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Tests Concerning
Two Samples

�
�

�
�41.3

Introduction
So far we have dealt with situations in which we either had a single sample drawn from a population,
or paired data whose differences were considered essentially as a single sample.

In this Section we shall look at the situations occurring when we have two random samples each
drawn from independent populations. While the basic ideas involved will essentially repeat those
already met, you will find that the calculations involved are more complex than those already covered.
However, you will find as before that calculations do follow particular routines. Note that in general
the samples will be of different sizes. Cases involving samples of the same size, while included, should
be regarded as special cases.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be familiar with the normal distribution,
t-distribution, F -distribution and chi-squared
distribution�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• apply the ideas of hypothesis testing to a
range of problems underpinned by a
substantial range of statistical distributions
and involving two samples of different sizes

HELM (2008):
Section 41.3: Tests Concerning Two Samples

19



1. Tests concerning two samples
Two independent populations each with a known variance

We assume that the populations are normally distributed. This may not always be true and you
should note this basic assumption while studying this Section of the Workbook.

A standard notation often used to describe the populations and samples is:

Population Sample
X1 ∼ N(µ1, σ

2
1) x11, x12, x13, · · · , x1n1 with n1 members.

X2 ∼ N(µ2, σ
2
2) x21, x22, x23, · · · , x2n2 with n2 members.

If you are not familiar with the double suffix notation used to represent the samples, simply remember
that a random sample of size n1 is drawn from X1 ∼ N(µ1, σ

2
1) and a random sample of size n2 is

drawn from X1 ∼ N(µ1, σ
2
1).

In diagrammatic form the populations may be represented as follows:

μ1 μ2

X1 ∼ N(μ1, σ
2
1)

X2 ∼ N(μ2, σ
2
2)

Figure 6

When we look at hypothesis testing using two means, we will be considering the difference µ1 − µ2

of the means and writing null hypotheses of the form

H0 : µ1 − µ2 = Value

As you might expect, Value will often be zero and we will be trying to detect whether there is any
statistically significant evidence of a difference between the means.

We know, from our previous work on continuous distributions (see 38) that:

E(X̄1 − X̄2) = E(X̄1)− E(X̄2) = µ1 − µ2

and that

V(X̄1 − X̄2) = V(X̄1)− V(X̄2) =
σ2

1

n1

+
σ2

2

n2

since X̄1 and X̄2 are independent. Given the assumptions made we can assert that the quantity Z
defined by

Z =
(X̄1 − X̄2)− (µ1 − µ2)√

σ2
1

n1

+
σ2

2

n2

follows the standard normal distribution N(0, 1).
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We are now ready to apply this formula to practical problems in which random samples of different
sizes are drawn from normal populations. The conditions for the rejection of H0 at the 5% and the
1% levels of significance are exactly the same as those previously used for single sample problems.

Example 4
A motor manufacturer wishes to replace steel suspension components by aluminium
components to save weight and thereby improve performance and fuel consump-
tion. Tensile strength tests are carried out on randomly chosen samples of two
possible components before a final choice is made. The results are:

Component Sample Mean Tensile Standard Deviation
Number Size Strength (kg mm−2) (kg mm−2)

1 15 90 2.3
2 10 88 2.2

Is there any difference between the measured tensile strengths at the 5% level of
significance?

Solution

The null and alternative hypotheses are:

H0 : µ1 − µ2 = 0 H1 : µ1 − µ2 6= 0

The null hypothesis represent the statement ‘there is no difference in the tensile strengths of the
two components.’ The test statistic Z is calculated as:

Z =
(X̄1 − X̄2)− (µ1 − µ2)√

σ2
1

n1

+
σ2

2

n2

=
(90− 88)− (0)√

2.32

15
+

2.22

10

=
2√

0.3527 + 0.484

= 2.186

Since 2.186 > 1.96 we conclude that, on the basis of the (limited) evidence available, there is a
difference in tensile strength between the components tested. The manufacturer should carry out
more comprehensive tests before making a final decision as to which component to use. The decision
is a serious one with safety implications as well as economic implications. As well as carrying out
more tests the manufacturer should consider the level of rejection of the null hypothesis, perhaps
using 1% instead of 5%. Component 1 appears to be stronger but this may not be the case after
more tests are carried out.
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Task

A motor manufacturer is considering whether or not a new fuel formulation will
improve the maximum power output of a particular type of engine. Tests are
carried out on randomly chosen samples of the two fuels in order to inform a
decision. The results are:

Fuel Sample Mean Maximum Standard Deviation
Type Size Power Output (bhp) (bhp)

1 20 1350 10
2 16 131 8

Is there any difference between the measured power outputs at the 5% level of
significance?

