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Introduction
In this Section we briefly discuss nonlinear equations (what they are and what their solutions might
be) before noting that many such equations which crop up in applications cannot be solved exactly.

The remainder (and majority) of the Section then goes on to discuss methods for approximating
solutions of nonlinear equations.
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Prerequisites

Before starting this Section you should . . .

• understand derivatives of simple functions

• understand the quadratic formula

• understand exponentials and logarithms'
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Learning Outcomes

On completion you should be able to . . .

• approximate roots of equations by the
bisection method and by the
Newton-Raphson method

• implement an approximate Newton-Raphson
method

HELM (2008):
Section 31.4: Nonlinear Equations

67



1. Nonlinear Equations
A linear equation is one related to a straight line, for example f(x) = mx + c describes a straight
line with slope m and the linear equation f(x) = 0, involving such an f , is easily solved to give
x = −c/m (as long as m 6= 0). If a function f is not represented by a straight line in this way we
say it is nonlinear.

The nonlinear equation f(x) = 0 may have just one solution, like in the linear case, or it may have
no solutions at all, or it may have many solutions. For example if f(x) = x2 − 9 then it is easy to
see that there are two solutions x = −3 and x = 3. The nonlinear equation f(x) = x2 + 1 has no
solutions at all (unless the application under consideration makes it appropriate to consider complex
numbers).

Our aim in this Section is to approximate (real-valued) solutions of nonlinear equations of the form
f(x) = 0. The definitions of a root of an equation and a zero of a function have been gathered
together in Key Point 13.

Key Point 13

If the value x is such that f(x) = 0 we say that

1. x is a root of the equation f(x) = 0

2. x is a zero of the function f .

Example 22
Find any (real valued) zeros of the following functions. (Give 3 decimal places if
you are unable to give an exact numerical value.)

(a) f(x) = x2 + x− 20 (b) f(x) = x2 − 7x + 5 (c) f(x) = 2x − 3

(d) f(x) = ex + 1 (e) f(x) = sin(x)

Solution

(a) This quadratic factorises easily into f(x) = (x− 4)(x + 5) and so the two zeros of this f are
x = 4, x = −5.

(b) The nonlinear equation x2 − 7x + 5 = 0 requires the quadratic formula and we find that the

two zeros of this f are x =
7±

√
72 − 4× 1× 5

2
=

7±
√

29

2
which are equal to x = 0.807

and x = 6.193, to 3 decimal places.
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Solution (contd.)

(c) Using the natural logarithm function we see that

x ln(2) = ln(3)

from which it follows that x = ln(3)/ ln(2) = 1.585, to 3 decimal places.

(d) This f has no zeros because ex + 1 is always positive.

(e) sin(x) has an infinite number of zeros at x = 0,±π,±2π,±3π, . . . . To 3 decimal places these
are x = 0.000,±3.142,±6.283,±9.425, . . . .

Task

Find any (real valued) zeros of the following functions.

(a) f(x) = x2 + 2x− 15, (b) f(x) = x2 − 3x + 3,

(c) f(x) = ln(x)− 2, (d) f(x) = cos(x).

For parts (a) to (c) give your answers to 3 decimal places if you cannot give an
exact answer; your answers to part (d) may be left in terms of π.

Your solution
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Answer

(a) This quadratic factorises easily into f(x) = (x− 3)(x + 5) and so the two zeros of this
f are x = 3, x = −5.

(b) The equation x2 − 3x + 3 = 0 requires the quadratic formula and the two zeros of this
f are

x =
3±

√
32 − 4× 1× 3

2
=

3±
√
−3

2

which are complex values. This f has no real zeros.

(c) Solving ln(x) = 2 gives x = e2 = 7.389, to 3 decimal places.

(d) cos(x) has an infinite number of zeros at x =
π

2
,
π

2
± π,

π

2
± 2π, . . . .

Many functions that crop up in engineering applications do not lend themselves to finding zeros
directly as was achieved in the examples above. Instead we approximate zeros of functions, and this
Section now goes on to describe some ways of doing this. Some of what follows will involve revision
of material you have seen in 12 concerning Applications of Differentiation.

