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Introduction
There are occasions when direct methods (like Gaussian elimination or the use of an LU decompo-
sition) are not the best way to solve a system of equations. An alternative approach is to use an
iterative method. In this Section we will discuss some of the issues involved with iterative methods.

'

&

$

%
Prerequisites

Before starting this Section you should . . .

• revise matrices, especially the material in
8

• revise determinants

• revise matrix norms#

"

 

!
Learning Outcomes

On completion you should be able to . . .

• approximate the solutions of simple
systems of equations by iterative methods

• assess convergence properties of iterative
methods
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1. Iterative methods
Suppose we have the system of equations

AX = B.

The aim here is to find a sequence of approximations which gradually approach X. We will denote
these approximations

X(0), X(1), X(2), . . . , X(k), . . .

where X(0) is our initial “guess”, and the hope is that after a short while these successive iterates
will be so close to each other that the process can be deemed to have converged to the required
solution X.

Key Point 10

An iterative method is one in which a sequence of approximations (or iterates) is produced. The
method is successful if these iterates converge to the true solution of the given problem.

It is convenient to split the matrix A into three parts. We write

A = L + D + U

where L consists of the elements of A strictly below the diagonal and zeros elsewhere; D is a diagonal
matrix consisting of the diagonal entries of A; and U consists of the elements of A strictly above
the diagonal. Note that L and U here are not the same matrices as appeared in the LU
decomposition! The current L and U are much easier to find.
For example[

3 −4
2 1

]
︸ ︷︷ ︸ =

[
0 0
2 0

]
︸ ︷︷ ︸ +

[
3 0
0 1

]
︸ ︷︷ ︸ +

[
0 −4
0 0

]
︸ ︷︷ ︸

↑ ↑ ↑ ↑
A = L + D + U

and  2 −6 1
3 −2 0
4 −1 7


︸ ︷︷ ︸

=

 0 0 0
3 0 0
4 −1 0


︸ ︷︷ ︸

+

 2 0 0
0 −2 0
0 0 7


︸ ︷︷ ︸

+

 0 −6 1
0 0 0
0 0 0


︸ ︷︷ ︸

↑ ↑ ↑ ↑
A = L + D + U
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and, more generally for 3 × 3 matrices • • •
• • •
• • •


︸ ︷︷ ︸

=

 0 0 0
• 0 0
• • 0


︸ ︷︷ ︸

+

 • 0 0
0 • 0
0 0 •


︸ ︷︷ ︸

+

 0 • •
0 0 •
0 0 0


︸ ︷︷ ︸

.

↑ ↑ ↑ ↑
A = L + D + U.

The Jacobi iteration
The simplest iterative method is called Jacobi iteration and the basic idea is to use the A =
L + D + U partitioning of A to write AX = B in the form

DX = −(L + U)X + B.

We use this equation as the motivation to define the iterative process

DX(k+1) = −(L + U)X(k) + B

which gives X(k+1) as long as D has no zeros down its diagonal, that is as long as D is invertible.
This is Jacobi iteration.

Key Point 11

The Jacobi iteration for approximating the solution of AX = B where A = L + D + U is given
by

X(k+1) = −D−1(L + U)X(k) + D−1B

Example 18

Use the Jacobi iteration to approximate the solution X =

 x1

x2

x3

 of 8 2 4
3 5 1
2 1 4

 x1

x2

x3

 =

 −16
4

−12

 .

Use the initial guess X(0) =

 0
0
0

.
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Solution

In this case D =

 8 0 0
0 5 0
0 0 4

 and L + U =

 0 2 4
3 0 1
2 1 0

.

First iteration.
The first iteration is DX(1) = −(L + U)X(0) + B, or in full 8 0 0

0 5 0
0 0 4


 x

(1)
1

x
(1)
2

x
(1)
3

 =

 0 −2 −4
−3 0 −1
−2 −1 0


 x

(0)
1

x
(0)
2

x
(0)
3

 +

 −16
4

−12

 =

 −16
4

−12

 ,

since the initial guess was x
(0)
1 = x

(0)
2 = x

(0)
3 = 0.