Your solution

Answer
The null and alternative hypotheses are:

H0 : µ1 − µ2 = 0 H1 : µ1 − µ2 6= 0

The null hypothesis represent the statement ‘there is no difference in the measured maximum power
outputs’. The test statistic Z is calculated as:

Z =
(X̄1 − X̄2)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

=
(135− 131)− (0)√

102

20
+ 82

16

=
4√

5 + 4
= 1.33

Since 1.33 < 1.96 we conclude that, on the basis of the (limited) evidence available, there is
insufficient evidence to conclude that there is a difference in the maximum power output of the
engines tested when run on the different types of fuel.
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Two independent populations each with an unknown variance
Again we assume that the populations are normally distributed and use the same standard notation
used previously to describe the populations and samples, namely:

Population Sample
X1 ∼ N(µ1, σ

2
1) x11, x12, x13, · · · , x1n1 with n1 members.

X2 ∼ N(µ2, σ
2
2) x21, x22, x23, · · · , x2n2 with n2 members.

There are two distinct cases to consider. Firstly, we will assume that although the variances are
unknown, they are in fact equal. Secondly, we will assume that the unknown variances are not
necessarily equal.

Case (i) - Unknown but equal variances

Again, when we look at hypothesis testing using two means, we will be considering the difference
µ1 − µ2 of the means and writing null hypotheses of the form

H0 : µ1 − µ2 = Value

and again Value will often be zero and we will be trying to detect whether there is any statistically
significant difference between the means.

We will take σ2
1 = σ2

2 = σ2 so that in diagrammatic form the populations are:

μ1 μ2

X1 ∼ N(μ1, σ
2) X2 ∼ N(μ2, σ

2)

Figure 7

The results from our work on continuous distributions (see 38) tell us that:

E(X̄1 − X̄2) = E(X̄1)− E(X̄2) = µ1 − µ2

as before, and that

V(X̄1 − X̄2) = V(X̄1)− V(X̄2) =
σ2

1

n1

+
σ2

2

n2

Given that we do not know the value of σ, we must estimate it. This is done by combining (or
pooling) the sample variances say S2

1 and S2
2 for samples 1 and 2 respectively according to the

formula:

S2
c =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

Notice that

S2
c =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
=

(n1 − 1)S2
1

n1 + n2 − 2
+

(n2 − 1)S2
2

n1 + n2 − 2
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so that you can see that S2
c is a weighted average of S2

1 and S2
2 . In fact, each sample variance is

weighted according to the number of degrees of freedom available. Notice also that the first sample
contributes n1− 1 degrees of freedom and the second sample contributes n2− 1 degrees of freedom
so that S2

c has n1 + n2 − 2 degrees of freedom.

Since we are estimating unknown variances, the quantity T defined by

T =
(X̄1 − X̄2)− (µ1 − µ2)

Sc

√
1
n1

+ 1
n2

will follow Student’s t-distribution with n1 + n2 − 2 degrees of freedom.

We are now ready to apply this formula to practical problems in which random samples of different
sizes with unknown but equal variances are drawn from independent normal populations. The con-
ditions for the rejection of H0 at the 5% and the 1% levels of significance are found from tables of
the t-distribution (Table 2), a copy of which is included to the end of this Workbook.

Example 5
A manufacturer of electronic equipment has developed a circuit to feed current
to a particular component in a computer display screen. While the new design is
cheaper to manufacture, it can only be adopted for mass production if it passes
the same average current to the component. In tests involving the two circuits,
the following results are obtained.

Test Number Circuit 1 - Current (mA) Circuit 2 - Current (mA)
1 80.1 80.7
2 82.3 81.3
3 84.1 84.6
4 82.6 81.7
5 85.3 86.3
6 81.3 84.3
7 83.2 83.7
8 81.7 84.7
9 82.2 82.8
10 81.4 84.4
11 85.2
12 84.9

On the assumption that the populations from which the samples are drawn have
equal variances, should the manufacturer replace the old circuit design by the
new one? Use the 5% level of significance.
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Solution

If the average current flows are represented by µ1 and µ2 we form the hypotheses

H0 : µ1 − µ2 = 0 H1 : µ1 − µ2 6= 0

The sample means are X̄1 = 82.42 and X̄2 = 83.72.

The sample variances are S2
1 = 2.00 and S2

2 = 2.72.

