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Introduction
In the one-way analysis of variance (Section 44.1) we consider the effect of one factor on the values
taken by a variable. Very often, in engineering investigations, the effects of two or more factors are
considered simultaneously.

The two-away ANOVA deals with the case where there are two factors. For example, we might
compare the fuel consumptions of four car engines under three types of driving conditions (e.g.
urban, rural, motorway). Sometimes we are interested in the effects of both factors. In other cases
one of the factors is a ‘nuisance factor’ which is not of particular interest in itself but, if we allow for
it in our analysis, we improve the power of our test for the other factor.

We can also allow for interaction effects between the two factors.
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Prerequisites
Before starting this Section you should . . .

• be familiar with the general techniques of
hypothesis testing

• be familiar with the F -distribution

• be familiar with the one-way ANOVA
calculations'
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Learning Outcomes
On completion you should be able to . . .

• state the concepts and terminology of
two-way ANOVA

• perform two-way ANOVA

• interpret the results of two-way ANOVA
calculations
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1. Two-way ANOVA without interaction
The previous Section considered a one-way classification analysis of variance, that is we looked at the
variations induced by one set of values of a factor (or treatments as we called them) by partitioning
the variation in the data into components representing ‘between treatments’ and ‘within treatments.’

In this Section we will look at the analysis of variance involving two factors or, as we might say,
two sets of treatments. In general terms, if we have two factors say A and B, there is no absolute
reason to assume that there is no interaction between the factors. However, as an introduction to
the two-way analysis of variance, we will consider the case occurring when there is no interaction
between factors and an experiment is run only once. Note that some authors take the view that
interaction may occur and that the residual sum of squares contains the effects of this interaction
even though the analysis does not, at this stage, allow us to separate it out and check its possible
effects on the experiment.

The following example builds on the previous example where we looked at the one-way analysis of
variance.

Example of variance in data
In Section 44.1 we considered an example concerning four machines producing alloy spaces. This
time we introduce an extra factor by considering both the machines producing the spacers and the
performance of the operators working with the machines. In this experiment, the data appear as
follows (spacer lengths in mm). Each operator made one spacer with each machine.

Operator Machine 1 Machine 2 Machine 3 Machine 4
1 46 56 55 47
2 54 55 51 56
3 48 56 50 58
4 46 60 51 59
5 51 53 53 55

In a case such as this we are looking for discernible difference between the operators (‘operator
effects’) on the one hand and the machines (‘machine effects’) on the other.

We suppose that the observation for operator i and machine j is taken from a normal distribution
with mean

µij = µ + αi + βj

Here αi is an operator effect and βj is a machine effect. Our hypotheses may be stated as follows.

Operator Effects


H0 : µ1j = µ2j = µ3j = µ4j = µ5j = µ + βj

That is α1 = α2 = α3 = α4 = α5 = 0
H1 : At least one of the operator effects is different to the others

Machine Effects


H0 : µi1 = µi2 = µi3 = µi4 = µ + αi

That is β1 = β2 = β3 = β4 = 0
H1 : At least one of the machine effects is different to the others

Note that the five operators and four machines give rise to data which has only one observation per
‘cell.’ For example, operator 2 using machine 3 produces a spacer 51 mm long, while operator 1 using
machine 2 produces a spacer which is 56 mm long. Note also that in this example we have referred
to the machines by number and not by letter. This is not particularly important but it will simplify
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some of the notation used when we come to write out a general two-way ANOVA table shortly. We
obtain one observation per cell and cannot measure variation within a cell. In this case we cannot
check for interaction between the operator and the machine - the two factors used in this example.
Running an experiment several times results in multiple observations per cell and in this case we
should assume that there may be interaction between the factors and check for this. In the case
considered here (no interaction between factors), the required sums of squares build easily on the
relationship used in the one-way analysis of variance

SST = SSTr + SSE

to become

SST = SSA + SSB + SSE

where SSA represent the sums of squares corresponding to factors A and B. In order to calculate
the required sums of squares we lay out the table slightly more efficiently as follows.

Operator Machine

Means

Operator SS
X̄.j − ¯̄X

(X̄.j − ¯̄X)2

1 2 3 4

1 46 56 55 47 51 − 2

Machine
Means (X̄i.)

¯̄X = 53 Sum = 0 6 × 4 = 24

−4 3 − 1 2

Machine SS

30 × 5 = 150

( j ) ( i )
Operator

X̄.j

2

3
4

5

4

54 55 51 56 54 1 1

48 56 50 58 53 0 0
46 60 51 59 54 1 1

51 53 53 55 53 0 0

49 56 52 55

(X̄.j − ¯̄X)2

X̄.j − ¯̄X

Sum = 0

16 9 1 4

(

(

)

)

( )

Note 1
The . notation means that summation takes place over that variable. For example, the five operator

means X̄.j are obtained as X̄.1 =
46 + 56 + 55 + 47

4
= 51 and so on, while the four machine means

X̄i. are obtained as X̄1. =
46 + 54 + 48 + 46 + 51

5
= 49 and so on. Put more generally (and this is

just an example)

X̄.j =

m∑
i=1

xij

m
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Note 2

Multiplying factors were used in the calculation of the machine sum of squares (four in this case
since there are four machines) and the operator sum of squares (five in this case since there are five
operators).

