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for the Variance

�
�

�
�40.2

Introduction
In Section 40.1 we have seen that the sampling distribution of the sample mean, when the data
come from a normal distribution (and even, in large samples, when they do not) is itself a normal
distribution. This allowed us to find a confidence interval for the population mean. It is also often
useful to find a confidence interval for the population variance. This is important, for example, in
quality control. However the distribution of the sample variance is not normal. To find a confidence
interval for the population variance we need to use another distribution called the “chi-squared”
distribution.
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Prerequisites
Before starting this Section you should . . .

• understand and be able to calculate means
and variances

• understand the concepts of continuous
probability distributions

• understand and be able to calculate a
confidence interval for the mean of a normal
distribution#
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Learning Outcomes

On completion you should be able to . . .

• find probabilities using a chi-squared
distribution

• find a confidence interval for the variance of
a normal distribution
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1. Interval estimation for the variance
In Section 40.1 we saw how to find a confidence interval for the mean of a normal population. We
can also find a confidence interval for the variance. The corresponding confidence interval for the
standard deviation is found by taking square roots.

We know that if we take samples from a population, then each sample will have a mean and a
variance associated with it. We can calculate the values of these quantities from first principles, that
is we can use the basic definitions of the mean and the variance to find their values. Just as the
means form a distribution, so do the values of the variance and it is to this distribution that we turn
in order to find an interval estimate for the value of the variance of the population. Note that if
the original population is normal, samples taken from this population have means which are normally
distributed. When we consider the distribution of variances calculated from the samples we need the
chi-squared (usually written as χ2 ) distribution in order to calculate the confidence intervals. As you
might expect, the values of the chi-squared distribution are tabulated for ease of use. The calculation
of confidence intervals for the variance (and standard deviation) depends on the following result.

Key Point 2

If x1, x2, · · · , xn is a random sample taken from a normal population with mean µ and variance σ2

then if the sample variance is denoted by S2, the random variable

X2 =
(n− 1)S2

σ2

has a chi-squared ( χ2) distribution with n− 1 degrees of freedom.

Clearly, a little explanation is required to make this understandable! Key Point 2 refers to the
chi-squared distribution and the term ‘degrees of freedom.’ Both require some detailed explanation
before the Key Point can be properly understood. We shall start by looking in a little detail at the
chi-squared distribution and then consider the term ‘degrees of freedom.’ You are advised to read
these explanations very carefully and make sure that you fully understand them.

The chi-squared random variable
The probability density function of a χ2 random variable is somewhat complicated and involves the
gamma (Γ) function. The gamma function, for positive r, is defined as

Γ(r) =

∫ ∞

0

xr−1e−xdx

It is easily shown that Γ(r) = (r − 1)Γ(r − 1) and that, if r is an integer, then

Γ(r) = (r − 1)(r − 2)(r − 3) · · · (3)(2)(1) = (r − 1)!
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The probability density function is

f(x) =
1

2k/2Γ(k/2)
x(k/2)−1e−x/2 x > 0.

The plots in Figure 2 show the probability density function for various convenient values of k. We
have deliberately taken even values of k so that the gamma function has a value easily calculated
from the above formula for a factorial. In these graphs the vertical scaling has been chosen to ensure
each graph has the same maximum value.

It is possible to discern two things from the diagrams.

Firstly, as k increases, the peak of each curve occurs at values closer to k. Secondly, as k increases,
the shape of the curve appears to become more and more symmetrical. In fact the mean of the χ2

distribution is k and in the limit as k → ∞ the χ2 distribution becomes normal. One further fact,
not obvious from the diagrams, is that the variance of the χ2 distribution is 2k.
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k = 4 k = 16

k = 64 k = 256

Figure 2

A summary is given in the following Key Point.

Key Point 3

The χ2 distribution, defined by the probability density function

f(x) =
1

2k/2Γ(k/2)
x(k/2)−1e−x/2 x > 0.

has mean k and variance 2k and as k →∞ the limiting form of the distribution is normal.
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Degrees of freedom
A formal definition of the term ‘degrees of freedom’ is that it is the ‘number of independent com-
parisons that can be made among the elements of a sample.’ Textbooks on statistics e.g. Applied
Statistics and Probability for Engineers by Montgomery and Runger (Wiley) often give this formal def-
inition. The number of degrees of freedom is usually represented by the Greek symbol ν pronounced
‘nu’. The following explanations of the concept should be helpful.