2. The bisection method
Suppose that, by trial and error for example, we know that a single zero of some function f lies
between x = a and x = b. The root is said to be bracketed by a and b. This must mean that f(a)
and f(b) are of opposite signs, that is that f(a)f(b) < 0.

Example 23
The single positive zero of the function f(x) = x tanh(1

2
x)− 1 models the wave

number of water waves at a certain frequency in water of depth 0.5 (measured
in some units we need not worry about here). Find two points which bracket the
zero of f .

Solution

We simply evaluate f at a selection of x-values.

x f(x) = x tanh(1
2
x)− 1

0 0× tanh(0)− 1 = −1
0.5 0.5× tanh(0.25)− 1 = 0.5× 0.2449− 1 = −0.8775

1 1× tanh(0.5)− 1 = 1× 0.4621− 1 = −0.5379
1.5 1.5× tanh(0.75)− 1 = 1.5× 0.6351− 1 = −0.0473

2 2× tanh(1)− 1 = 2× 0.7616− 1 = 0.5232

From this we can see that f changes sign between 1.5 and 2. Thus we can take a = 1.5 and b = 2
as the bracketing points. That is, the zero of f is in the bracketing interval 1.5 < x < 2.
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Task

The function f(x) = cos(x)−x has a single positive zero. Find bracketing points
a and b for the zero of f . Arrange for the difference between a and b to be equal
to 1

2
.

(NB - be careful to use radians on your calculator!)

Your solution

Answer
We evaluate f for a range of values:

x f(x)
0 1

0.5 0.37758
1 −0.459698

Clearly f changes sign between the bracketing values a = 0.5 and b = 1.
(Other answers are valid of course, it depends which values of f you tried.)

The aim with the bisection method is to repeatedly reduce the width of the bracketing interval
a < x < b so that it “pinches” the required zero of f to some desired accuracy. We begin by
describing one iteration of the bisection method in detail.

Let m = 1
2
(a + b), the mid-point of the interval a < x < b. All we need to do now is to see in

which half (the left or the right) of the interval a < x < b the zero is in. We evaluate f(m). There
is a (very slight) chance that f(m) = 0, in which case our job is done and we have found the zero
of f . Much more likely is that we will be in one of the two situations shown in Figure 13 below. If
f(m)f(b) < 0 then we are in the situation shown in (a) and we replace a < x < b with the smaller
bracketing interval m < x < b. If, on the other hand, f(a)f(m) < 0 then we are in the situation
shown in (b) and we replace a < x < b with the smaller bracketing interval a < x < m.

(a) (b)

a m b a m bx x

Figure 13
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Either way, we now have a bracketing interval that is half the size of the one we started with. We
have carried out one iteration of the bisection method. By successively reapplying this approach we
can make the bracketing interval as small as we wish.

Example 24
Carry out one iteration of the bisection method so as to halve the width of the
bracketing interval 1.5 < x < 2 for

f(x) = x tanh(1
2
x)− 1.

Solution

The mid-point of the bracketing interval is m = 1
2
(a + b) = 1

2
(1.5 + 2) = 1.75. We evaluate

f(m) = 1.75× tanh(1
2
× 1.75)− 1 = 0.2318,

to 4 decimal places. We found earlier (Example 20, page 63) that f(a) < 0 and f(b) > 0, the fact
that f(m) is of the opposite sign to f(a) means that the zero of f lies in the bracketing interval
1.5 < x < 1.75.

Task

Carry out one iteration of the bisection method so as to halve the width of the
bracketing interval 0.5 < x < 1 for

f(x) = cos(x)− x.

Your solution

Answer
Here a = 0.5, b = 1. The mid-point of the bracketing interval is m = 1

2
(a+ b) = 1

2
(0.5+1) = 0.75.