Note 3

The two statements ‘Sum = 0’ are included purely as arithmetic checks.

We also know that SSO = 24 and SSM = 150.

Calculating the error sum of squares

Note that the total sum of squares is easy to obtain and that the error sum of squares is then obtained
by straightforward subtraction.

The total sum of squares is given by summing the quantities (Xij − ¯̄X)2 for the table of entries.

Subtracting ¯̄X = 53 from each table member and squaring gives:

Operator (j) Machine (i)
1 2 3 4

1 49 9 4 36
2 1 4 4 9
3 25 9 9 25
4 49 49 4 36
5 4 0 0 4

The total sum of squares is SST = 330.

The error sum of squares is given by the result

SSE = SST − SSA − SSB

= 330− 24− 150

= 156

At this stage we display the general two-way ANOVA table and then particularise the table for the
example we are engaged in and draw conclusions by using the test as we have previously done with
one-way ANOVA.
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A General Two-Way ANOVA Table

Source of Sum of Squares Degrees of Mean Square Value of
Variation SS Freedom MS F Ratio

Between samples

(due to factor A) SSA = b
a∑

i=1

(
X̄i. − ¯̄X

)2 (a − 1) MSA =
SSA

(a − 1)
F =

MSA

MSE

Differences between

means X̄i. and ¯̄X
Between samples

(due to factor B) SSB = a
b∑

j=1

(
X̄.j − ¯̄X

)2 (b − 1) MSB =
SSB

(b − 1)
F =

MSB

MSE

Differences between

means X̄.j and ¯̄X

Within samples

(due to chance errors) SSE =
a∑

i=1

b∑

j=1

(
Xij − X̄i. − X̄.j

¯̄X
)2 (a − 1)

×(b − 1)
MSE =

SSE

(a − 1)(b − 1)

Differences between
individual observations

and fitted values.

Totals SST =
a∑

i=1

b∑

j=1

(
Xij − ¯̄X

)2

(ab − 1)

+

Hence the two-way ANOVA table for the example under consideration is

Source of Sum of Squares Degrees of Mean Square Value of
Variation SS Freedom MS F Ratio

Between samples

(due to factor A)
24 4

24

4
= 6

F =
6

13
= 0.46Differences between

means X̄i· and ¯̄X

Between samples

(due to factor B) 150 3
150

3
= 50

F =
50

13
= 3.85Differences between

means X̄
·
j and ¯̄X height

Within samples

(due to chance errors) 156 12
156

12
= 13

Differences between
individual observations

and fitted values.

TOTALS 330 19

From the F -tables (at the end of the Workbook) F4,12 = 3.26 and F3,12 = 3.49. Since 0.46 < 3.26
we conclude that we do not have sufficient evidence to reject the null hypothesis that there is no
difference between the operators. Since 3.85 > 3.49 we conclude that we do have sufficient evidence
at the 5% level of significance to reject the null hypothesis that there in no difference between the
machines.
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Key Point 2

If we have two factors, A and B, with a levels of factor A and b levels of factor B, and one
observation per cell, we can calculate the sum of squares as follows.

The sum of squares for factor A is

SSA =
1

b

a∑
i=1

A2
i −

G2

N
with a− 1 degrees of freedom

and the sum of squares for factor B is

SSB =
1

a

b∑
j=1

B2
j −

G2

N
with b− 1 degrees of freedom

where

Ai =
b∑

j=1

Xij is the total for level i of factor A,

Bj =
a∑

i=1

Xij is the total for level j of factor B,

G =
a∑

i=1

b∑
j=1

Xij is the overall total of the data, and

N = ab is the total number of observations.

The total sum of squares is

SST =
a∑

i=1

b∑
j=1

X2
ij −

G2

N
with N − 1 degrees of freedom

The within-samples, or ‘error’, sum of squares can be found by subtraction. So

SSE = SST − SSA − SSB

with

(N − 1)− (a− 1)− (b− 1) = (ab− 1)− (a− 1)− (b− 1)

= (a− 1)(b− 1) degrees of freedom
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Task

A vehicle manufacturer wishes to test the ability of three types of steel-alloy panels
to resist corrosion when three different paint types are applied. Three panels with
differing steel-alloy composition are coated with three types of paint. The following
coded data represent the ability of the painted panels to resist weathering.

Paint Steel-Alloy Steel-Alloy Steel-Alloy
Type 1 2 3

1 40 51 56
2 54 55 50
3 47 56 50

Use a two-way ANOVA procedure to determine whether any difference in the ability
of the panels to resist corrosion may be assigned to either the type of paint or the
steel-alloy composition of the panels.

