to determine exactly which 

transition is made each cycle based on the probabilities defined in the transition matrix. This 

is in contrast to the cohort state-transition model where a proportion of the cohort experiences 

the event. Provided that the appropriate non-Markovian assumptions are applied to the 

transition matrix, our simple example model can be implemented using four health states; 

 No fracture this cycle 

 Hip fracture this cycle 

 Vertebral fracture this cycle 

 Dead 

Patients move to the hip fracture and vertebral fracture health states for a single cycle when 

these events occur. They then return to the ‘no fracture this cycle’ health state. They can 

occupy the hip fracture health state once and the vertebral fracture health state up to twice. 

They occupy the ‘no fracture this cycle’ health state for all other cycles until they die. They 

can therefore make return transitions to this state up to three times (once after each possible 

fracture). Re-using health states in this manner avoids the numerous duplicate health states 

required to capture all the possible combinations of patient fracture history. It is this 

simplicity that makes patient-level state-transition models attractive compared to cohort-level 

state-transition model in situations where future events are dependent on previous events. 

 

Each cycle, the probability of each transition in the matrix is compared with a random 

number to determine if that particular transition occurs that cycle. When the random number 

is less than the probability, the transition element is set to 1 to indicate that the transition 

occurs. However, each row of the transition matrix must sum to one, just as it must for a 

cohort-level state-transition model. So if more than one transition in a row is sampled to 

occur a rule must be set up to determine which of the possible transitions is acted on. In our 

example spreadsheet model, we have assumed that deaths have precedence over hip fractures 

and hip fractures have precedence over vertebral fractures. This bias towards the more 

extreme event ensures that rarer but potentially more dangerous events are not ignored within 

the model, but this means that the model is likely to favour treatments which prevent the 

more severe events over those that prevent the less severe events. The bias that this generates 

within the cost-effectiveness estimates can be minimised by reducing the cycle length, as this 
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lowers the probability that two events are sampled to occur within a single cycle, although as 

discussed earlier reducing the cycle length may also make the model large and slow to 

evaluate over long time-horizons. Using a DES modelling approach avoids the potential bias 

associated with using a discrete time approach as the exact timing of each event is sampled, 

and then processed in order of occurrence, allowing multiple events to occur within a short 

period of time without additional computational expense.  

 

As the health states themselves do not track the patient’s history of previous fracture, future 

events are made dependent on previous events through the transition matrix. This is possible 

as the path of each patient is simulated individually and therefore their exact history is 

tracked through their occupation of health states in earlier cycles. In a cohort-level Markov 

state-transition model it is not possible to distinguish between patients according to anything 

other than their current health state. So in our example, patients entering the vertebral fracture 

state from the ‘no fracture this cycle’ state cannot be dealt with differently according to 

whether this is their first or second vertebral fracture or whether they have previously had a 

hip fracture. Therefore, the transition matrix for a cohort-level Markov state-transition model 

cannot be made dependent on the patient’s history without defining separate health states to 

capture all the various histories that could result in a patient occupying that particular state. In 

our example patient-level state-transition model, the transition matrix refers back to the 

health state occupation of all previous cycles to determine whether there has been a previous 

vertebral or hip fracture. It cannot therefore be referred to as a ‘Markov’ model as the 

Markovian assumption no longer holds.   

 

The transition matrix may also need to be made dependent on the current time or the time 

since previous events have occurred. As the survival distributions for avoiding either a hip or 

vertebral fracture are considered to follow a Weibull distribution, the probability of making a 

transition during a single cycle is not constant over time. For the first hip and vertebral 

fractures occurring, the transition probabilities are dependent on the time since the start of the 

simulation. For the second vertebral fracture the transition probability is dependent on the 

time since the first vertebral fracture, so this also needs to be tracked by the model based on 

the model’s record of when the vertebral fracture state was previously occupied. The utility 

values for each of the states are also dependent on the patient’s state occupation history as the 

current utility value is simply updated with a multiplier for each new event. Furthermore, in 

the case of vertebral fractures a different utility value must be applied according to whether 
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this is the first or second vertebral fracture, and in the case of hip fractures the utility must be 

set to zero for fatal hip fractures. 

 

The costs in our example model are more easily calculated as these depend only on the 

current health state occupation with one exception. The treatment costs need to stop being 

applied at the time of death but when patients die as a result of a hip fracture they do not 

move to the death state until the following cycle as it is necessary to record their transition 

through the hip fracture state in order to apply hip fracture costs. Therefore, the cost of the 

treatment has been set to zero for fatal hip fractures, but the full costs of the fracture itself are 

applied. Similarly, the estimate of life-years has been calculated based on the time spent in 

health states with utility >0 as this correctly captures fatal hip fractures at the time of hip 

fracture rather than at the next cycle when the patient moves to the death state. 