The pooled estimate of the variance is

S2
c =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
=

9× 2.00 + 11× 2.72

20
= 2.396

The test statistic is

T =
(X̄1 − X̄2)− (µ1 − µ2)

Sc

√
1
n1

+ 1
n2

=
82.42− 83.72

√
2.396

√
1
10

+ 1
12

= −1.267

From t-tables, the critical values with 20 degrees of freedom and a two-tailed test are ±2.086. Since
−2.086 < −1.267 < 2.086 we conclude that we cannot reject the null hypothesis in favour of the
alternative. A 95% confidence interval for the difference between the mean currents is given by

x̄1 − x̄2 ± 2.086× Sc

√
1

n1

+
1

n2

. The confidence interval is −2.683 < µ1 − µ2 < 0.083.

Task

A manufacturer of steel cables used in the construction of suspension bridges has
experimented with a new type of steel which it is hoped will result in the cables
produced being stronger in the sense that they will accept greater tension loads
before failure. In order to test the performance of the new cables in comparison
with the old cables, samples are tested for failure under tension. The following
results were obtained, the failure tensions being given in kg×103.

Test Number New Cable Original Cable
1 92.7 90.2
2 91.6 92.4
3 94.7 94.7
4 93.7 92.1
5 96.5 95.9
6 94.3 91.1
7 93.7 93.2
8 96.8 91.5
9 98.9
10 99.9

The cable manufacturer, on looking at health and safety legislation, decides that a
1% level of significance should be used in any statistical testing procedure adopted
to distinguish between the cables. On the basis of the results given, should the
manufacturer replace the old cable by the new one? You may assume that the
populations from which the samples are drawn have equal variances.
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Your solution

Answer
If the average tensions are represented by µ1 (new cable) and µ2 (old cable) we form the hypotheses

H0 : µ1 − µ2 = 0 H1 : µ1 − µ2 > 0

in order to test the hypothesis that the new cable is stronger on average than the old cable.

The sample means are X̄1 = 95.28 and X̄2 = 92.64.

The sample variances are S2
1 = 6.47 and S2

2 = 3.14.

The pooled estimate of the variance is

S2
c =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
=

9× 6.47 + 7× 3.14

16
= 5.013

The test statistic is

T =
(X̄1 − X̄2)− (µ1 − µ2)

Sc

√
1

n1

+
1

n2

=
95.28− 92.64

√
2.239

√
1

10
+

1

8

=
2.64

2.239×
√

0.225
= 2.486

Using t-distribution tables with 16 degrees of freedom, we see that the critical value at the 1% level
of significance is 2.583. Since 2.486 < 2.583 we conclude that we cannot reject the null hypothesis
in favour of the alternative. However, the close result indicates that more tests should be carried
out before making a final decision. At this stage the cable manufacturer should not replace the old
cable by the new one on the basis of the evidence available.
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Case (ii) - Unknown and unequal variances

In this case we will take σ2
1 6= σ2

2 so that in diagrammatic form the populations may be represented
as shown below.

μ1 μ2

X1 ∼ N(μ1, σ
2
1)

X2 ∼ N(μ2, σ
2
2)

Figure 8

Again, when we look at hypothesis testing using two means, we will be considering the difference
µ1 − µ2 of the means and writing null hypotheses of the form

H0 : µ1 − µ2 = Value

and again Value will often be zero and we will be trying to detect whether there is any statistically
significant difference between the means.

In the case where we assume unequal variances, there is no exact statistic which we can use to test
the validity or otherwise of the null hypothesis H0 : µ1 − µ2 = Value. However, the following
approximation in Key Point 1 allows us to overcome this problem.

Key Point 1

Provided that the null hypothesis is true, the statistic

T =
(X̄1 − X̄2)− (µ1 − µ2)

Sc

√
1
n1

+ 1
n2

will approximately follow Student’s distribution with the number of degrees of freedom given by the
expression:

ν =

(
S2

1

n1

+
S2

2

n2

)2

(
S2

1

n1

)2

n1 + 1
+

(
S2

2

n2

)2

n2 + 1

− 2

Essentially, this means that the actual test procedure is similar to that used previously but with T
and the number of degrees of freedom ν calculated using the above formulae.
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We are now ready to apply these formulae to practical problems in which random samples of different
sizes with unknown and unequal variances are drawn from independent normal populations. We will
illustrate the test procedure by reworking an Example and Task done previously but we will assume
unequal rather than equal variances.

This next Example is a repeat of Example 5 but here assuming unequal variances.