Your solution

Do your working on separate paper and enter the main conclusions here.
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Answer
Our hypotheses may be stated as follows.

Paint type

{
H0 : µ1 = µ2 = µ3

H1 : At least one of the means is different from the others

Steel-Alloy

{
H0 : µ1 = µ2 = µ3

H1 : At least one of the means is different from the others

Following the methods of calculation outlined above we obtain:

Paint SS
X̄.j − ¯̄X

(X̄.j − ¯̄X)2

1 2 3
1 40 51 56 49 − 2

Means (X̄i.)
¯̄X = 51 Sum = 0 8 × 3 = 24

−4 3 1

SS

26 × 3 = 78

( j ) ( i ) X̄.j

2

3

4

54 55 50 53 2 4

47 54 52 51 0 0

47 54 52

(X̄.j − ¯̄X)2

X̄.j − ¯̄X

Sum = 0

16 9 1

Paint Type Steel-Alloy Paint Means

Steel-Alloy

Steel-Alloy

(
(

(

)
)

)

Hence SSPa = 24 and SSSt = 78. We now require SSE. The calculations are as follows.

In the table below, the predicted outputs are given in parentheses.

X̄.j − ¯̄X

1 2 3

1
40 51 56

49 − 2

Means (X̄i.)
¯̄X = 51 Sum = 0

−4 3 1

( j ) ( i ) X̄.j

2

3

54 55 50
53 2

47 56 50
51 0

47 54 52

X̄.j − ¯̄X

Sum = 0

Paint Machine Paint Means

Steel

(45) (52) (50)

(49) (56) (54)

(47) (54) (52)

Type
(

(
)

)

-

( )

Alloy
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Answers continued

A table of squared residuals is easily obtained as

Paint Steel
(j) (i)

1 2 3
1 25 1 36
2 25 1 16
3 0 4 4

Hence the residual sum of squares is SSE = 112. The total sum of squares is given by subtracting
¯̄X = 51 from each table member and squaring to obtain

Paint Steel
(j) (i)

1 2 3
1 121 0 25
2 9 16 1
3 16 25 1

The total sum of squares is SST = 214. We should now check to see that SST = SSPa+SSSt+SSE.
Substitution gives 214 = 24 + 78 + 112 which is correct.

The values of F are calculated as shown in the ANOVA table below.

Source of Sum of Squares Degrees of Mean Square Value of
Variation SS Freedom MS F Ratio

Between samples
(due to treatment A,

say , paint)

24 2 MSA =
24

12
= 12 F =

12

28
= 0.429

Between samples
(due to treatment B ,

say , Steel − Alloy)

78 2 MSB =
78

2
= 39

F =
39

28
= 1.393

Within samples

(due to chance errors)
112 4 MSE =

112

4
= 28

Totals 214 8

From the F -tables the critical values of F2,4 = 6.94 and since both of the calculated F values are
less than 6.94 we conclude that we do not have sufficient evidence to reject either null hypothesis.
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2. Two-way ANOVA with interaction
The previous subsection looked at two-way ANOVA under the assumption that there was no inter-
action between the factors A and B. We will now look at the developments of two-way ANOVA
to take into account possible interaction between the factors under consideration. The following
analysis allows us to test to see whether we have sufficient evidence to reject the null hypothesis that
the amount of interaction is effectively zero.

To see how we might consider interaction between factors A and B taking place, look at the following
table which represents observations involving a two-factor experiment.

Factor B
Factor A 1 2 3 4 5

1 3 5 1 9 12
2 4 6 2 10 13
3 6 8 4 12 15

A brief inspection of the numbers in the five columns reveals that there is a constant difference
between any two rows as we move from column to column. Similarly there is a constant difference
between any two columns as we move from row to row. While the data are clearly contrived, it
does illustrate that in this case that no interaction arises from variations in the differences between
either rows or columns. Real data do not exhibit such behaviour in general of course, and we expect
differences to occur and so we must check to see if the differences are large enough to provide
sufficient evidence to reject the null hypothesis that the amount of interaction is effectively zero.

Notation
Let a represent the number of ‘levels’ present for factor A, denoted i = 1, . . . , a.

Let b represent the number of ‘levels’ present for factor B, denoted j = 1, . . . , b.

Let n represent the number of observations per cell. We assume that it is the same for each cell.

In the table above, a = 3, b = 5, n = 1. In the examples we shall consider, n will be greater than 1
and we will be able to check for interaction between the factors.