 

In order to create fracture risks in our state-transition model example which are equivalent to 

those in our DES example, we need to calculate the probability of patients experiencing an 

event during a single cycle length. When the likelihood of remaining free of a particular event 

is defined as following a Weibull distribution (as for hip and vertebral fractures in our 

example model), the likelihood of experiencing a transition during the period from t1 to t2 can 

be calculated as; 

Equation 6: ܲ൫ݐଵ,ݐଶ൯ ൌ 1 െ ሾሺ௧భݔ݁
ఉ
ሻఈ െ 	ሺ௧మ

ఉ
ሻఈሿ 

 

Therefore transition probabilities can be calculated for the comparator arm using the relevant 

α and β parameters for the comparator arm, but the relative impact of treatment on fracture 

risks still needs to be captured in the intervention arm. 

 

In our DES example model, the time to hip and first vertebral fracture is doubled for 

intervention compared to control. Doubling the time to fracture for intervention compared to 

control is analogous to a scenario where the time at risk of fracture moves at half the pace for 

the intervention arm. This is equivalent to saying that the probability of experiencing fracture 

events in the comparator arm between time t1 and t2 is equivalent to the probability of 

experiencing those fracture events in the treatment arm between times 2t1 and 2t2
 .This can be 

described as an accelerated time failure (ATF) model with an acceleration factor of 2. 
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Transition probabilities for the intervention arm can be calculated directly by applying such a 

time-transformation to the formula used within the comparator arm.   

 

However, when implementing a state-transition model it is more usual to apply efficacy data 

that is reported using either hazard ratios or relative risks. It can be shown that an accelerated 

time failure model for a Weibull survival distribution is equivalent to a proportional hazards 

model with the following hazard ratio for intervention versus control; 

Equation 7: ݀ݎܽݖܽܪ	݅ݐܴܽ, ܪ ൌ 	 ݁ିఈఊ 

 

where γ is the acceleration factor i.e. 2 in this case.  

 

In our example model, the time to hip and vertebral fractures are sampled from Weibull 

distributions with shape parameters of 4 and 2 respectively. Therefore the ATF model with an 

acceleration factor of 2 is equivalent to a proportional hazards model with a Hazard Ratio of 

0.0625 and 0.25 for hip and vertebral fractures respectively.  

 

The hazard ratio cannot be applied to the scale parameter directly as the hazard is a function 

of both shape and scale. However it is possible to make a relatively simple change to the 

transition probability calculation when using an alternative parameterization for the Weibull 

function. In this alternative parameterization the survival function is defined as 

Equation 8:      	ܵሺݐሻ ൌ ݁ିఒ௧
ഀ
, 

 

where λ is defined as follows; 

Equation 9:      ߣ ൌ  .ఈିߚ

 

The transition probability in the comparator arm can now be written as; 

Equation 10:       ܲ൫ݐଵ,ݐଶ൯ ൌ 1 െ ଵఈݐߣሾݔ݁ െ  ଶఈሿݐߣ

 

with the transition probability in the treatment arm given by; 

Equation 11:      ܲ൫ݐଵ,ݐଶ൯ ൌ 1 െ ଵఈݐሻߣܪሾሺݔ݁ െ ሺܪߣሻݐଶఈሿ 

 

where Hr is the hazard ratio for treatment versus control. 

 



42 
 

All of the above can be implemented within either a bespoke modelling package such as 

TreeAge, or within a generic modelling environment such as Microsoft Excel or R. TreeAge 

includes an option for conducting stochastic patient-level simulations and tracker variables 

can be set up to record the patient’s previous events in order to make the transition 

probabilities dependent on patient history. Programming a patient-level state-transition model 

within Microsoft Excel requires great care as the logic required to specify the transition 

matrices may be complex and difficult to check for errors. Whilst a patient-level state-

transition structure may require more complex logic, it may still be easier to construct and 

validate than an equivalent Markov cohort-level state-transition structure given the number of 

health states required to capture all the possible patient histories in order to maintain the 

Markov assumption. Our example model may be implemented with a reasonable number of 

distinct health states, but if the number of fracture types was increased from 2 to 4, then the 

number of health states would quickly become unmanageable for a cohort-level Markov 

model, particularly if the number of repeat fractures was not restricted to one or two per 

fracture type. 
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4.6.1. Practical difficulties of implementing a patient-level state-transition model 

within a spreadsheet package. 

 A rule of precedence must be set to process events when more than one is sampled to 

occur within a single cycle (this introduces a bias which is minimised, but not 

eliminated, by lowering the cycle length). 

 Time-dependent transition matrices may need to be specified if constant hazards 

cannot be assumed. Care should be taken to ensure that it is the time since the person 

became at risk that is used to calculate the transition probability rather than time since 

the start of simulation (e.g. risk of second vertebral fracture applies from time of first 

vertebral fracture) 

 Transition matrices may have to incorporate many logical statements if they need to 

be dependent on both the occurrence of previous events and the time since those 

previous events. 

 Care must be taken to specify exactly the time period being referenced within each 

formula to avoid circular references, as the current state occupation at time t2 is 

dependent on the transition matrix from time t1 to t2, which itself is dependent on state 

occupation up to time t1.  

 The spreadsheet can become large and difficult to work with if a large number of 

health states or time cycles are needed or if a large number of therapies are to be 

compared using duplicate structures.   