Explanation 1

If we have a sample of n values say x1, x2, x3 · · · , xn chosen from a population and we are trying to
calculate the mean of the sample, we know that the sum of the deviations about the mean must be
zero. Hence, the following constraint must apply to the observations.∑

(x− x̄) = 0

Once we calculate the values of (x1− x̄), (x2− x̄), (x3− x̄), · · · (xn−1− x̄) we can calculate
the value of (xn − x̄) by using the constraint

∑
(x− x̄) = 0. We say that we have n− 1 degrees of

freedom. The term ‘degrees of freedom’ may be thought of as the number of independent variables
minus the number of constraints imposed.

Explanation 2

A point in space which can move freely has three degrees of freedom since it can move independently
in the x, y and z directions. If we now restrict the point so that it can only move along the straight
line

x

a
=

y

b
=

z

c

then we have effectively imposed two constraints since the value of (say) x determines the values of
y and z. In this situation, we say that the number of degrees of freedom is reduced from 3 to 1.
That is, we have one degree of freedom.

A similar argument may be used to demonstrate that a point in three dimensional space which is
restricted to move in a plane leads to a situation with two degrees of freedom.

Key Point 4

The term ‘degrees of freedom’ may be thought of as the number of independent variables involved
minus the number of constraints imposed.

Figure 3 shows a typical χ2 distribution and Table 1 at the end of this Workbook show the values
of χ2

α,ν for a variety of values of the area α and the number of degrees of freedom ν. Notice that
Table 1 gives the area values corresponding to the right-hand tail of the distribution which is shown
shaded.
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χ2
α,ν

f

Figure 3

The χ2
α,ν values for (say) right-hand area values of 5% are given by the column headed 0.05 while

the χ2
α,ν values for (say) left-hand area values of 5% are given by the column headed 0.95. Figure 4

shows the values of χ2
α,ν for the two 5% tails when there are 5 degrees of freedom.

f(x)

χ2
0.95,5 = 1.15 χ2

0.05,5 = 11.07
x

Figure 4

Task

Use the percentage points of the χ2 distribution to find the appropriate values of
χ2

α,ν in the following cases.

(a) Right-hand tail of 10% and 7 degrees of freedom.

(b) Left-hand tail of 2.5% and 9 degrees of freedom.

(c) Both tails of 5% and 10 degrees of freedom.

(d) Both tails of 2.5% and 20 degrees of freedom.

Your solution

Answer
Using Table 1 and reading off the values directly gives:
(a) 12.02 (b) 2.70 (c) 3.94 and 18.31 (d) 9.59 and 34.17
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Constructing a confidence interval for the variance
We know that if x1, x2, x3, · · · , xn is a random sample taken from a normal population with mean
µ and variance σ2 and if the sample variance is denoted by S2, the random variable

X2 =
(n− 1)S2

σ2

has a chi-squared distribution with n−1 degrees of freedom. This knowledge enables us to construct
a confidence interval as follows.

Firstly, we decide on a level of confidence, say, for the sake of illustration, 95%. This means that we
need two 2.5% tails.

Secondly, we know that we have n− 1 degrees of freedom so that the value of X2 will lie between
the left-tail value of χ2

0.975,n−1 and the right-tail value of χ2
0.025,n−1. If we know the value of n then

we can easily read off these values from the χ2 tables.

The confidence interval is developed as shown below.
We have

χ2
0.025,n−1 ≤ X2 ≤ χ2

0.975,n−1

so that

χ2
0.025,n−1 ≤

(n− 1)S2

σ2
≤ χ2

0.975,n−1

hence

1

χ2
0.975,n−1

≤ σ2

(n− 1)S2
≤ 1

χ2
0.025,n−1

so that

(n− 1)S2

χ2
0.975,n−1

≤ σ2 ≤ (n− 1)S2

χ2
0.025,n−1

Another way of stating the same result using probability directly is to say that

P

(
(n− 1)S2

χ2
0.975,n−1

≤ σ2 ≤ (n− 1)S2

χ2
0.025,n−1

)
= 0.95

Noting that 0.95 = 100(1− 0.05) and that we are working with the right-hand tail values of the χ2

distribution, it is usual to generalize the above result as follows. Taking a general confidence level as
100(1− α)%, (a 95% interval gives α = 0.05), our confidence interval becomes

(n− 1)S2

χ2
α/2,n−1

≤ σ2 ≤ (n− 1)S2

χ2
1−α/2,n−1

Note that the confidence interval for the standard deviation σ is obtained by taking the appropriate
square roots.