We evaluate

f(m) = cos(0.75)− 0.75 = −0.0183

We found earlier (Task, pages 58-59) that f(a) > 0 and f(b) < 0, the fact that f(m) is of the
opposite sign to f(a) means that the zero of f lies in the bracketing interval 0.5 < x < 0.75.

So we have a way of halving the size of the bracketing interval. By repeatedly applying this approach
we can make the interval smaller and smaller.

The general procedure, involving (possibly) many iterations, is best described as an algorithm:
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1. Choose an error tolerance.

2. Let m = 1
2
(a + b), the mid-point of the bracketing interval.

3. There are three possibilities:

(a) f(m) = 0, this is very unlikely in general, but if it does happen then we have found the
zero of f and we can go to step 7,

(b) the zero is between m and b,

(c) the zero is between a and m.

4. If the zero is between m and b, that is if f(m)f(b) < 0 (as in Figure 13(a)) then let a = m.

5. Otherwise the zero must be between a and m (as in Figure 13(b)) so let b = m.

6. If b− a is greater than the required tolerance then go to step 2.

7. End.

One feature of this method is that we can predict in advance how much effort is required to achieve
a certain level of accuracy.

Example 25
A given problem using the bisection method starts with the bracketing points
a = 1.5 and b = 2. How many iterations will be required so that the error in the
approximation is less that 1

2
× 10−6?

Solution

Before we carry out any iterations we can write that the zero to be approximated is 1.75± 0.25 so
that the maximum magnitude of the error in 1.75 may be taken to be equal to 0.25.
Each successive iteration will halve the size of the error, so that after n iterations the error is equal
to

1

2n
× 0.25

We require that this quantity be less than 1
2
× 10−6. Now,

1

2n
× 0.25 <

1

2
× 10−6 implies that 2n >

1

2
× 106.

The smallest value of n which satisfies this inequality can be found by trial and error, or by using
logarithms to see that n > (ln(1

2
) + 6 ln(10))/ ln(2). Either way, the smallest integer which will do

the trick is

n = 19.

It takes 19 iterations of the bisection method to ensure the required accuracy.
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Task

A function f is known to have a single zero between the points a = 3.2 and b = 4.
If these values were used as the initial bracketing points in an implementation of
the bisection method, how many iterations would be required to ensure an error
less than 1

2
× 10−3?

Your solution

Answer
We require that

1

2n
×

(
4− 3.2

2

)
<

1

2
× 10−3

or, after a little rearranging,

2n >
4

5
× 103.

The smallest value of n which satisfies this is n = 10. (This can be found by trial-and-error or by
using logarithms.)

Pros and cons of the bisection method

Pros

• the method is easy to understand and re-
member

• the method always works (once you find val-
ues a and b which bracket a single zero)

• the method allows us to work out how many
iterations it will take to achieve a given error
tolerance because we know that the interval
will exactly halve at each step

Cons

• the method is very slow

• the method cannot find roots where the
curve just touches the x-axis but does not
cross it (e.g. double roots)

The slowness of the bisection method will not be a surprise now that you have worked through an
example or two! Significant effort is involved in evaluating f and then all we do is look at this f -value
and see whether it is positive or negative! We are throwing away hard won information.
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Let us be realistic here, the slowness of the bisection method hardly matters if all we are saying is
that it takes a few more fractions of a second of computing time to finish, when compared with a
competing approach. But there are applications in which f may be very expensive (that is, slow) to
calculate and there are applications where engineers need to find zeros of a function many thousands
of times. (Coastal engineers, for example, may employ mathematical wave models that involve finding
the wave number we saw in Example 20 at many different water depths.) It is quite possible that
you will encounter applications where the bisection method is just not good enough.