Taking this information row by row we see that

8x
(1)
1 = −16 ∴ x

(1)
1 = −2

5x
(1)
2 = 4 ∴ x

(1)
2 = 0.8

4x
(1)
3 = −12 ∴ x

(1)
3 = −3

Thus the first Jacobi iteration gives us X(1) =

 x
(1)
1

x
(1)
2

x
(1)
3

 =

 −2
0.8
−3

 as an approximation to X.

Second iteration.
The second iteration is DX(2) = −(L + U)X(1) + B, or in full 8 0 0

0 5 0
0 0 4


 x

(2)
1

x
(2)
2

x
(2)
3

 =

 0 −2 −4
−3 0 −1
−2 −1 0


 x

(1)
1

x
(1)
2

x
(1)
3

 +

 −16
4

−12

 .

Taking this information row by row we see that

8x
(2)
1 = −2x

(1)
2 − 4x

(1)
3 − 16 = −2(0.8) − 4(−3) − 16 = −5.6 ∴ x

(2)
1 = −0.7

5x
(2)
2 = −3x

(1)
1 − x

(1)
3 + 4 = −3(−2) − (−3) + 4 = 13 ∴ x

(2)
2 = 2.6

4x
(2)
3 = −2x

(1)
1 − x

(1)
2 − 12 = −2(−2) − 0.8 − 12 = −8.8 ∴ x

(2)
3 = −2.2

Therefore the second iterate approximating X is X(2) =

 x
(2)
1

x
(2)
2

x
(2)
3

 =

 −0.7
2.6
−2.2

.
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Solution (contd.)

Third iteration.
The third iteration is DX(3) = −(L + U)X(2) + B, or in full 8 0 0

0 5 0
0 0 4


 x

(3)
1

x
(3)
2

x
(3)
3

 =

 0 −2 −4
−3 0 −1
−2 −1 0


 x

(2)
1

x
(2)
2

x
(2)
3

 +

 −16
4

−12


Taking this information row by row we see that

8x
(3)
1 = −2x

(2)
2 − 4x

(2)
3 − 16 = −2(2.6) − 4(−2.2) − 16 = −12.4 ∴ x

(3)
1 = −1.55

5x
(3)
2 = −3x

(2)
1 − x

(2)
3 + 4 = −3(−0.7) − (2.2) + 4 = 8.3 ∴ x

(3)
2 = 1.66

4x
(3)
3 = −2x

(2)
1 − x

(2)
2 − 12 = −2(−0.7) − 2.6 − 12 = −13.2 ∴ x

(3)
3 = −3.3

Therefore the third iterate approximating X is X(3) =

 x
(3)
1

x
(3)
2

x
(3)
3

 =

 −1.55
1.66
−3.3

.

More iterations ...
Three iterations is plenty when doing these calculations by hand! But the repetitive nature of the
process is ideally suited to its implementation on a computer. It turns out that the next few iterates
are

X(4) =

 −0.765
2.39
−2.64

 , X(5) =

 −1.277
1.787
−3.215

 , X(6) =

 −0.839
2.209
−2.808

 ,

to 3 d.p. Carrying on even further X(20) =

 x
(20)
1

x
(20)
2

x
(20)
3

 =

 −0.9959
2.0043
−2.9959

, to 4 d.p. After about 40

iterations successive iterates are equal to 4 d.p. Continuing the iteration even further causes the
iterates to agree to more and more decimal places. The method converges to the exact answer

X =

 −1
2
−3

.

The following Task involves calculating just two iterations of the Jacobi method.
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Task

Carry out two iterations of the Jacobi method to approximate the solution of 4 −1 −1
−1 4 −1
−1 −1 4

 x1

x2

x3

 =

 1
2
3


with the initial guess X(0) =

 1
1
1

.

Your solution

First iteration:

Answer
The first iteration is DX(1) = −(L + U)X(0) + B, that is, 4 0 0

0 4 0
0 0 4


 x

(1)
1

x
(1)
2

x
(1)
3

 =

 0 1 1
1 0 1
1 1 0


 x

(0)
1

x
(0)
2

x
(0)
3

 +

 1
2
3



from which it follows that X(1) =

 0.75
1

1.25

.

Your solution

Second iteration:
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Answer
The second iteration is DX(1) = −(L + U)X(0) + B, that is, 4 0 0

0 4 0
0 0 4


 x

(2)
1

x
(2)
2

x
(2)
3

 =

 0 1 1
1 0 1
1 1 0


 x

(0)
1

x
(0)
2

x
(0)
3

 +

 1
2
3



from which it follows that X(2) =

 0.8125
1

1.1875

.