 Controlling the random number stream to achieve identical results for each model run 

and/or to apply common random numbers across different interventions becomes 

more difficult as the number of health states, time cycles and interventions increases 

due to the need to store and access a large number of random number samples.  
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4.6.2. Implementing a patient-level state-transition model in TreeAge Pro 

Here we provide a brief description of how to implement a state-transition model using patient-level 

simulation in TreeAge Pro. The example model is available from the DSU website (www.nicedsu.org.uk) 

and the model structure is shown in 



45 
 

Figure 4. 

 

In broad terms, the steps needed to set up the example model for individual patient simulation 

are as follows: 

1. Starting with a default decision node, add branches for each treatment strategy 

(control and intervention) and add Markov nodes at the end of each branch. 

2. Define all model parameters and common formulae at the root decision node. 

3. Define treatment specific formulas at each strategy node (the Markov nodes) and 

set the number of cycles. 

4. At the control treatment branch, create health states for ‘alive’ and ‘dead’ using 

chance nodes. 

5. Create branches for the ‘alive’ state for all possible events which can occur, i.e. no 

fracture, hip fracture, vertebral fracture and death.  

6. Add a sub-tree for hip fractures to capture the risk of concurrent death. 

7. For each event branch, direct the patients back to the appropriate health state 

(‘alive’ or ‘dead’) via the terminal nodes. 

8. Add tracker variables to count occurrences of fractures. 

9. Enter appropriate formulae for probabilities, costs and utilities (apply appropriate 

discounting conversions if required). 

10. Use the common event structure from the control treatment branch to clone any 

additional treatment strategies, including the intervention node. 

11. Run the model in Microsimulation mode (Menu options: Analysis > Monte Carlo 

Simulation > Trials (Microsimulation)…) 

Further information about building and validating DES models can be found in TreeAge 

Pro’s built in help documentation.  



46 
 

Figure 4: Structure of patient-level state-transition model implemented in TreeAge Pro  
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5. GOOD MODELLING PRACTICE FOR PATIENT-LEVEL 

SIMULATIONS  

This section provides a summary of issues thought to be of value to general readers. More 

advanced readers are referred to standard simulation text books such as Pidd, Law and Banks 

and colleagues.18,25,29 

 

5.1.  STRUCTURING A PATIENT-LEVEL SIMULATION 

In typical pharmaceutical evaluation models, where patients are assumed to be independent, 

the computational time required is approximately proportional to the number of patients, 

However, where patients are competing for resources and held in queues until resources 

become free the computational time can increase dramatically with the number of patients in 

models. Therefore it is good practice to not hold entities in queues unless absolutely 

necessary. 

 

To illustrate these points, a simple model was constructed in SIMUL8 where entities were 

forced to wait in queues until a single event occurred (the timing of which was assuming to 

be normally distributed with an average of 10 units and a standard deviation of 2.5). Once the 

event occurred a cumulative total of event times was updated and the entity exited the model. 

The running time took less than ten seconds to evaluate 10,000 entities; four minutes to 

evaluate 50,000 entities and in excess of four hours to evaluate 300,000 entities. These values 

demonstrate the non-proportional increase in time as patient numbers increase.  

 

A replicate model was constructed with entities not held in queues but instead the running 

total was increased by the estimated time to event and the entity exiting the model 

immediately such that only one entity was in the model at any point in time. The replicate 

model processed 300,000 in three seconds demonstrating the efficiency of not holding 

entities within queues in the final analysis model. However, it is often beneficial to construct 

models with queues for debugging purposes or for walking through models with clinical 

experts and then to remove these when processing results.  
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5.2. ESTABLISHING THE NUMBER OF INDIVIDUAL PATIENTS TO SIMULATE 

In patient-level models there is sampling error due to the variability in the simulated 

experiences between patients. This uncertainty is often referred to as first-order uncertainty, 

and can be decreased by simulating an increased number of individual patients; however, this 

will result in a greater computational time requirement. In contrast, the marginal effect of 

each patient on the average costs and QALYs is expected to decrease as the number of 

patients previously simulated increases. For example, the change in average costs is likely to 

be less when sampling the one millionth patient compared with the one hundredth patient. 

 

As the computational requirements are at least proportionate to the number of patients but 

there is a decrease in the marginal information provided by patients, it is clear that there will 

be a point at which the increased accuracy associated with running one additional patient 

would not be considered sufficient to justify the additional computational time required. To 

the authors’ knowledge there is no widely-used algorithm within the discipline of health 

economics to determine the optimal number of patients to simulate. O’Hagan and colleagues 

have detailed a method that uses an analysis of variance approach to determine the 

appropriate number of patients and number of samples from the parameter uncertainty which 

can reduce the computational time required.30 However, this method requires initial runs for 

calibration and is often not necessary for models which have a relatively quick computational 

time.   