The following Key Point summarizes the development of this confidence interval.

18 HELM (2008):
Workbook 40: Sampling Distributions and Estimation



®

Key Point 5

If x1, x2, x3, · · · , xn is a random sample with variance S2 taken from a normal population with
variance σ2 then a 100(1− α)% confidence interval for σ2 is

(n− 1)S2

χ2
α/2,n−1

≤ σ2 ≤ (n− 1)S2

χ2
1−α/2,n−1

where χ2
α/2,n−1 and χ2

1−α/2,n−1 are the appropriate right-hand and left-hand values respectively of a
chi-squared distribution with n− 1 degrees of freedom.

Example 2
A random sample of 20 nominally measured 2mm diameter steel ball bearings is
taken and the diameters are measured precisely. The measurements, in mm, are
as follows:

2.02 1.94 2.09 1.95 1.98 2.00 2.03 2.04 2.08 2.07

1.99 1.96 1.99 1.95 1.99 1.99 2.03 2.05 2.01 2.03

Assuming that the diameters are normally distributed with unknown mean, µ, and
unknown variance σ2,

(a) find a two-sided 95% confidence interval for the variance, σ2;

(b) find a two-sided confidence interval for the standard deviation, σ.

Solution

From the data, we calculate
∑

xi = 40.19 and
∑

x2
i = 80.7977. Hence

(n− 1)S2 = 80.7977− 40.192

20
= 0.035895

There are 19 degrees of freedom and the critical values of the χ2
19-distribution are

χ2
0.975,19 = 8.91 and χ2

0.025,19 = 32.85

(a) the confidence interval for σ2 is

0.035895

32.85
< σ2 <

0.035895

8.91
≡ 1.0927× 10−3mm < σ2 ≤ 4.0286× 10−3mm

(b) the confidence interval for σ is
√

1.0927× 10−3 < σ ≤
√

4.0286× 10−3 ≡ 0.033mm < σ < 0.063 mm
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Task

In a typical car, bell housings are bolted to crankcase castings by means of a series
of 13 mm bolts. A random sample of 12 bolt-hole diameters is checked as part of
a quality control process and found to have a variance of 0.0013 mm2.

(a) Construct the 95% confidence interval for the variance of the holes.

(b) Find the 95% confidence interval for the standard deviation of the holes.

State clearly any assumptions you make.

Your solution

Answer
Using the confidence interval formula developed, we know that the 95% confidence interval is

11× 0.0013

χ2
0.025,11

≤ σ2 ≤ 11× 0.0013

χ2
0.975,11

i.e.
11× 0.0013

21.92
≤ σ2 ≤ 11× 0.0013

3.82

(a) The 95% confidence interval for the variance is 0.0007 ≤ σ2 ≤ 0.0037 mm2.

(b) The 95% confidence interval for the standard deviation is 0.0265 ≤ σ ≤ 0.0608 mm.

We have assumed that the hole diameters are normally distributed.
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Exercises

1. Measurements are made on the lengths, in mm, of a sample of twenty wooden components for
self-assembly furniture. Assume that these may be regarded as twenty independent observations
from a normal distribution with unknown mean µ and unknown variance σ2. The data are as
follows.

581 580 581 577 580 581 577 579 579 578
581 583 577 578 582 581 582 580 582 579

Find a 95% confidence interval for the variance σ2 and hence find a 95% confidence interval
for the standard deviation σ.

2. A machine fills packets with powder. At intervals a sample of ten packets is taken and the
packets are weighed. The ten weights may be regarded as a sample of ten independent ob-
servations from a normal distribution with unknown mean. Find limits L, U such that the
probability that L < S2 < U is 0.9 when the population variance is σ2 = 3.0 and S2 is the
sample variance.