Notice that at each iteration the first thing we do is get a new approximation for x1 and then we
continue to use the old approximation to x1 in subsequent calculations for that iteration! Only at
the next iteration do we use the new value. Similarly, we continue to use an old approximation to x2

even after we have worked out a new one. And so on.

Given that the iterative process is supposed to improve our approximations why not use the better
values straight away? This observation is the motivation for what follows.

Gauss-Seidel iteration
The approach here is very similar to that used in Jacobi iteration. The only difference is that we use
new approximations to the entries of X as soon as they are available. As we will see in the Example
below, this means rearranging (L + D + U)X = B slightly differently from what we did for Jacobi.
We write

(D + L)X = −UX + B

and use this as the motivation to define the iteration

(D + L)X(k+1) = −UX(k) + B.

Key Point 12

The Gauss-Seidel iteration for approximating the solution of AX = B is given by

X(k+1) = −(D + L)−1UX(k) + (D + L)−1B

Example 19 which follows revisits the system of equations we saw earlier in this Section in Example
18.
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Example 19

Use the Gauss-Seidel iteration to approximate the solution X =

 x1

x2

x3

 of 8 2 4
3 5 1
2 1 4

 x1

x2

x3

 =

 −16
4

−12

 . Use the initial guess X(0) =

 0
0
0

.

Solution

In this case D + L =

 8 0 0
3 5 0
2 1 4

 and U =

 0 2 4
0 0 1
0 0 0

.

First iteration.

The first iteration is (D + L)X(1) = −UX(0) + B, or in full

 8 0 0
3 5 0
2 1 4


 x

(1)
1

x
(1)
2

x
(1)
3

 =

 0 −2 −4
0 0 −1
0 0 0


 x

(0)
1

x
(0)
2

x
(0)
3

 +

 −16
4

−12

 =

 −16
4

−12

 ,

since the initial guess was x
(0)
1 = x

(0)
2 = x

(0)
3 = 0.

Taking this information row by row we see that

8x
(1)
1 = −16 ∴ x

(1)
1 = −2

3x
(1)
2 + 5x

(1)
2 = 4 ∴ 5x

(1)
2 = −3(−2) + 4 ∴ x

(1)
2 = 2

2x
(1)
1 + x

(1)
2 + 4x

(1)
3 = −12 ∴ 4x

(1)
3 = −2(−2) − 2 − 12 ∴ x

(1)
3 = −2.5

(Notice how the new approximations to x1 and x2 were used immediately after they were found.)

Thus the first Gauss-Seidel iteration gives us X(1) =

 x
(1)
1

x
(1)
2

x
(1)
3

 =

 −2
2

−2.5

 as an approximation to

X.
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Solution

Second iteration.
The second iteration is (D + L)X(2) = −UX(1) + B, or in full 8 0 0

3 5 0
2 1 4


 x

(2)
1

x
(2)
2

x
(2)
3

 =

 0 −2 −4
0 0 −1
0 0 0


 x

(1)
1

x
(1)
2

x
(1)
3

 +

 −16
4

−12


Taking this information row by row we see that

8x
(2)
1 = −2x

(1)
2 − 4x

(1)
3 − 16 ∴ x

(2)
1 = −1.25

3x
(2)
1 + 5x

(2)
2 = −x

(1)
3 + 4 ∴ x

(2)
2 = 2.05

2x
(2)
1 + x

(2)
2 + 4x

(2)
3 = −12 ∴ x

(2)
3 = −2.8875

Therefore the second iterate approximating X is X(2) =

 x
(2)
1

x
(2)
2

x
(2)
3

 =

 −1.25
2.05

−2.8875

.

Third iteration.
The third iteration is (D + L)X(3) = −UX(2) + B, or in full 8 0 0

3 5 0
2 1 4


 x

(3)
1

x
(3)
2

x
(3)
3

 =

 0 −2 −4
0 0 −1
0 0 0


 x

(2)
1

x
(2)
2

x
(2)
3

 +

 −16
4

−12

 .