 

Outside the confines of health economics, published papers have explicitly estimated the 

costs of sampling compared with the value of additional information; interested readers are 

referred to Chick and Frazier, and Chick and Gans and the references contained therein.31,32 

 

Typically the number of patients to sample is left to the discretion of the modeller. However, 

it would be expected that all modellers justify the number of patients selected. Methods of 

justification can include a graphical representation of the costs, QALYs and the cost per 

QALY gained and determining at what number of patients the estimated error in the results 

appear acceptable. Examples of such a diagram depicting the incremental costs, incremental 

QALYs and the cost per QALY gained using the simple osteoporosis model is provided in 

Figure 5 to 7. Each figure includes error bars to show the uncertainty in the mean estimate, 

calculated using the standard error for incremental costs and QALYs and by jackknifing for 



49 
 

the cost per QALY gained, which is discussed in more detail in section 5.3. As expected, the 

length of the error bars decrease as the number of patients simulated increases. 

 

Figure 5: A plot of incremental costs in relation to the number of patients simulated.  

 

 

Figure 6: A plot of incremental QALYs gained in relation to the number of patients simulated.  
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Figure 7: A plot of cost per QALY gained in relation to the number of patients simulated.  
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altering the seed number used to initialise the random number stream and re-running the 

results. The sample size chosen should be sufficient to ensure that comparable results are 

achieved regardless of the chosen seed.16 If the results are found to vary significantly when 

selecting a different random number stream then the model should be checked to see whether 

there are any unintended correlations between samples that are supposed to vary 

independently. Coordination of random number streams between interventions can provide a 

more rapid estimation of the desired outputs and can be achieved in bespoke DES packages. 

Law et al. provide details on the use of common random numbers and several other variance 

reduction techniques, which may be of interest if the level of precision required cannot be 

efficiently obtained by increasing the number of patients sampled.25  

 

Limitations associated with the random number in Microsoft Excel have been documented of 

which modellers should be aware.33  In a problem observed by the authors, a model had 

shown relative stability of results at a given number of individual patients. However, when a 

further strategy was added to the decision problem the results changed substantially. It was 

identified that the problem was due to autocorrelation between random numbers within 

Microsoft Excel. The experience of each patient was simulated under all strategies before 

progressing to the next hypothetical patient; as such adding an additional strategy caused a 

different distribution of the values within the chosen random numbers stream. The impact of 

the autocorrelation problem was minimised by evaluating the results for all simulated patients 

for a strategy before evaluating the next strategy.  

 

5.3. CONDUCTING PROBABILISTIC SENSITIVITY ANALYSIS 

Probabilistic sensitivity analysis is recommended as it produces a more accurate assessment 

of the expected cost-effectiveness of interventions when the model is non-linear.4 This 

enables the uncertainty associated with parameters to be simultaneously reflected in the 

results of the model. In non-linear decision models, probabilistic methods provide the best 

estimates of mean costs and outcomes.1 The National Institute for Health and Care 

Excellence advocates their use stating that ‘Probabilistic sensitivity analysis is preferred’ […. 

to a deterministic analysis using means or most-likely values].  

 

Conducting PSA within a patient-level model is no different to conducting it within a cohort-

level model. Samples for the parameter estimates are drawn from appropriate distributions, 
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taking into account any correlations between parameters, and then the model is evaluated at 

each of these PSA configurations. The only difference is that in a patient-level model, the 

model evaluation step involves estimating the average outcomes across a large number of 

simulated individuals, whereas the cohort-level model can be evaluated analytically. As such 

this section applies equally to both patient-level and cohort-level models.  

 

Historically there has been little justification of the number of PSA configurations evaluated 

in submissions received by NICE and the number undertaken is typically a round number (for 

example 1000) and has been left to the discretion of the modeller. However, approaches do 

exist to provide an indication of whether the number that has been run is likely to be 

sufficient. A simple approach denoted ‘jackknifing’ was proposed by Iglehart34 and is 

summarised in Law.25 The jackknife approach allows a confidence interval to be estimated 

for the mean incremental cost-effectiveness ratio (ICER) and is not affected by the statistical 

bias that is associated with classical estimates of a non-linear function (such as cost per 

QALY) that is a ratio of two model outputs. Using this approach the robustness of the 

decision can be evaluated. For example, if the 95% confidence interval (CI) for the mean cost 

per QALY was wide and crossed one of the commonly reported thresholds then it is an 

indication that further PSA configuration may be required to produce a more definitive ICER. 

In contrast, if the 95% CI was narrow and confined to one side of commonly reported 

thresholds, for example £20,000 to £30,000 per QALY gained in the context of NICE, then 

this is an indication that sufficient PSA configurations have been undertaken. An example of 

the jackknife used within a health technology assessment setting is provided in Stevenson et 

al.15 For further information on stochastic versus parameter uncertainty in disciplines other 

than health economics readers are directed to Zouaoui and Wilson35, Ng and Chick36, and 

Barton and colleagues37 and included references. 