Answers

1. From the data we calculate
∑

yi = 11598 and
∑

y2
i = 6725744 and we have n = 20. Hence

(n− 1)s2 =
∑

(yi − ȳ)2 = 6725744− 115982

20
= 63.8

The number of degrees of freedom is n− 1 = 19. We know that

χ2
0.975,19 <

(n− 1)S2

σ2
< χ2

0.025,19

with probability 0.95. So a 95% confidence interval for σ2 is

(n− 1)s2

χ2
0.025,19

< σ2 <
(n− 1)s2

χ2
0.975,19

That is
63.8

32.85
< σ2 <

63.8

8.91
so 1.942 < σ2 < 7.160

This gives a 95% confidence interval for σ: 1.394 < σ < 2.676

2. There are n− 1 = 9 degrees of freedom. Now

0.9 = P

(
χ2

0.05,9 <
(n− 1)S2

σ2
< χ2

0.95,9

)
= P

(
χ2

0.05,9σ
2

n− 1
< S2 <

χ2
0.95,9σ

2

n− 1

)
= P

(
3.33× 3.0

9
< S2 <

16.92× 3.0

9

)
= P(1.11 < S2 < 5.64)

Hence L = 1.11 and U = 5.64.
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χ2
α,ν

f

α

Percentage Points χ2
α,ν of the χ2 distributionTable 1:

α 0.995 0.990 0.975 0.950 0.900 0.500 0.100 0.050 0.025 0.010 0.005
v
1 0.00 0.00 0.00 0.00 0.02 0.45 2.71 3.84 5.02 6.63 7.88
2 0.01 0.02 0.05 0.01 0.21 1.39 4.61 5.99 7.38 9.21 10.60
3 0.07 0.11 0.22 0.35 0.58 2.37 6.25 7.81 9.35 11.34 12.28
4 0.21 0.30 0.48 0.71 1.06 3.36 7.78 9.49 11.14 13.28 14.86
5 0.41 0.55 0.83 1.15 1.61 4.35 9.24 11.07 12.83 15.09 16.75
6 0.68 0.87 1.24 1.64 2.20 5.35 10.65 12.59 14.45 16.81 18.55
7 0.99 1.24 1.69 2.17 2.83 6.35 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.96
9 1.73 2.09 2.70 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59
10 2.16 2.56 3.25 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 10.34 17.28 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 5.23 6.30 11.34 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 12.34 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.27 7.26 8.55 14.34 22.31 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 9.31 15.34 23.54 26.30 28.85 31.00 34.27
17 5.70 6.41 7.56 8.67 10.09 16.34 24.77 27.59 30.19 33.41 35.72
18 6.26 7.01 8.23 9.39 10.87 17.34 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 11.65 18.34 27.20 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 12.44 19.34 28.41 31.41 34.17 37.57 40.00
21 8.03 8.90 10.28 11.59 13.24 20.34 29.62 32.67 35.48 38.93 41.40
22 8.64 9.54 10.98 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 14.85 22.34 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 12.40 13.85 15.66 23.34 33.20 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 16.47 24.34 34.28 37.65 40.65 44.31 46.93
26 11.16 12.20 13.84 15.38 17.29 25.34 35.56 38.89 41.92 45.64 48.29
27 11.81 12.88 14.57 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.65
28 12.46 13.57 15.31 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 19.77 28.34 39.09 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 20.60 29.34 40.26 43.77 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77
50 27.99 29.71 32.36 34.76 37.69 49.33 63.17 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 46.46 59.33 74.40 79.08 83.30 88.38 91.95
70 43.28 45.44 48.76 51.74 55.33 69.33 85.53 90.53 95.02 100.42 104.22
80 51.17 53.54 57.15 60.39 64.28 79.33 96.58 101.88 106.63 112.33 116.32
90 59.20 61.75 65.65 69.13 73.29 89.33 107.57 113.14 118.14 124.12 128.30
100 67.33 70.06 74.22 77.93 82.36 99.33 118.50 124.34 129.56 135.81 140.17
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