Example 6
A manufacturer of electronic equipment has developed a circuit to feed current
to a particular component in a computer display screen. While the new design is
cheaper to manufacture, it can only be adopted for mass production if it passes
the same average current to the component. In tests involving the two circuits,
the results are obtained are:

Test Number Circuit 1 - Current (mA) Circuit 2 - Current (mA)
1 80.1 80.7
2 82.3 81.3
3 84.1 84.6
4 82.6 81.7
5 85.3 86.3
6 81.3 84.3
7 83.2 83.7
8 81.7 84.7
9 82.2 82.8
10 81.4 84.4
11 85.2
12 84.9

On the assumption that the populations from which the samples are drawn do not
have equal variances, should the manufacturer replace the old circuit design by
the new one? Use the 5% level of significance.

Solution

If the average current flows are represented by µ1 and µ2 we form the hypotheses

H0 : µ1 − µ2 = 0 H1 : µ1 − µ2 6= 0

The sample means are X̄1 = 82.42 and X̄2 = 83.72.

The sample variances are S2
1 = 2.00 and S2

2 = 2.72.

The test statistic is

T =
(X̄1 − X̄2)− (µ1 − µ2)√

S2
1

n1
+

S2
2

n2

=
82.42− 83.72√

2.00
10

+ 2.72
12

= − 1.3√
0.427

= −1.990
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Solution (contd.)

The number of degrees of freedom is given by

ν =

(
S2

1

n1

+
S2

2

n2

)2

(
S2

1

n1

)2

n1 + 1
+

(
S2

2

n2

)2

n2 + 1

− 2

=

(
2.00

10
+

2.72

12

)2

(2.00/10)2

11
+

(2.72/12)2

13

− 2 =
0.182

0.004 + 0.004
− 2 ≈ 21

From t-tables, the critical values (two-tailed test, 5% level of significance) are ±2.080. Since
−2.080 < −1.990 < 2.080 we conclude that there is insufficient evidence to reject the null hypoth-
esis in favour of the alternative at the 5% level of significance.

This next Task is a repeat of the Task on page 25 but assuming unequal variances.

Task

A manufacturer of steel cables used in the construction of suspension bridges has
experimented with a new type of steel which it is hoped will result in the cables
produced being stronger in the sense that they will accept greater tension loads
before failure. In order to test the performance of the new cables in comparison
with the old cables, samples are tested for failure under tension. The results
obtained are given below where the failure tensions are given in kg×103.

Test Number New Cable Original Cable
1 92.7 90.2
2 91.6 92.4
3 94.7 94.7
4 93.7 92.1
5 96.5 95.9
6 94.3 91.1
7 93.7 93.2
8 96.8 91.5
9 98.9
10 99.9

The cable manufacturer, on looking at health and safety legislation, decides that a
1% level of significance should be used in any statistical testing procedure adopted
to distinguish between the cables. On the basis of the results given and assuming
that the populations from which the samples are drawn do not have equal
variances, should the manufacturer replace the old cable by the new one?

HELM (2008):
Section 41.3: Tests Concerning Two Samples

29



Your solution

Answer
If the average tensions are represented by µ1 (new cable) and µ2 (old cable), we form the hypotheses

H0 : µ1 − µ2 = 0 H1 : µ1 − µ2 > 0

in order to test the hypothesis that the new cable is stronger on average than the old cable.

The sample means are X̄1 = 95.28 and X̄2 = 92.64.

The sample variances are S2
1 = 6.47 and S2

2 = 3.14.

The test statistic is

T =
(X̄1 − X̄2)− (µ1 − µ2)√

S2
1

n1
+

S2
2

n2

=
95.28− 92.64√

6.47
10

+ 3.14
8

=
2.64√
1.017

= 2.589

The number of degrees of freedom is given by

ν =

(
S2

1

n1

+
S2

2

n2

)2

(
S2

1

n1

)2

n1 + 1
+

(
S2

2

n2

)2

n2 + 1

− 2 =

(
6.47

10
+

3.14

8

)2

(6.47/10)2

11
+

(3.14/8)2

9

− 2 =
1.081

0.038 + 0.017
− 2 ≈ 4

Using t-distribution tables with 18 degrees of freedom, we see that the critical value at the 1%
level of significance is 2.552. Since 2.589 < 2.552 we conclude that we reject the null hypothesis
in favour of the alternative. Notice that the result could still be considered marginal. The cable
manufacturer should exercise caution if the old cable is replaced by the new one on the basis of the
evidence available.

30 HELM (2008):
Workbook 41: Hypothesis Testing



®

The FFF -test
In the tests above, we distinguished between the cases of equal and unequal variances of samples
chosen from independent normal populations. As you have seen, the analysis changes according to
the assumptions made, conclusions reached and recommendations made - accepting or rejecting a
null hypothesis for example - may also change. In view of this, we may wish to test in order to decide
whether the assumption that the variances σ2

1 and σ2
2 of the independent normal populations shown

in the diagram below, may be regarded as equal.