 

In rare occasions where the running time of the model is so large that PSA cannot be run 

within the timescales of a project then mathematical approximations of the output may be 

required in order to facilitate PSA. An example of such techniques is provided in Stevenson 

et al.38 
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5.4. THE RELATIVE IMPORTANCE OF FIRST- AND SECOND- ORDER UNCERTAINTY 

A result provided by O’Hagan and colleagues30 is that for patient-level simulations without 

patient interaction, if the only objective of PSAs was to estimate the mean cost, effectiveness 

or net benefit then the optimal number of patients to run per sample (for a given 

computational resource) would be one patient, whilst running as many configurations from 

parameter uncertainty as possible. However, this would not provide data on the uncertainty in 

the output. Nevertheless, this would imply that where there is a choice between either 

reducing the number of individual patients simulated or reducing the number of 

configurations drawn from parameter uncertainty, then the former is the most appropriate 

option, although a reasonable number of patients should be maintained if outputs such as 

cost-effectiveness acceptability curves are required. 

 

Strong et al.39 have recently described a nonparameteric regression method for estimating 

partial expected value of perfect information (pEVPI) from the PSA output. This eliminates 

the need to run a 2-level nested Monte Carlo Simulation to estimate the pEVPI, thus 

substantially reducing the computational effort required to obtain pEVPI estimates from 

either cohort-level models or patient-level simulations. Furthermore, in the case of patient-

level simulations, Strong et al.’s  method treats any residual variability in the net benefit due 

to non-convergence of a patient-level simulation as noise in the regression, which is averaged 

out, allowing a small patient sample size to be used to inform the pEVPI analysis without 

causing any upward bias in the pEVPI estimate. Therefore, the choice to use a patient-level 

simulation should not preclude analysts from conducting either PSA or pEVPI analysis.  

 

5.5. TRANSPARENT REPORTING OF PATIENT-LEVEL SIMULATIONS 

The clear presentation of the intended and actual structure of a simulation is essential in 

ensuring that model users understand the strengths and limitations of the model and the 

evidence upon which the model has been structured and parameterised. It is important to 

report not only the structure of the final model and its assumptions, but also why those 

assumptions should be considered necessary and appropriate. Existing guidelines, for 

example the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) 

statement may provide a useful structure for reporting models.40  
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In addition to existing reporting standards, the reader should note that TSD 1341 presents a 

detailed exposition of methods for developing and reporting two key classes of conceptual 

model:  

1. Problem-oriented conceptual models. These conceptual models are associated with 

developing, sharing and testing one’s understanding of the decision problem and the 

system in which that problem exists. Problem-oriented models do not involve making 

assertions about how the model will be developed. The two key forms of problem-

oriented conceptual model are:  

a. Disease Logic Models which set out in visual and textual formats, the model 

developer’s conceptual understanding of the key disease-specific factors and 

how the disease process operates, and;  

b. Service Pathways Models which set out the model developer’s understanding 

of the way in which disease services are organised and delivered.  

2. Design-oriented models. These conceptual models are associated with designing, 

specifying and justifying the model and its structure given the evidence that is 

anticipated to be available. Design-oriented models are thus more reflective of the 

interrelationships between the disease and service pathways and the necessary 

simplifications and abstractions required in order to synthesise evidence to reflect 

such interrelationships.  

 

In separating out these two types of conceptual model development, the model developer and 

model user is able to compare and contrast between the conceptual model types in order to 

argue and justify simplifications and abstractions in the final model. TSD 13 provides 

detailed advice on what to consider and how to formulate these conceptual models.41  

 

5.6. VALIDATING PATIENT-LEVEL SIMULATIONS 

Health policy decisions must be relevant, evidence-based and transparent. Decision-analytic 

modelling is well placed to support this process however the usefulness of the results of cost-

effectiveness analyses in informing decisions are hinged on the credibility of the model from 

which they are drawn. The presence (and identification of) errors in mathematical decision 

models or simulation exercises may reduce the credibility and usefulness of such models. 

Errors can be introduced at any point in the model development process, from understanding 

the decision problem to using the model to inform decision-making. Errors which are 
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identified may reduce the decision-makers’ trust in the model, whilst errors which are not 

identified may unintentionally lead to suboptimal decisions. The processes and techniques 

employed to validate and verify patient-level simulations, or indeed any type of model, 

therefore represent an important part of the model development process. Broadly speaking, 

model verification relates to whether the model behaves as intended (is the model right?), 

whilst the broader concept of model validation, which subsumes model verification, relates to 

whether the model can be considered fit for purpose (is it the right model?).42,43 

 

In the absence of a standardised set of guidelines for model checking, and given the fact that 

all models are unique, setting out a comprehensive and exhaustive guide to checking 

simulation models is difficult, if not impossible. It is further important to recognise that 

model validation and verification involves more than simply resolving programming or 

technical errors; it extends to problems in identifying and addressing “softer” aspects of the 

decision problem relating to the definition of the decision problem and setting out the 

conceptual basis which will underlie the hard implemented software model. The definition of 

what constitutes an error (and what does not) is not always clear. As a consequence, certain 

problems in models may be deemed to represent unequivocal errors (e.g. failure to adhere to 

the laws of probability), whilst the acceptability of other matters of judgement must be 

interpreted subjectively.  