We suppose that the observations at level i of factor A and level j of factor B are taken from a
normal distribution with mean µij. When we assumed that there was no interaction, we used the
additive model

µij = µ + αi + βj

So, for example, the difference µi1 − µi2 between the means at levels 1 and 2 of factor B is equal
to β1 − β2 and does not depend upon the level of factor A. When we allow interaction, this is not
necessarily true and we write

µij = µ + αi + βj + γij

Here γij is an interaction effect. Now µi1 − µi2 = β1 − β2 + γi1 − γi2 so the difference between
two levels of factor B depends on the level of factor A.
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Fixed and random effects
Often the levels assigned to a factor will be chosen deliberately. In this case the factors are said to be
fixed and we have a fixed effects model. If the levels are chosen at random from a population of all
possible levels, the factors are said to be random and we have a random effects model. Sometimes
one factor may be fixed while one may be random. In this case we have a mixed effects model. In
effect, we are asking whether we are interested in certain particular levels of a factor (fixed effects) or
whether we just regard the levels as a sample and are interested in the population in general (random
effects).

Calculation method

The data you will be working with will be set out in a manner similar to that shown below.

The table assumes n observations per cell and is shown along with a variety of totals and means
which will be used in the calculations of the various test statistics to follow.

Factor BBB
Factor AAA Level 1 Level 2 . . . Level j . . . Level b Totals

Level 1

x111
...

x11n

x121
...

x12n

. . .

x1j1
...

x1jn

. . .

x1b1
...

x1bn

T1··

Level 2

x211
...

x21n

x221
...

x22n

. . .

x2j1
...

x2jn

. . .

x2b1
...

x2bn

T2··

...
...

...
...

... . . .
...

...

Level iii

xi11
...

xi1n

Sum of data in cell

(i,j) is Tij·=

n∑
k=1

xijk

xij1
...
}

xijn

. . .

xib1
...

xibn

Ti··

...
...

...
...

... . . .
...

...

Level aaa

xa11
...

xa1n

xa21
...

xa2n

. . .

xaj1
...

xajn

. . .

xab1
...

xabn

Ta··

Totals T·1· T·2· . . . T·j· . . . T·b· T···

Notes

(a) T... represents the grand total of the data values so that

T··· =
b∑

j=1

T·j· =
a∑

i=1

Ti·· =
a∑

i=1

b∑
j=1

n∑
k=1

xijk

(b) Ti.. represents the total of the data in the ith row.

(c) T.j. represents the total of the data in the jth column.

(d) The total number of data entries is given by N = nab.
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Partitioning the variation

We are now in a position to consider the partition of the total sum of the squared deviations from
the overall mean which we estimate as

x =
T...

N

The total sum of the squared deviations is
a∑

i=1

b∑

j=1

n∑

k=1

(xijk − x )2

and it can be shown that this quantity can be written as

SST = SSA + SSB + SSAB + SSE

where SST is the total sum of squares given by

SST =
a∑

i=1

b∑
j=1

n∑
k=1

x2
ijk −

T 2
···

N
;

SSA is the sum of squares due to variations caused by factor A given by

SSA =
a∑

i=1

T 2
i··

bn
− T 2

···
N

SSB is the sum of squares due to variations caused by factor B given by

SSB =
b∑

j=1

T 2
·j·

an
− T 2

···
N

Note that bn means b × n which is the number of observations at each level of A and an means
a× n which is the number of observations at each level of B.

SSAB is the sum of the squares due to variations caused by the interaction of factors A and B and
is given by

SSAB =
a∑

i=1

b∑
j=1

T 2
ij·

n
− T 2

···
N

− SSA − SSB.

Note that the quantity Tij. =
n∑

k=1

xijk is the sum of the data in the (i, j)th cell and that the quantity

a∑
i=1

b∑
j=1

T 2
ij.

n
− T 2

...

N
is the sum of the squares between cells.

SSE is the sum of the squares due to chance or experimental error and is given by

SSE = SST − SSA − SSB − SSAB

The number of degrees of freedom (N − 1) is partitioned as follows:

SST SSA SSB SSAB SSE

N − 1 a− 1 b− 1 (a− 1)(b− 1) N − ab

26 HELM (2008):
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Note that there are ab − 1 degrees of freedom between cells and that the number of degrees of
freedom for SSAB is given by

ab− 1− (a− 1)− (b− 1) = (a− 1)(b− 1)

This gives rise to the following two-way ANOVA tables.

Two-Way ANOVA Table - Fixed-Effects Model

Source of Sum of squares Degrees of Mean Square Value of
Variation SS Freedom MS F Ratio

Factor A SSA (a− 1) MSA =
SSA

(a− 1)
F =

MSA

MSE

Factor B SSB (b− 1) MSB =
SSB

(b− 1)
F =

MSB

MSE

Interaction SSAB (a− 1)× (b− 1) MSAB =
SSAB

(a− 1)(b− 1)
F =

MSAB

MSE

Residual Error SSE (N − ab) MSE =
SSE

N − ab
Totals SST (N − 1)

Two-Way ANOVA Table - Random-Effects Model

Source of Sum of squares Degrees of Mean Square Value of
Variation SS Freedom MS F Ratio

Factor A SSA (a− 1) MSA =
SSA

(a− 1)
F =

MSA

MSAB

Factor B SSB (b− 1) MSB =
SSB

(b− 1)
F =

MSB

MSAB

Interaction SSAB (a− 1)× (b− 1) MSAB =
SSAB

(a− 1)(b− 1)
F =

MSAB

MSE

Residual Error SSE (N − ab) MSE =
SSE

N − ab
Totals SST (N − 1)
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Two-Way ANOVA Table - Mixed-Effects Model

Case (i) A fixed and B random.