μ1 μ2

X1 ∼ N(μ1, σ
2
1)

X2 ∼ N(μ2, σ
2
2)

Figure 9

Essentially, we will test the null hypothesis

H0 : σ2
1 = σ2

2

against one of the alternatives

H1 : σ2
1 6= σ2

2 H1 : σ2
1 > σ2

2 H1 : σ2
1 < σ2

2

In order to do this, we use the F -distribution. The hypothesis test for the equality of two variances
σ2

1 and σ2
2 is encapsulated in the following Key Point.

Key Point 2

Consider a random sample of size n1 taken from a normal population with mean µ1 and variance σ2
1

and a random sample of size n1 taken from a second normal population with mean µ2 and variance
σ2

2. Denote the respective sample variances by S2
1 and S2

2 and assume that the populations are
independent. The ratio

F =
S2

1

σ2
1

/
S2

2

σ2
2

follows an F distribution in which the numerator has n1−1 degrees of freedom and the denominator
has n2 − 1 degrees of freedom.

Note that if the null hypothesis H0 : σ2
1 = σ2

2 is true, then the value of F reduces to the ratio of
the sample variances and that in this case

F =
S2

1

S2
2
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Note

Recall that if a random sample of size n1 is taken from a normal population with mean µ1 and
variance σ2

1 and if the sample variance is denoted by S2
1 , the random variable

X2
1 =

(n1 − 1)S2
1

σ2
1

has a χ2 distribution with n1 − 1 degrees of freedom. Similarly, if a random sample of size n2 is
taken from a normal population with mean µ2 and variance σ2

2 and if the sample variance is denoted
by S2

2 , the random variable

X2
2 =

(n2 − 1)S2
2

σ2
2

has a χ2 distribution with n2 − 1 degrees of freedom. This means that the ratio

F =
S2

1

σ2
1

/
S2

2

σ2
2

is a ratio of χ2 random variables with n1−1 degrees of freedom in the numerator and n2−1 degrees
of freedom in the denominator. Under the null hypothesis

H0 : σ2
1 = σ2

2

we know that the expression for F reduces to

F =
S2

1

S2
2

and we say that F has an F -distribution with n1−1 degrees of freedom in the numerator and n2−1
degrees of freedom in the denominator. This distribution is denoted by

Fn1−1,n2−1

and some tabulated values are given in Tables 3 and 4 at the end of this Workbook.

If you check Tables 3 and 4, you will find that only right-tail values are given. The left-tail values
are calculated by using the following formula:

f1−α, n1−1, n2−1 =
1

fα, n2−1, n1−1

Note the reversal in the order in which the expressions for the number of degrees of freedom occur.
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Example 7
The following is an extract from the F -distribution tables (5% tail) given at the
end of this Workbook.

f

f0.05,u,ν

5%

Degrees of Freedom for the Numerator (u)

ν 1 2 3 4 5 6 7 8 9 10 20 30 40 60 ∞
1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 248.0 250.1 251.1 252.2 254.3
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.45 19.46 19.47 19.48 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.66 8.62 8.59 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.80 5.75 5.72 5.69 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.56 4.53 4.46 4.43 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.87 3.81 3.77 3.74 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.44 3.38 3.34 3.30 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.15 3.08 3.04 3.01 2.93

Figure 10

Write down or calculate as appropriate, the following values of F from the table:

Right-tail Values Left-tail Values
f0.05,4,3 f0.95,4,3

f0.05,8,2 f0.95,8,2

f0.05,7,8 f0.95,7,8

Solution

The right-tail values are read directly from the tables. The left-tail values are calculated using the
formula given above.

Right-tail Values Left-tail Values
f0.05,4,3 = 9.12 f0.95,4,3 = 1

f0.05,3,4
= 1

6.59
= 0.152

f0.05,8,2 = 19.37 f0.95,8,2 = 1
f0.05,2,8

= 1
4.46

= 0.224

f0.05,7,8 = 3.50 f0.95,7,8 = 1
f0.05,8,7

= 1
3.73

= 0.268
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Task

Write down or calculate as appropriate, the following values of F from the tables
given at the end of this Workbook.