3. The Newton-Raphson method
You may recall (e.g. 13.3) that the Newton-Raphson method (often simply called Newton’s
method) for approximating a zero of the function f is given by

xn+1 = xn −
f(xn)

f ′(xn)

where f ′ denotes the first derivative of f and where x0 is an initial guess to the zero of f . A graphical
way of interpreting how this method works is shown in Figure 14.

y

x
0

x
1

x
2

x
3

Figure 14

At each approximation to the zero of f we extrapolate so that the tangent to the curve meets the
x-axis. This point on the x-axis is the new approximation to the zero of f . As is clear from both
the figure and the mathematical statement of the method above, we require that f ′(xn) 6= 0 for
n = 0, 1, 2, . . . .
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Example 26
Let us consider the example we met earlier in Example 24. We know that the
single positive zero of

f(x) = x tanh(1
2
x)− 1

lies between 1.5 and 2. Use the Newton-Raphson method to approximate the zero
of f .

Solution

We must work out the derivative of f to use Newton-Raphson. Now

f ′(x) = tanh(1
2
x) + x

(
1
2
sech2(1

2
x)

)
on differentiating a product and recalling that

d

dx
tanh(x) = sech2(x). (To evaluate sech on a

calculator recall that sech(x) =
1

cosh(x)
.)

We must choose a starting value x0 for the iteration and, given that we know the zero to be between
1.5 and 2, we take x0 = 1.75. The first iteration of Newton-Raphson gives

x1 = x0 −
f(x0)

f ′(x0)
= 1.75− f(1.75)

f ′(1.75)
= 1.75− 0.231835

1.145358
= 1.547587,

where 6 decimal places are shown. The second iteration gives

x2 = x1 −
f(x1)

f ′(x1)
= 1.547587− f(1.547587)

f ′(1.547587)
= 1.547587− 0.004585

1.09687
= 1.543407.

Clearly this method lends itself to implementation on a computer and, for example, using a spread-
sheet package, it is not hard to compute a few more iterations. Here is output from Microsoft Excel
where we have included the two lines of hand-calculation above:

n xn f(xn) f ′(xn) xn+1

0 1.75 0.231835 1.145358 1.547587
1 1.547587 0.004585 1.09687 1.543407
2 1.543407 2.52E − 06 1.095662 1.543405
3 1.543405 7.69E − 13 1.095661 1.543405
4 1.543405 0 1.095661 1.543405

and all subsequent lines are equal to the last line here. The method has converged (very quickly!)
to 1.543405, to six decimal places.

Earlier, in Example 25, we found that the bisection method would require 19 iterations to achieve 6
decimal place accuracy. The Newton-Raphson method gave an answer good to this number of places
in just two or three iterations.
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Task

Use the starting value x0 = 0 in an implementation of the Newton-Raphson
method for approximating the zero of

f(x) = cos(x)− x.

(If you are doing these calculations by hand then just perform two or three itera-
tions. Don’t forget to use radians.)

Your solution

Answer
The derivative of f is f ′(x) = − sin(x)− 1. The first iteration is

x1 = x0 −
f(x0)

f ′(x0)
= 0− 1− 0

−0− 1
= 1

and the second iteration is

x2 = x1 −
f(x1)

f ′(x1)
= 1− cos(1)− 1

− sin(1)− 1
= 1− −0.459698

−1.841471
= 0.750364,

and so on. There is little to be gained in our understanding by doing more iterations by hand, but
using a spreadsheet we find that the method converges rapidly:

n xn f(xn) f ′(xn) xn+1

0 0 1 −1 1
1 1 −0.4597 −1.84147 0.750364
2 0.750364 −0.01892 −1.6819 0.739113
3 0.739113 −4.6E − 05 −1.67363 0.739085
4 0.739085 −2.8E − 10 −1.67361 0.739085
5 0.739085 0 −1.67361 0.739085

It is often necessary to find zeros of polynomials when studying transfer functions. Here is a Task
involving a polynomial.
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Task

The function f(x) = x3 + 2x + 4 has a single zero near x0 = −1. Use this value
of x0 to perform two iterations of the Newton-Raphson method.

Your solution

Answer
Using the starting value x0 = −1 you should find that f(x0) = 1 and f ′(x0) = 5. This leads to

x1 = x0 −
f(x0)

f ′(x0)
= −1− 1

5
= −1.2.