 

The avoidance and identification of errors are highly relevant aspects of ensuring that a 

model is behaving as intended and that confidence can be placed in the model’s results. The 

distinction between error avoidance and identification is however somewhat hazy, but is 

probably best considered in terms of the occurrence and timing of the error. An effective 

error avoidance strategy may prevent an error from being introduced in the first place, or may 

result in the early identification and resolution of the error prior to the model’s completion 

and use. Error identification may occur whilst the model is being developed or after it has 

been considered to be completed. Ideally, error avoidance should reduce the need for, and 

limit the adverse consequences of, error identification. 

 

Several software packages include functionality that can assist the modeller and reviewer to 

identify potential sources of errors in the model by validating the model against a selection of 

potential issues. For example, TreeAge Pro has functions which can help identify missing or 

incorrectly defined nodes, probabilities, pay-offs and jump states or variables, distributions 
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and tables that have been defined but are not used. SIMUL8 Professional offers a suite of 

debugging tools to aid the identification of model errors. Similarly, later versions of 

Microsoft Excel offer formulae auditing and error checking functions. 

 

An ability to control the random number streams used by the simulation to ensure that results 

are replicable from one run to the next is extremely useful when debugging patient-level 

simulations as any unexpected behaviour will be reproduced at the same point in each run 

making it easier for the  modeler to detect when that behaviour has been eliminated. Model 

implementations which do not allow the random number streams to be controlled in this way 

should be avoided for this reason. 

 

A recent Health Technology Assessment (HTA) report by Chilcott et al.44 highlighted a 

number of different processes and techniques to avoid and identify errors in HTA models. 

These relate not only to the implementation of the model but more widely to the overall 

model development process. An amended version of this list, adapted to a simulation context, 

is presented in Table 2. This list should be considered as a starting point rather than a 

definitive comprehensive guide. Further general guidance on model transparency and 

validation is available from the ISPOR-SMDM Modeling Good Research Practices Task 

Force.45  
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Table 2: Avoiding / identifying errors in patient-level simulations 

Suggested activities for avoiding errors within patient-level simulations 

Ensuring mutual understanding between modeller and problem-owners* 

 Ensure mutual understanding of the problem situation, the decision-makers’ 

objectives and the clinical intent of relevant interventions across the system 

 Develop explicit conceptual models* of the disease logic and service pathways 

in conjunction with clinical experts who practice within the disease service  

 Iterative negotiation and communication between the modeller and the 

decision-maker concerning what is required of the model and what can be 

achieved (subject to time, expertise, expense) 

Checking face validity of the model 

 Establish ongoing long-term involvement with stakeholders who know about 

the disease and its treatment 

 Undertake peer review of conceptual models* 

 Discuss data sources with clinicians  

 Step through simulation model pathways with clinical experts  

 Ask clinicians to provide feedback on whether the model results meet their pre-

determined expectations (note – deviations may indicate either an error or that 

the prior expectation was incorrect) 

 Compare interim or final model results against pre-determined expectations 

(from previous models, from skeleton/back of the envelope model) 

Transparency of methodology and assumptions 

 Produce written and diagrammatic descriptions of conceptual models*  

 Explicit agreement of problem-oriented conceptual models prior to developing 

design-oriented conceptual model* 

 Development of written design-oriented conceptual model plus consultation 

 Transparent and iterative comparison of design-oriented conceptual model with 

problem-oriented conceptual model 

Housekeeping techniques 

 Use of a standard model layout 

 Consistent use of programming logic to route patients to the next event  

 Use of separate referenceable model parameters worksheet / input file within 
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simulation package / programming language 

 Use of identifiers which distinguish between patient attributes (i.e. labels or 

tracker variables), distributions and global simulation variables e.g. 

“utility_patient”, “utility_dist”, “QALYs_global” 

Suggested activities for error checking within patient-level simulations 

Model testing 

 Compare the mean of the parameter samples generated by the model against the 

point estimate for that parameter. 

 Use graphical methods to examine distributions, functions etc. 

 Output patient-level information on intermediate and final outcomes and apply 

logical tests to check for unintended behaviour  (e.g. check time of death≤life 

expectancy) 

 Check data used in the model against source material 

 Check the integrity of all pre-model analysis including the ability of the model 

to predict the data used to inform it 

 Construct mock-ups in Microsoft Excel for portions of the simulation that are 

difficult to assess 

 Annotate all model logic to aid stepping through the code 

 Test model logic by stepping through the experience of individual patients 

 Insert dummy states and examine throughput using specific patient labels or 

global numbers 

 Record interim outputs (e.g. numbers of patients and time to events) within the 

logic that processes events to check model flows and event times are as 

intended 

 Check model results against expectations (and ensure that unexpected results 

can be explained) 

 Compare deterministic results with PSA 

Model peer review  

 Internal peer review by modeller responsible for building model  

 Internal peer review by modeller not involved in developing the model 

 External peer review by clinical experts and methodologists 

 Check model input values against source material 

* For further details on formal conceptual modelling approaches, the reader should refer to TSD13 .41  



59 
 

6. REFERENCES 

 1.  The National Institute for Health and Care Excellence. Guide to the methods of 
technology appraisal. 2013. London, The National Institute for Health and Care 
Excellence.  