Right-tail Values Left-tail Values
f0.05,10,20 f0.95,10,20

f0.05,5,30 f0.95,5,30

f0.05,20,7 f0.95,20,7

f0.025,10,10 f0.975,10,10

f0.025,8,30 f0.975,8,30

f0.025,20,30 f0.975,20,30

Your solution

Right-tail Values Left-tail Values
f0.05,10,20 = f0.95,10,20 =
f0.05,5,30 = f0.95,5,30 =
f0.05,20,7 = f0.95,20,7 =

f0.025,10,10 = f0.975,10,10 =
f0.025,8,30 = f0.975,8,30 =
f0.025,20,30 = f0.975,20,30 =

Answer

Right-tail Values Left-tail Values
f0.05,10,20 = 2.35 f0.95,10,20 = 1

f0.05,20,10
= 1

2.77
= 0.361

f0.05,5,30 = 2.53 f0.95,5,30 = 1
f0.05,30,5

= 1
4.53

= 0.221

f0.05,20,7 = 3.44 f0.95,20,7 = 1
f0.05,7,20

= 1
2.51

= 0.398

f0.025,10,10 = 3.72 f0.975,10,10 = 1
f0.025,10,10

= 1
3.72

= 0.269

f0.025,8,30 = 2.65 f0.975,8,30 = 1
f0.025,30,8

= 1
3.89

= 0.257

f0.025,20,30 = 2.20 f0.975,20,30 = 1
f0.025,30,20

= 1
2.35

= 0.426

We are now in a position to use the F -test to solve engineering problems. The application of the
F -test will be illustrated by using the data given in a previous worked example in order to determine
whether the assumption of equal variability in the samples used is realistic.
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This next Example was met as Example 5 (page 24). Here we test one of the underlying assumptions.

Example 8
A manufacturer of electronic equipment has developed a circuit to feed current
to a particular component in a computer display screen. While the new design is
cheaper to manufacture, it can only be adopted for mass production if it passes
the same average current to the component. In tests involving the two circuits,
the results obtained are

Test Number Circuit 1 - Current (mA) Circuit 2 - Current (mA)
1 80.1 80.7
2 82.3 81.3
3 84.1 84.6
4 82.6 81.7
5 85.3 86.3
6 81.3 84.3
7 83.2 83.7
8 81.7 84.7
9 82.2 82.8
10 81.4 84.4
11 85.2
12 84.9

In Example 5 we worked on the assumption that the populations from which the
samples are drawn have equal variances. Is this assumption valid at the 5% level
of significance?

Note that the manufacturer may also be interested in knowing whether the vari-
ances are equal as well as the means. We shall not address that problem here but
it can be argued that equality of variances will facilitate consistent performance
from the components.

Solution

We form the hypotheses

H0 : σ2
1 = σ2

2 H1 : σ2
1 6= σ2

2

and perform a two-tailed test.

The sample variances are S2
1 = 2.00 and S2

2 = 2.72.

The test statistic is

F =
S2

1

S2
2

=
2.00

2.72
= 0.735

which has an F -distribution with 9 degrees of freedom in the numerator and 11 degrees of freedom
in the denominator.
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Solution (contd.)

We require two 2.5% tails, that is we require right-tail f0.025,9,11 = 3.59 and left-tail f0.975,9,11. The
latter may be approximated as follows:

f0.975,9,11 =
1

f0.025,11,9

≈

(
1
11
− 1

20

)
1

f0.025,10,9
+

(
1
10
− 1

11

)
1

f0.025,20,9(
1
10
− 1

20

)
≈

0.040909
3.96

+ 0.009091
3.67

0.05

≈ 0.81818

3.96
+

0.18182

3.67
= 0.256

Since 0.256 < 0.735 < 3.59 we conclude that we cannot reject the null hypothesis in favour of the
alternative at the 5% level of significance. The evidence supports the conclusion that the samples
have equal variability.

Note that we can adopt the rule (many statisticians do this) of always dividing the larger S2 value
by the smaller S2 value so that you only need to look up right tail values.

This next Task was first met on page 25. Here we test one of the underlying assumptions.
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Task

A manufacturer of steel cables used in the construction of suspension bridges has
experimented with a new type of steel which it is hoped will result in the cables
produced being stronger in the sense that they will accept greater tension loads
before failure. In order to test the performance of the new cables in comparison
with the old cables, samples are tested for failure under tension. The results
obtained are as follows, where the failure tensions are given in tonnes.

Test Number New steel cable tension Old steel cable tension
1 80.1 80.7
2 82.3 81.3
3 84.1 84.6
4 82.6 81.7
5 85.3 86.3
6 81.3 84.3
7 83.2 83.7
8 81.7 84.7
9 82.2 82.8
10 81.4 84.4
11 85.2
12 84.9

Last time we assumed that the populations from which the samples are drawn did
not have equal variances. Is this assumption valid at the 5% level of significance?

Your solution
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Answer
We form the hypotheses

H0 : σ2
1 = σ2

2 H1 : σ2
1 6= σ2

2

and perform a two-tailed test.