Source of Sum of squares Degrees of Mean Square Value of
Variation SS Freedom MS F Ratio

Factor A SSA (a− 1) MSA =
SSA

(a− 1)
F =

MSA

MSAB

Factor B SSB (b− 1) MSB =
SSB

(b− 1)
F =

MSB

MSE

Interaction SSAB (a− 1)× (b− 1) MSAB =
SSAB

(a− 1)(b− 1)
F =

MSAB

MSE

Residual Error SSE (N − ab) MSE =
SSE

N − ab
Totals SST (N − 1)

Case (ii) A random and B fixed.

Source of Sum of squares Degrees of Mean Square Value of
Variation SS Freedom MS F Ratio

Factor A SSA (a− 1) MSA =
SSA

(a− 1)
F =

MSA

MSE

Factor B SSB (b− 1) MSB =
SSB

(b− 1)
F =

MSB

MSAB

Interaction SSAB (a− 1)× (b− 1) MSAB =
SSAB

(a− 1)(b− 1)
F =

MSAB

MSE

Residual Error SSE (N − ab) MSE =
SSE

N − ab
Totals SST (N − 1)
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Example 1
In an experiment to compare the effects of weathering on paint of three different
types, two identical surfaces coated with each type of paint were exposed in each
of four environments. Measurements of the degree of deterioration were made as
follows.

Environment 1 Environment 2 Environment 3 Environment 4
Paint A 10.89 10.74 9.94 11.25 9.88 10.13 14.11 12.84
Paint B 12.28 13.11 14.45 11.17 11.29 11.10 13.44 11.37
Paint C 10.68 10.30 10.89 10.97 10.61 11.00 12.22 11.32

Making the assumptions of normality, independence and equal variance, derive the
appropriate ANOVA tables and state the conclusions which may be drawn at the
5% level of significance in the following cases.

(a) The types of paint and the environments are chosen deliberately be-
cause the interest is in these paints and these environments.

(b) The types of paint are chosen deliberately because the interest is in
these paints but the environments are regarded as a sample of possible
environments.

(c) The types of paint are regarded as a random sample of possible paints
and the environments are regarded as a sample of possible environ-
ments.

Solution

We know that case (a) is described as a fixed-effects model, case (b) is described as a mixed-effects
model (paint type fixed) and case (c) is described as a random-effects model. In all three cases the
calculations necessary to find MSP (paints), MSN (environments), MSP and MSN are identical.
Only the calculation and interpretation of the test statistics will be different. The calculations are
shown below.

Subtracting 10 from each observation, the data become:

Environment 1 Environment 2 Environment 3 Environment 4 Total
Paint A 0.89 0.74 −0.06 1.25 −0.12 0.13 4.11 2.84 9.78

(total 1.63) (total 1.19) (total 0.01) (total 6.95)
Paint B 2.28 3.11 4.45 1.17 1.29 1.10 3.44 1.37 18.21

(total 5.39) (total 5.62) (total 2.39) (total 4.81)
Paint C 0.68 0.30 0.89 0.97 0.61 1.00 2.22 1.32 7.99

(total 0.98) (total 1.86) (total 1.61) (total 3.54)
Total 8.00 8.67 4.01 15.30 35.98

The total sum of squares is

SST = 0.892 + 0.742 + . . . + 1.322 − 35.982

24
= 36.910

We can simplify the calculation by finding the between samples sum of squares

SSS =
1

2
(1.632 + 5.392 + . . . + 3.542)− 35.982

24
= 26.762
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Solution (contd.)

Sum of squares for paints is

SSP =
1

8
(9.782 + 18.152 + 7.992)− 35.982

24
= 7.447

Sum of squares for environments is

SSN =
1

6
(8.002 + 8.672 + 3.982 + 15.302)− 35.982

24
= 10.950

So the interaction sum of squares is SSPN = SSS − SSP − SSN = 8.365 and

the residual sum of squares is SSE = SST −SSS = 10.148 The results are combined in the following
ANOVA table

Deg. of Sum of Mean Variance Variance Variance Ratio
Freedom Squares Square Ratio (fixed) Ratio (mixed) (random)

Paints 2 7.447 3.724 4.40 2.67 2.67
F2,12 = 3.89 F2,6 = 5.14 F2,6 = 5.14

Environments 3 10.950 3.650 4.31 4.31 2.61
F3,12 = 3.49 F3,12 = 3.49 F3,6 = 4.76

Interaction 6 8.365 1.394 1.65 1.65 1.65
F6,12 = 3.00 F6,12 = 3.00 F6,12 = 3.00

Treatment 11 26.762 2.433
combinations

Residual 12 10.148 0.846
Total 23 36.910

The following conclusions may be drawn. There is insufficient evidence to support the interaction
hypothesis in any case. Therefore we can look at the tests for the main effects.