The second iteration should give you x2 = x1 −
f(x1)

f ′(x1)
= −1.2− −0.128

6.32
= −1.17975.

Subsequent iterations will home in on the zero of f . Using a computer spreadsheet gives:

n xn f(x) f ′(x) xn+1

0 −1 1 5 −1.2
1 −1.2 −0.128 6.32 −1.17975
2 −1.17975 −0.00147 6.175408 −1.17951
3 −1.17951 −2E − 07 6.173725 −1.17951
4 −1.17951 0 6.173725 −1.17951

where we have recomputed the hand calculations for the first two iterations.

We see that the method converges to the value −1.17951.
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Engineering Example 2

Pressure in an ideal multi-component mixture

Introduction

An ideal multi-component mixture consists of

1. n-pentane (5%)

2. n-hextane (15%)

3. n-heptane (50%)

4. n-octane (30%)

In general, the total pressure, P (Pa) of an ideal four-component mixture is related to the boiling
point, T (K) through the formula:

P = x1p
∗
1 + x2p

∗
2 + x3p

∗
3 + x4p

∗
4

where, for component i, the mole fraction is xi and the vapour pressure is p∗i , given by the formula:

p∗i = exp

{
Ai −

Bi

(T + Ci)

}
i = 1, 2, 3, 4

Here p∗i is in mm Hg (1 mm Hg = 133.32 Pa), T is the absolute temperature (K) and the constants
Ai, Bi and Ci are given in the table below.

i component xi Ai Bi Ci

1 n-pentane 0.05 15.8333 2477.07 −39.94
2 n-hexane 0.15 15.8366 2697.55 −48.78
3 n-heptane 0.50 15.8737 2911.32 −56.51
4 n-octane 0.30 15.9426 3120.29 −63.63

Problem 1

For the liquid compositions, xi given in the table above, plot a graph of the total pressure, P (Pa)
against temperature (K) over the range 250 to 500 K.

Solution

p∗i = exp

(
Ai −

Bi

T + Ci

)
, expressed in millimetres of mercury, and so it is 133.32 times that in

pascals. Therefore, expressed in pascals, we have

P = 133.32
4∑

i=1

xiexp

(
Ai −

Bi

T + Ci

)
Plotting this from T = 250 to 500 gives the following graph
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Problem 2

Using the Newton-Raphson method, solve the equations to find the boiling points at total pressures
of 1, 2, 5 and 10 bars. Show the sequence of iterations and perform sufficient calculations for
convergence to three significant figures. Display these solutions on the graph of the total pressure,
P (Pa) against temperature T (K).

Solution

We wish to find T when P = 1, 2, 5 and 10 bars, that is, 105, 2× 105, 5× 105 and 10× 105 Pa.

Reading crude approximations to T from the graph gives a starting point for the Newton-Raphson
process. We see that for 105, 2×105, 5×105 and 10×105 Pa, temperature T is roughly 365, 375, 460
and 485 degrees K, respectively, so we shall use these values as the start of the iteration.

In this case it is easy to calculate the derivative of P with respect to T exactly, rather than numerically,
giving

P ′(T ) = 133.32
4∑

i=1

xiexp

(
Ai −

Bi

T + Ci

)
×

(
Bi

(T + Ci)2

)
Therefore to solve the equation P (T ) = y, we set T0 to be the starting value above and use the
iteration

Tn+1 = Tn −
P (Tn)− y

P ′(Tn)

For y = 100000 this gives the iterations

T0 T1 T2 T3 T4

365 362.7915 362.7349 362.7349 362.7349

We conclude that, to three significant figures T = 363◦K when P = 100000 Pa.

For y = 200000 this gives the iterations
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T0 T1 T2 T3 T4

375 390.8987 388.8270 388.7854 388.7854

We conclude that, to three significant figures T = 389◦K when P = 200000 Pa.

For y = 500000 this gives the iterations

T0 T1 T2 T3 T4 T5

460 430.3698 430.4640 430.2824 430.2821 430.2821

We conclude that, to three significant figures T = 430◦K when P = 500000 Pa.