The sample variances are S2
1 = 6.47 and S2

2 = 3.14.

The test statistic is

F =
S2

1

S2
2

=
6.47

3.14
= 2.061

which has an F -distribution with 9 degrees of freedom in the numerator and 7 degrees of freedom
in the denominator. We require two 2.5% tails. That is, we require right-tail f0.025,9,7 = 4.42 and
left-tail f0.975,9,7 which may be calculated as

f0.975,9,7 =
1

f0.025,7,9

=
1

4.20
= 0.238

Since 0.238 < 2.061 < 4.82 we conclude that we cannot reject the null hypothesis in favour of the
alternative at the 5% level of significance. The evidence does not support the conclusion that the
populations have unequal variances.
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Z = X−μ
σ

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 .0000 0040 0080 0120 0159 0199 0239 0279 0319 0359
0.1 .0398 0438 0478 0517 0557 0596 0636 0657 0714 0753
0.2 .0793 0832 0871 0910 0948 0987 1026 1064 1103 1141
0.3 .1179 1217 1255 1293 1331 1368 1406 1443 1480 1517
0.4 .1554 1591 1628 1664 1700 1736 1772 1808 1844 1879
0.5 .1915 1950 1985 2019 2054 2088 2123 2157 2190 2224
0.6 .2257 2291 2324 2357 2389 2422 2454 2486 2518 2549
0.7 .2530 2611 2642 2673 2704 2734 2764 2794 2823 2852
0.8 .2881 2910 2939 2967 2995 3023 3051 3078 3106 3133
0.9 .3159 3186 3212 3238 3264 3289 3315 3340 3365 3389
1.0 .3413 3438 3461 3485 3508 3531 3554 3577 3599 3621
1.1 .3643 3665 3686 3708 3729 3749 3770 3790 3810 3830
1.2 .3849 3869 3888 3907 3925 3944 3962 3980 3997 4015
1.3 .4032 4049 4066 4082 4099 4115 4131 4147 4162 4177
1.4 .4192 4207 4222 4236 4251 4265 4279 4292 4306 4319
1.5 .4332 4345 4357 4370 4382 4394 4406 4418 4430 4441
1.6 .4452 4463 4474 4485 4495 4505 4515 4525 4535 4545
1.7 .4554 4564 4573 4582 4591 4599 4608 4616 4625 4633
1.8 .4641 4649 4656 4664 4671 4678 4686 4693 4699 4706
1.9 .4713 4719 4726 4732 4738 4744 4750 4756 4762 4767
2.0 .4772 4778 4783 4788 4793 4798 4803 4808 4812 4817
2.1 .4621 4826 4830 4835 4838 4842 4846 4850 4854 4857
2.2 .4861 4865 4868 4871 4875 4878 4881 4884 4887 4890
2.3 .4893 4896 4898 4901 4904 4906 4909 4911 4913 4916
2.4 .4918 4920 4922 4925 4927 4929 4931 4932 4934 4936
2.5 .4938 4940 4941 4943 4945 4946 4948 4949 4951 4952
2.6 .4953 4955 4956 4957 4959 4960 4961 4962 4963 4964
2.7 .4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
2.8 .4974 4975 4976 4977 4977 4978 4979 4980 4980 4981
2.9 .4981 4982 4983 4983 4984 4984 4985 4985 4986 4986
3.0 .4986 4987 4987 4988 4988 4989 4989 4989 4990 4990
3.1 .4990 4991 4991 4991 4992 4992 4992 4992 4993 4993
3.2 .4993 4994 4994 4994 4994 4994 4994 4995 4995 4995
3.3 .4995 4995 4995 4996 4996 4996 4996 4996 4996 4997
3.4 .4997 4997 4997 4997 4997 4997 4997 4997 4997 4998
3.5 .4998 4998 4998 4998 4998 4998 4998 4998 4998 4998
3.6 .4998 4998 4999 4999 4999 4999 4999 4999 4999 4999
3.7 .4999 4999 4999 4999 4999 4999 4999 4999 4999 4999
3.8 .4999 4999 4999 4999 4999 4999 4999 4999 4999 4999
3.9 .4999 4999 4999 4999 4999 4999 4999 4999 4999 4999

Note that some text books give the final line entries as 0.5 rather than 0.4999.

A

z10

In these workbooks we shall use 0.4999.