Case (a) Since 4.40 > 3.89 we have sufficient evidence to conclude that paint type affects the
degree of deterioration. Since 4.07 > 3.49 we have sufficient evidence to conclude that environment
affects the degree of deterioration.

Case (b) Since 2.67 < 5.14 we do not have sufficient evidence to reject the hypothesis that paint
type has no effect on the degree of deterioration. Since 4.07 > 3.49 we have sufficient evidence to
conclude that environment affects the degree of deterioration.

Case (c) Since 2.67 < 5.14 we do not have sufficient evidence to reject the hypothesis that paint
type has no effect on the degree of deterioration. Since 2.61 < 4.76 we do not have sufficient
evidence to reject the hypothesis that environment has no effect on the degree of deterioration.

If the test for interaction had given a significant result then we would have concluded that there
was an interaction effect. Therefore the differences between the average degree of deterioration for
different paint types would have depended on the environment and there might have been no overall
‘best paint type’. We would have needed to compare combinations of paint types and environments.
However the relative sizes of the mean squares would have helped to indicate which effects were
most important.
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Task

A motor company wishes to check the influences of tyre type and shock absorber
settings on the roadholding of one of its cars. Two types of tyre are selected
from the tyre manufacturer who normally provides tyres for the company’s new
vehicles. A shock absorber with three possible settings is chosen from a range of
shock absorbers deemed to be suitable for the car. An experiment is conducted
by conducting roadholding tests using each tyre type and shock absorber setting.
The (coded) data resulting from the experiment are given below.

Factor Shock Absorber Setting
Tyre B1=Comfort B2=Normal B3=Sport

5 8 6
Type A1 6 5 9

8 3 12
9 10 12

Type A2 7 9 10
7 8 9

Decide whether an appropriate model has random-effects, mixed-effects or fixed-
effects and derive the appropriate ANOVA table. State clearly any conclusions
that may be drawn at the 5% level of significance.

Your solution

Do the calculations on separate paper and use the space here and on the following page for your
summary and conclusions.
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Answer
We know that both the tyres and the shock absorbers are not chosen at random from populations
consisting of all possible tyre types and shock absorber types so that their influence is described by
a fixed-effects model. The calculations necessary to find MSA, MSB, MSAB and MSE are shown
below.

B1 B2 B3 Totals
5 8 6

A1 6 5 9
8 3 12

T11 = 19 T12 = 16 T13 = 27 T1·· = 62
9 10 12

A2 7 9 10
7 8 9

T21 = 23 T22 = 27 T23 = 31 T2·· = 81
Totals T·1· = 42 T·2· = 43 T·3· = 58 T··· = 143

The sums of squares calculations are:

SST =
2∑

i=1

3∑
j=1

3∑
k=1

x2
ijk −

T 2
···

N
= 52 + 62 + . . . + 102 + 92 − 1432

18
= 1233− 1432

18
= 96.944

SSA =
2∑

i=1

T 2
i··

bn
− T 2

···
N

=
622 + 812

3× 3
− 1432

18
=

10405

9
− 1432

18
= 20.056

SSB =
3∑

j=1

T 2
·j·

an
− T 2

···
N

=
422 + 432 + 582

2× 3
− 1432

18
=

6977

6
− 1432

18
= 26.778

SSAB =
2∑

i=1

3∑
j=1

T 2
ij·

n
− T 2

···
N

− SSA − SSB =
192 + . . . + 312

3
− 1432

18
− 20.056− 26.778

=
3565

3
− 1432

18
− 20.056− 26.778 = 5.444

SSE = SST − SSA − SSB − SSAB = 96.944− 20.056− 26.778− 5.444 = 44.666

The results are combined in the following ANOVA table.

Source SS DoF MMMSSS FFF (Fixed) FFF (Fixed)

Factor 20.056 1 20.056
MSA

MSE

5.39

AAA F1,12 = 4.75

Factor 26.778 2 13.389
MSB

MSE

3.60

BBB F2,12 = 3.89

Interaction 5.444 2 2.722
MSAB

MSE

0.731

AAABBB F2,12 = 3.89
Residual 44.666 12 3.722

EEE
Totals 96.944 17
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Answer
The following conclusions may be drawn:

Interaction: There is insufficient evidence to support the hypothesis that interaction takes place
between the factors.

Factor A: Since 5.39 > 4.75 we have sufficient evidence to reject the hypothesis that tyre type does
not affect the roadholding of the car.

Factor B: Since 3.60 < 3.89 we do not have sufficient evidence to reject the hypothesis that shock
absorber settings do not affect the roadholding of the car.

Task

The variability of a measured characteristic of an electronic assembly is a source
of trouble for a manufacturer with global manufacturing and sales facilities. To
investigate the possible influences of assembly machines and testing stations on
the characteristic, an engineer chooses three testing stations and three assembly
machines from the large number of stations and machines in the possession of
the company. For each testing station - assembly machine combination, three
observations of the characteristic are made.