For y = 1000000 this gives the iterations

T0 T1 T2 T3 T4 T5

475 469.0037 468.7875 468.7873 468.7873 468.7873

We conclude that, to three significant figures T = 469◦K when P = 1000000 Pa.

An approximate Newton-Raphson method
The Newton-Raphson method is an excellent way of approximating zeros of a function, but it requires
you to know the derivative of f . Sometimes it is undesirable, or simply impossible, to work out the
derivative of a function and here we show a way of getting around this.

We approximate the derivative of f . From Section 31.3 we know that

f ′(x) ≈ f(x + h)− f(x)

h

is a one-sided (or forward) approximation to f ′ and another one, using a central difference, is

f ′(x) ≈ f(x + h)− f(x− h)

2h
.

The advantage of the forward difference is that only one extra f -value has to be computed. If f
is especially complicated then this can be a considerable saving when compared with the central
difference which requires two extra evaluations of f . The central difference does have the advantage,
as we saw when we looked at truncation errors, of being a more accurate approximation to f ′.

The spreadsheet program Microsoft Excel has a built in “solver” command which can use Newton’s
method. (It may be necessary to use the “Add in” feature of Excel to access the solver.) In reality
Excel has no way of working out the derivative of the function and must approximate it. Excel gives
you the option of using a forward or central difference to estimate f ′.

We now reconsider the problem we met in Examples 24 to 26.
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Example 27
We know that the single positive zero of f(x) = x tanh(1

2
x) − 1 lies between

1.5 and 2. Use the Newton-Raphson method, with an approximation to f ′, to
approximate the zero of f .

Solution

There is no requirement for f ′ this time, but the nature of this method is such that we will resort
to a computer straight away. Let us choose h = 0.1 in our approximations to the derivative.
Using the one-sided difference to approximate f ′(x) we obtain this sequence of results from the
spreadsheet program:

n xn f(xn) f(x+h)−f(x)
h

xn+1

0 1.75 0.231835 1.154355 1.549165
1 1.549165 0.006316 1.110860 1.543479
2 1.543479 8.16E − 05 1.109359 1.543406
3 1.543406 1.01E − 06 1.109339 1.543405
4 1.543405 1.24E − 08 1.109339 1.543405
5 1.543405 1.53E − 10 1.109339 1.543405
6 1.543405 1.89E − 12 1.109339 1.543405
7 1.543405 2.31E − 14 1.109339 1.543405
8 1.543405 0 1.109339 1.543405

And using the (more accurate) central difference gives

n xn f(xn) f(x+h)−f(x−h)
2h

xn+1

0 1.75 0.231835 1.144649 1.547462
1 1.547462 0.004448 1.095994 1.543404
2 1.543404 −1E − 06 1.094818 1.543405
3 1.543405 7.95E − 10 1.094819 1.543405
4 1.543405 −6.1E − 13 1.094819 1.543405
5 1.543405 0 1.094819 1.543405

We see that each of these approaches leads to the same value (1.543405) that we found with the
Newton-Raphson method.
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Task

Use a spreadsheet to recompute the approximations shown in Example 24, for the
following values of h:

h = 0.001, 0.00001, 0.000001.

Your solution

Answer
You should find that as h decreases, the numbers get closer and closer to those shown earlier for the
Newton-Raphson method. For example, when h = 0.0000001 we find that for a one-sided difference
the results are

n xn f(xn) f(x+h)−f(x)
h

xn+1

0 1.75 0.231835 1.145358 1.547587
1 1.547587 0.004585 1.096870 1.543407
2 1.543407 2.52E − 06 1.095662 1.543405
3 1.543405 8.08E − 13 1.095661 1.543405
4 1.543405 0 1.095661 1.543405

and those for a central difference with h = 0.0000001 are

n xn f(xn) f(x+h)−f(x−h)
2h

xn+1

0 1.75 0.231835 1.145358 1.547587
1 1.547587 0.004585 1.096870 1.543407
2 1.543407 2.52E − 06 1.095662 1.543405
3 1.543405 7.7E − 13 1.095661 1.543405
4 1.543405 0 1.095661 1.543405

It is clear that these two tables very closely resemble the Newton-Raphson results seen earlier.
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Exercises

1. It is given that the function

f(x) = x3 + 2x + 8

has a single negative zero.