Table 1: The Normal Probability Integral
The area is denoted by A and is measured from the mean z = 0 to any ordinate z = z1.
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α .40 .25 .10 .05 .025 .01 .005 .0025 .001 .0005
ν
1 .325 1.000 3.078 6.314 12.706 31.825 63.657 127.32 318.31 636.62
2 .289 .816 1.886 2.902 4.303 6.965 9.925 14.089 23.326 31.598
3 .277 .765 1.638 2.353 3.182 4.514 5.841 7.453 10.213 12.924
4 .271 .741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 .267 .727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 .265 .718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 .263 .711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 .262 .706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 .261 .703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781
10 .260 .700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.487
11 .260 .697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 .259 .695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 .259 .694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 .258 .692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 .258 .691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 .258 .690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 .257 .689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 .257 .688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 .257 .688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 .257 .687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 .256 .685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 .256 .684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 .256 .684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 .256 .684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 .256 .683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 .256 .683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 .256 .683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 .255 .681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
60 .254 .679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460
120 .254 .677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
∞ .253 .674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

α

tα,ν

Table 2: Percentage Points of the Students ttt-distribution

40 HELM (2008):
Workbook 41: Hypothesis Testing



®

5%

f0.05,u ν

ν 1 2 3 4 5 6 7 8 9 10 20 30 40 60 ∞
1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 248.0 250.1 251.1 252.2 254.3
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.45 19.46 19.47 19.48 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.66 8.62 8.59 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.80 5.75 5.72 5.69 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.56 4.53 4.46 4.43 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.87 3.81 3.77 3.74 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.44 3.38 3.34 3.30 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.15 3.08 3.04 3.01 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 2.94 2.86 2.83 2.79 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.77 2.70 2.66 2.62 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.65 2.57 2.53 2.49 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.54 2.47 2.43 2.38 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.46 2.38 2.34 2.30 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.39 2.31 2.27 2.22 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.33 2.25 2.20 2.16 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.28 2.19 2.15 2.11 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.23 2.15 2.10 2.06 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.19 2.11 2.06 2.02 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.16 2.07 2.03 1.93 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.12 2.04 1.99 1.95 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.10 2.01 1.96 1.92 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.07 1.98 1.94 1.89 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.05 1.96 1.91 1.86 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.03 1.94 1.89 1.84 1.73
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.01 1.92 1.87 1.82 1.71
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 1.99 1.90 1.85 1.80 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 1.97 1.88 1.84 1.79 1.67
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 1.96 1.87 1.82 1.77 1.65
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 1.94 1.85 1.81 1.75 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 1.93 1.84 1.79 1.74 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 1.84 1.74 1.69 1.64 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.75 1.65 1.59 1.53 1.39
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.57 1.46 1.39 3.32 1.00

,

Degrees of Freedom for the Numerator (u)

Table 3: Percentage Points of the FFF -Distribution (5% tail)
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2.5%

f0.025,u,ν

ν 1 2 3 4 5 6 7 8 9 10 20 30 40 60 ∞
1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 993.1 1001 1006 1010 1018
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.45 39.46 39.47 39.48 39.50
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.17 14.08 14.04 13.99 13.90
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.56 8.46 8.41 8.36 8.26
5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.33 6.23 6.18 6.12 6.02
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.17 5.07 5.01 4.96 4.85
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.75 4.47 4.36 4.31 4.25 4.14
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.00 3.89 3.84 3.78 3.67
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.67 3.56 3.51 3.45 3.33
10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.42 3.31 3.26 3.20 3.08
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.23 3.12 3.06 3.00 2.88
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.07 2.96 2.91 2.85 2.72
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 2.95 2.84 2.78 2.72 2.60
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 2.84 2.73 2.67 2.61 2.49
15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.76 2.64 2.59 2.52 2.40
16 6.12 4.69 4.08 3.73 3.50 3.34 3.32 3.12 3.05 2.99 2.68 2.57 2.51 2.45 2.32
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.62 2.50 2.44 2.38 2.25
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.56 2.44 2.38 2.32 2.19
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.51 2.39 2.33 2.27 2.13
20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.46 2.35 2.29 2.22 2.09
21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.42 2.31 2.25 2.18 2.04
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.39 2.27 2.21 2.14 2.00
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.36 2.24 2.18 2.11 1.97
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.33 2.21 2.15 2.08 1.94
25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.30 2.18 2.12 2.05 1.91
26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.28 2.16 2.09 2.03 1.88
27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.25 2.13 2.07 2.00 1.85
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.23 2.11 2.05 1.91 1.83
29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.21 2.09 2.03 1.96 1.81
30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.20 2.07 2.01 1.94 1.79
40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.07 1.94 1.88 1.80 1.64
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 1.94 1.82 1.74 1.67 1.48
∞ 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.71 1.57 1.48 1.39 1.00

Degrees of Freedom for the Numerator (u)

Table 4: Percentage Points of the FFF -Distribution (2.5% tail)
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