The (coded) data resulting from the experiment are given below.

Factor Testing Station
Assembly Machine B1 B2 B3

2.3 3.7 3.1
A1 3.4 2.8 3.2

3.5 3.7 3.5
3.5 3.9 3.3

A2 2.6 3.9 3.4
3.6 3.4 3.5
2.4 3.5 2.6

A3 2.7 3.2 2.6
2.8 3.5 2.5

Decide whether an appropriate model has random-effects, mixed-effects or fixed-
effects and derive the appropriate ANOVA table.

State clearly any conclusions that may be drawn at the 5% level of significance.

Your solution

Do the calculations on separate paper and use the space here and on the following page for your
summary and conclusions.
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Your solution contd.

Answer

Both the machines and the testing stations are effectively chosen at random from populations
consisting of all possible types so that their influence is described by a random-effects model. The
calculations necessary to find MSA, MSB, MSAB and MSE are shown below.

B1 B2 B3 Totals
2.3 3.7 3.1

A1 3.4 2.8 3.2
3.5 3.7 3.5

T11 = 9.2 T12 = 10.2 T13 = 9.8 T1·· = 29.2
3.5 3.9 3.3

A2 2.6 3.9 3.4
3.6 3.4 3.5

T21 = 9.7 T22 = 11.2 T23 = 10.2 T2·· = 31.1
2.4 3.5 2.6

A3 2.7 3.2 2.6
2.8 3.5 2.5

T31 = 7.9 T32 = 10.2 T33 = 7.7 T3·· = 25.8
Totals T·1· = 26.8 T·2· = 31.6 T·3· = 27.7 T··· = 86.1

a = 3, b = 3, n = 3, N = 27 and the sums of squares calculations are:

SST =
3∑

i=1

3∑
j=1

3∑
k=1

x2
ijk −

T 2
···

N
= 2.32 + 3.42 + . . . + 2.62 + 2.52 − 86.12

27
= 5.907

SSA =
3∑

i=1

T 2
i··

bn
− T 2

···
N

=
29.22 + 31.12 + 25.82

3× 3
− 86.12

27
= 1.602

SSB =
3∑

j=1

T 2
·j·

an
− T 2

···
N

=
26.82 + 31.62 + 27.72

3× 3
− 86.12

27
= 1.447

SSAB =
3∑

i=1

3∑
j=1

T 2
ij·

n
− T 2

···
N

− SSA − SSB

=
9.22 + 10.22 + . . . + 10.22 + 7.72

3
− 86.12

27
− 1.602− 1.447 = 0.398

SSE = SST − SSA − SSB − SSAB = 5.907− 1.602− 1.447− 0.398 = 2.46
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Answer continued

The results are combined in the following ANOVA table

Source SSSSSS DDDoooFFF MMMSSS FFF (Random) FFF (Random)

Factor 1.602 2 0.801
MSA

MSAB

8.05

AAA F2,4 = 6.94
(Machines)

Factor 1.447 2 0.724
MSB

MSAB

7.28

BBB F2,4 = 6.94
(Stations)

Interaction 0.398 4 0.099(5)
MSAB

MSE

0.728

AAABBB F4,18 = 2.93
Residual 2.460 18 0.136

EEE
Totals 5.907 26

The following conclusions may be drawn.

Interaction: There is insufficient evidence to support the hypothesis that interaction takes place
between the factors.

Factor A: Since 8.05 > 6.94 we have sufficient evidence to reject the hypothesis that the assembly
machines do not affect the assembly characteristic.

Factor B: Since 7.28 > 6.94 we have sufficient evidence to reject the hypothesis that the choice of
testing station does not affect the assembly characteristic.

3. Two-way ANOVA versus one-way ANOVA
You should note that a two-way ANOVA design is rather more efficient than a one-way design. In
the last example, we could fix the testing station and look at the electronic assemblies produced by a
variety of machines. We would have to replicate such an experiment for every testing station. It would
be very difficult (impossible!) to exactly duplicate the same conditions for all of the experiments.
This implies that the consequent experimental error could be very large. Remember also that in a
one-way design we cannot check for interaction between the factors involved in the experiment. The
three main advantages of a two-way ANOVA may be stated as follows:

(a) It is possible to simultaneously test the effects of two factors. This saves both time and
money.

(b) It is possible to determine the level of interaction present between the factors involved.

(c) The effect of one factor can be investigated over a variety of levels of another and so
any conclusions reached may be applicable over a range of situations rather than a single
situation.
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Exercises

1. The temperatures, in Celsius, at three locations in the engine of a vehicle are measured after
each of five test runs. The data are as follows. Making the usual assumptions for a two-
way analysis of variance without replication, test the hypothesis that there is no systematic
difference in temperatures between the three locations. Use the 5% level of significance.