(a) Find two integers a and b which bracket the zero of f .

(b) Perform one iteration of the bisection method so as to halve the size of the bracketing
interval.

2. Consider a simple electronic circuit with an input voltage of 2.0 V, a resistor of resistance 1000
Ω and a diode. It can be shown that the voltage across the diode can be found as the single
positive zero of

f(x) = 1× 10−14 exp
( x

0.026

)
− 2− x

1000
.

Use one iteration of the Newton-Raphson method, and an initial value of x0 = 0.75 to show
that

x1 = 0.724983

and then work out a second iteration.

3. It is often necessary to find the zeros of polynomials as part of an analysis of transfer functions.
The function

f(x) = x3 + 5x− 4

has a single zero near x0 = 1. Use this value of x0 in an implementation of the Newton-Raphson
method performing two iterations. (Work to at least 6 decimal place accuracy.)

4. The smallest positive zero of

f(x) = x tan(x) + 1

is a measure of how quickly certain evanescent water waves decay, and its value, x0, is near 3.
Use the forward difference

f(3.01)− f(3)

0.01

to estimate f ′(3) and use this value in an approximate version of the Newton-Raphson method
to derive one improvement on x0.
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Answers

1. (a) By trial and error we find that f(−2) = −4 and f(−1) = 5, from which we see that the
required bracketing interval is a < x < b where a = −2 and b = −1.

(b) For an iteration of the bisection method we find the mid-point m = −1.5. Now f(m) =
1.625 which is of the opposite sign to f(a) and hence the new smaller bracketing interval
is a < x < m.

2. The derivative of f is f ′(x) =
1× 10−14

0.026
exp

( x

0.026

)
+

1

1000
, and therefore the first iteration

of Newton-Raphson gives x1 = 0.75− 0.032457

1.297439
= 0.724983.

The second iteration gives x2 = 0.724983− 0.011603

0.496319
= 0.701605.

Using a spreadsheet we can work out some more iterations. The result of this process is
tabulated below

n xn f(xn) f ′(xn) xn+1

2 0.701605 0.003942 0.202547 0.682144
3 0.682144 0.001161 0.096346 0.670092
4 0.670092 0.000230 0.060978 0.666328
5 0.666328 1.56E − 05 0.052894 0.666033
6 0.666033 8.63E − 08 0.052310 0.666031
7 0.666031 2.68E − 12 0.052306 0.666031
8 0.666031 0 0.052306 0.666031

and we conclude that the required zero of f is equal to 0.666031, to 6 decimal places.

3. Using the starting value x0 = 1 you should find that f(x0) = 2 and f ′(x0) = 8. This leads to

x1 = x0 −
f(x0)

f ′(x0)
= 1− 2

8
= 0.75.

The second iteration should give you x2 = x1 −
f(x1)

f ′(x1)
= 0.75− 0.171875

6.6875
= 0.724299.

Subsequent iterations can be used to ‘home in’ on the zero of f and, using a computer
spreadsheet program, we find that

n xn f(x) f ′(x) xn+1

2 0.724299 0.001469 6.573827 0.724076
3 0.724076 1.09E − 07 6.572856 0.724076
4 0.724076 0 6.572856 0.724076

We see that the method converges to the value 0.724076.
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4. We begin with

f ′(3) ≈ f(3.01)− f(3)

0.01
=

0.02924345684

0.01
= 2.924345684,

to the displayed number of decimal places, and hence an improvement on x0 = 0.75 is

x1 = 3− f(3)

2.924345684
= 2.804277,

to 6 decimal places. (It can be shown that the root of f is 2.798386, to 6 decimal places.)
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