 2.  Roberts, M., Russell, L.B., Paltiel, A.D., Chambers, M., McEwan, P., Krahn, M. 
Conceptualizing a Model: A Report of the ISPOR-SMDM Modeling Good Research 
Practices Task Force-2. Value in Health 2012; 15(6):804-811. 

 3.  Getsios, D., Migliaccio-Walle, K., Caro, J.J. NICE cost-effectiveness appraisal of 
cholinesterase inhibitors: was the right question posed? Were the best tools used? 
Pharmacoeconomics 2007; 25(12):997-1006. 

 4.  Claxton, K., Sculpher, M., McCabe, C., Briggs, A., Akehurst, R., Buxton, M. et al. 
Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra. 
Health Economics 2005; 14(4):339-347. 

 5.  Griffin, S., Claxton, K., Hawkins, N., Sculpher, M. Probabilistic analysis and 
computationally expensive models: Necessary and required? Value in Health 2006; 
9(4):244-252. 

 6.  R: A language and environment for statistical computing. [ Vienna, Austria.: R 
Foundation for Statistical Computing, 2013. 

 7.  The National Institute for Health and Clinical Excellence. Guide to the single 
technology appraisal process. 2009. London, The National Institute for Health and 
Clinical Excellence.  

 8.  The National Institute for Health and Clinical Excellence. Guide to the multiple 
technology appraisal process. 2009. London, The National Institute for Health and 
Clinical Excellence.  

 9.  Barton, P., Bryan, S., Robinson, S. Modelling in the economic evaluation of health care: 
selecting the appropriate approach. Journal of Health Services Research & Policy 2004; 
9(2):110-118. 

 10.  Brennan, A., Chick, S.E., Davies, R. A taxonomy of model structures for economic 
evaluation of health technologies. Health Economics 2006; 15(12):1295-1310. 

 11.  Briggs, A.H., Weinstein, M.C., Fenwick, E.A.L., Karnon, J., Sculpher, M.J., Paltiel, 
A.D. Model Parameter Estimation and Uncertainty: A Report of the ISPOR-SMDM 
Modeling Good Research Practices Task Force-6. Value in Health 2012; 15(6):835-842. 

 12.  Koerkamp, B.G., Stijnen, T., Weinstein, M.C., Hunink, M.G.M. The Combined 
Analysis of Uncertainty and Patient Heterogeneity in Medical Decision Models. 
Medical Decision Making 2011; 31(4):650-661. 

 13.  Stevenson, M.D., Brazier, J.E., Calvert, N.W., Lloyd-Jones, M., Oakley, J.E., Kanis, 
J.A. Description of an individual patient methodology for calculating the cost-



60 
 

effectiveness of treatments for osteoporosis in women. Journal of the Operational 
Research Society 2004; 56(2):214-221. 

 14.  Siebert, U., Alagoz, O., Bayoumi, A.M., Jahn, B., Owens, D.K., Cohen, D.J. et al. 
State-Transition Modeling: A Report of the ISPOR-SMDM Modeling Good Research 
Practices Task Force-3. Value in Health 2012; 15(6):812-820. 

 15.  Stevenson, M.D., Oakley, J.E., Chick, S.E., Chalkidou, K. The cost-effectiveness of 
surgical instrument management policies to reduce the risk of vCJD transmission to 
humans. Journal of the Operational Research Society 2008; 60(4):506-518. 

 16.  Karnon, J., Stahl, J., Brennan, A., Caro, J.J., Mar, J., Moller, J. Modeling using Discrete 
Event Simulation: A Report of the ISPOR-SMDM Modeling Good Research Practices 
Task Force-4. Value in Health 2012; 15(6):821-827. 

 17.  Soares, M.O., Castro, L.C.E. Continuous Time Simulation and Discretized Models for 
Cost-Effectiveness Analysis. Pharmacoeconomics 2012; 30(12):1101-1117. 

 18.  Pidd, M. Computer simulation in management science. John Wiley & Sons, Inc., 2004. 

 19.  Hawkins, N., Sculpher, M., Epstein, D. Cost-effectiveness analysis of treatments for 
chronic disease: Using R to incorporate time dependency of treatment response. 
Medical Decision Making 2005; 25(5):511-519. 

 20.  Caro, J.J. Pharmacoeconomic analyses using discrete event simulation. 
Pharmacoeconomics 2005; 23(4):323-332. 

 21.  Tappenden, P., Chilcott, J., Brennan, A., Squires, H., Stevenson, M. Whole Disease 
Modeling to Inform Resource Allocation Decisions in Cancer: A Methodological 
Framework. Value in Health 2012; 15(8):1127-1136. 

 22.  Pitman, R., Fisman, D., Zaric, G.S., Postma, M., Kretzschmar, M., Edmunds, J. et al. 
Dynamic Transmission Modeling: A Report of the ISPOR-SMDM Modeling Good 
Research Practices Task Force-5. Value in Health 2012; 15(6):828-834. 