Location Run 1 Run 2 Run 3 Run 4 Run 5
A 72.8 77.3 82.9 69.4 74.6
B 71.5 72.4 80.7 67.0 74.0
C 70.8 74.0 79.1 69.0 75.4

2. Waste cooling water from a large engineering works is filtered before being released into the
environment. Three separate discharge pipes are used, each with its own filter. Five samples
of water are taken on each of four days from each of the three discharge pipes and the
concentrations of a pollutant, in parts per million, are measured. The data are given below.
Analyse the data to test for differences between the discharge pipes. Allow for effects due to
pipes and days and for an interaction effect. Treat the pipe effects as fixed and the day effects
as random. Use the 5% level of significance.

Day Pipe A
1 160 181 163 173 178
2 175 170 219 166 171
3 169 186 179 178 183
4 230 206 216 195 250

Day Pipe B
1 172 164 186 185 172
2 177 170 156 140 155
3 193 194 189 156 181
4 212 235 195 206 209

Day Pipe C
1 214 196 207 219 200
2 186 184 181 189 179
3 209 220 199 185 228
4 254 293 283 262 259
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Answers

1. We calculate totals as follows.

Run Total Location Total
1 215.1 A 377.0
2 223.7 B 365.6
3 242.7 C 368.3
4 205.4 Total 1110.9
5 224.0

Total 1110.9∑ ∑
y2

ij = 82552.17

The total sum of squares is

8255217− 1110.92

15
= 278.916 on 15− 1 = 14 degrees of freedom.

The between-runs sum of squares is

1

3
(215.12 + 223.72 + 242.72 + 205.42 + 224.02)− 1110.92

15
= 252.796

on 5− 1 = 4 degrees of freedom.

The between-locations sum of squares is

1

5
(377.02 + 365.62 + 368.32)− 1110.92

15
= 14.196 on 3− 1 = 2 degrees of freedom.

By subtraction, the residual sum of squares is

278.916− 252.796− 14.196 = 11.924 on 14− 4− 2 = 8 degrees of freedom.

The analysis of variance table is as follows.

Source of Sum of Degrees of Mean Variance
variation squares freedom square ratio

Runs 252.796 4 63.199
Locations 14.196 2 7.098 4.762
Residual 11.924 8 1.491
Total 278.916 14

The upper 5% point of the F2,8 distribution is 4.46. The observed variance ratio is greater than this
so we conclude that the result is significant at the 5% level and reject the null hypothesis at this
level. The evidence suggests that there are systematic differences between the temperatures at the
three locations. Note that the Runs mean square is large compared to the Residual mean square
showing that it was useful to allow for differences between runs.
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Answers continued

2. We calculate totals as follows.

Day 1 Day 2 Day 3 Day 4 Total
Pipe A 855 901 895 1097 3748
Pipe B 879 798 913 1057 3647
Pipe C 1036 919 1041 1351 4347
Total 2770 2618 2849 3505 11742

∑ ∑ ∑
y2

ijk = 2356870

The total number of observations is N = 60.

The total sum of squares is

2356870− 117422

60
= 58960.6

on 60− 1 = 59 degrees of freedom.

The between-cells sum of squares is

1

5
(8552 + · · ·+ 13512)− 117422

60
= 58960.6

on 12− 1 = 11 degrees of freedom, where by “cell” we mean the combination of a pipe and a day.

By subtraction, the residual sum of squares is

58960.6− 48943.0 = 10017.6

on 59− 11 = 48 degrees of freedom.

The between-days sum of squares is

1

15
(27702 + 26182 + 28492 + 35052)− 117422

60
= 30667.3

on 4− 1 = 3 degrees of freedom.

The between-pipes sum of squares is

1

20
(37482 + 36472 + 43472)− 117422

60
= 14316.7

on 3− 1 = 2 degrees of freedom.

By subtraction the interaction sum of squares is

48943.0− 30667.3− 14316.7 = 3959.0

on 11− 3− 2 = 6 degrees of freedom.
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Answers continued

The analysis of variance table is as follows.

Source of Sum of Degrees of Mean Variance
variation squares freedom square ratio
Pipes 14316.7 2 7158.4 10.85
Days 30667.3 3 10222.4 48.98

Interaction 3959.0 6 659.8 3.16
Cells 48943.0 11 4449.4 21.32

Residual 10017.6 48 208.7
Total 58960.6 59

Notice that, because Days are treated as a random effect, we divide the Pipes mean square by the
Interaction mean square rather than by the Residual mean square.

The upper 5% point of the F6,48 distribution is approximately 2.3. Thus the Interaction variance
ratio is significant at the 5% level and we reject the null hypothesis of no interaction. We must
therefore conclude that there are differences between the means for pipes and for days and that
the difference between one pipe and another varies from day to day. Looking at the mean squares,
however, we see that both the Pipes and Days mean squares are much bigger than the Interaction
mean square. Therefore it seems that the interaction effect is relatively small compared to the
differences between days and between pipes.
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