 23.  Harris, J., Felix, L., Miners, A., Murray, E., Michie, S., Ferguson, E. et al. Adaptive e-
learning to improve dietary behaviour: a systematic review and cost-effectiveness 
analysis. Health Technology Assessment 2011; 15(37). 

 24.  Swain, J. Simulation Software Survey — Simulation: a better reality? OR-MS Today 
2013; 40[5]. 2014.  

 25.  Law, A.M. Simulation modeling and analysis. Fourth ed. 2007. 

 26.  Briggs, A.H., Claxton, K., Sculpher, M.J. Decision modelling for health economic 
evaluation. Oxford university press, 2006. 

 27.  Latimer N. NICE DSU Technical Support Document 14: Survival analysis for 
economic evaluations alongside clinical trials - extrapolation with patient-level data. 
2011. Sheffield, UK, NICE Decision Support Unit. Technical Support Documents.  



61 
 

 28.  Latimer, N.R. Survival Analysis for Economic Evaluations Alongside Clinical 
TrialsÇöExtrapolation with Patient-Level Data Inconsistencies, Limitations, and a 
Practical Guide. Medical Decision Making 2013; 33(6):743-754. 

 29.  Banks, J., Carson, J.S. Discrete-event system simulation. Pearson Education USA, 
2010. 

 30.  O'Hagan, A., Stevenson, M., Madan, J. Monte Carlo probabilistic sensitivity analysis 
for patient level simulation models: Efficient estimation of mean and variance using 
ANOVA. Health Economics 2007; 16(10):1009-1023. 

 31.  Chick, S.E., Gans, N. Update on an economic approach to simulation selection 
problems. 2008 Winter Simulation Conference. Proceedings of the 2008 Winter 
Simulation Conference 2014;  297-304.  Institute of Electrical and Electronics 
Engineers, Inc.  

 32.  Chick, S.E., Frazier, P. Sequential Sampling with Economics of Selection Procedures. 
Management Science 2012; 58(3):550-569. 

 33.  McCullough, B.D., Heiser, D.A. On the accuracy of statistical procedures in Microsoft 
Excel 2007. Computational Statistics & Data Analysis 2008; 52(10):4570-4578. 

 34.  Iglehart, D.L. Simulating stable stochastic systems, V: Comparison of ratio estimators. 
Naval Research Logistics Quarterly 1975; 22(3):553-565. 

 35.  Zouaoui, F., Wilson, J.R. Accounting for parameter uncertainty in simulation input 
modeling. IIE Transactions 2003; 35(9):781-792. 

 36.  Ng, S.H., Chick, S.E. Reducing parameter uncertainty for stochastic systems. ACM 
Transactions on Modeling and Computer Simulation (TOMACS) 2006; 16(1):26-51. 

 37.  Barton, R.R., Nelson, B.L., Xie, W. Quantifying input uncertainty via simulation 
confidence intervals. INFORMS Journal on Computing 2013; Articles in Advance:1-14. 

 38.  Stevenson, M.D., Oakley, J., Chilcott, J.B. Gaussian process modeling in conjunction 
with individual patient simulation modeling: A case study describing the calculation of 
cost-effectiveness ratios for the treatment of established osteoporosis. Medical Decision 
Making 2004; 24(1):89-100. 

 39.  Strong, M., Oakley, J.E., Brennan, A. Estimating Multiparameter Partial Expected 
Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample A 
Nonparametric Regression Approach. Medical Decision Making 2013. 

 40.  Husereau, D., Drummond, M., Petrou, S., Carswell, C., Moher, D., Greenberg, D. et al. 
Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. 
British Medical Journal 2013; 346. 

 41.  Kaltenthaler, E., Tappenden, P., Paisley, S., Squires, H. NICE DSU Technical Support 
Document 13: Identifying and reviewing evidence to inform the conceptualisation and 
population of cost-effectiveness models. 2011. Sheffield, UK, NICE Decision Support 
Unit. Technical Support Documents.  



62 
 

 42.  Sargent, R.G. Validation and verification of simulation models. Simulation Conference, 
2004.Proceedings of the 2004 Winter 2004; 1.  Institue of Electrical and Electronic 
Engineers, Inc.  

 43.  Schlesinger, S., Crosbie, R.E., Gagne, R.E., Innis, G.S., Lalwani, C.S., Loch, J. et al. 
Terminology for model credibility. Simulation 1979; 32(3):103-104. 

 44.  Chilcott, J., Tappenden, P., Rawdin, A., Johnson, M., Kaltenthaler, E., Paisley, S. et al. 
Avoiding and identifying errors in health technology assessment models: qualitative 
study and methodological review. Health Technology Assessment 2010; 14(25). 

 45.  Eddy, D.M., Hollingworth, W., Caro, J.J., Tsevat, J., McDonald, K.M., Wong, J.B. 
Model Transparency and Validation: A Report of the ISPOR-SMDM Modeling Good 
Research Practices Task Force-7. Value in Health 2012; 15(6):843-850. 

 
 