Taking this information row by row we see that

8x
(3)
1 = −2x

(2)
2 − 4x

(2)
3 − 16 ∴ x

(3)
1 = −1.0687

3x
(3)
1 + 5x

(3)
2 = −x

(2)
3 + 4 ∴ x

(3)
2 = 2.0187

2x
(3)
1 + x

(3)
2 + 4x

(3)
3 = −12 ∴ x

(3)
3 = −2.9703

to 4 d.p. Therefore the third iterate approximating X is

X(3) =

 x
(3)
1

x
(3)
2

x
(3)
3

 =

 −1.0687
2.0187
−2.9703

 .

More iterations ...

Again, there is little to be learned from pushing this further by hand. Putting the procedure on a
computer and seeing how it progresses is instructive, however, and the iteration continues as follows:
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X(4) =

 −1.0195
2.0058
−2.9917

 , X(5) =

 −1.0056
2.0017
−2.9976

 , X(6) =

 −1.0016
2.0005
−2.9993

 ,

X(7) =

 −1.0005
2.0001
−2.9998

 , X(8) =

 −1.0001
2.0000
−2.9999

 , X(9) =

 −1.0000
2.0000
−3.0000


(to 4 d.p.). Subsequent iterates are equal to X(9) to this number of decimal places. The Gauss-Seidel
iteration has converged to 4 d.p. in 9 iterations. It took the Jacobi method almost 40 iterations to
achieve this!

Task

Carry out two iterations of the Gauss-Seidel method to approximate the solution
of  4 −1 −1

−1 4 −1
−1 −1 4

 x1

x2

x3

 =

 1
2
3


with the initial guess X(0) =

 1
1
1

.

Your solution

First iteration

Answer
The first iteration is (D + L)X(1) = −UX(0) + B, that is, 4 0 0

−1 4 0
−1 −1 4


 x

(1)
1

x
(1)
2

x
(1)
3

 =

 0 1 1
0 0 1
0 0 0


 x

(0)
1

x
(0)
2

x
(0)
3

 +

 1
2
3



from which it follows that X(1) =

 0.75
0.9375
1.1719

.
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Your solution

Second iteration

Answer
The second iteration is (D + L)X(1) = −UX(0) + B, that is, 4 0 0

−1 4 0
−1 −1 4


 x

(2)
1

x
(2)
2

x
(2)
3

 =

 0 1 1
0 0 1
0 0 0


 x

(1)
1

x
(1)
2

x
(1)
3

 +

 1
2
3



from which it follows that X(2) =

 0.7773
0.9873
1.1912

.

2. Do these iterative methods always work?
No. It is not difficult to invent examples where the iteration fails to approach the solution of AX = B.
The key point is related to matrix norms seen in the preceding Section.
The two iterative methods we encountered above are both special cases of the general form

X(k+1) = MX(k) + N.

1. For the Jacobi method we choose M = −D−1(L + U) and N = D−1B.

2. For the Gauss-Seidel method we choose M = −(D + L)−1U and N = (D + L)−1B.

The following Key Point gives the main result.

Key Point 13

For the iterative process X(k+1) = MX(k) +N the iteration will converge to a solution if the norm
of MMM is less than 1.
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Care is required in understanding what Key Point 13 says. Remember that there are lots of different
ways of defining the norm of a matrix (we saw three of them). If you can find a norm (any norm)
such that the norm of M is less than 1, then the iteration will converge. It doesn’t matter if there
are other norms which give a value greater than 1, all that matters is that there is one norm that is
less than 1.

Key Point 13 above makes no reference to the starting “guess” X(0). The convergence of the iteration
is independent of where you start! (Of course, if we start with a really bad initial guess then we can
expect to need lots of iterations.)

Task

Show that the Jacobi iteration used to approximate the solution of 4 −1 −1
1 −5 −2
−1 0 2

 x1

x2

x3

 =

 1
2
3


is certain to converge. (Hint: calculate the norm of −D−1(L + U).)

Your solution

Answer
The Jacobi iteration matrix is

−D−1(L + U) =

 4 0 0
0 −5 0
0 0 2

−1  0 1 1
−1 0 2
1 0 0

 =

 0.25 0 0
0 −0.2 0
0 0 0.5

 0 1 1
−1 0 2
1 0 0


=

 0 0.25 0.25
−0.2 0 0.4
0.5 0 0


and the infinity norm of this matrix is the maximum of 0.25 + 0.25, 0.2 + 0.4 and 0.5, that is

‖ − D−1(L + U)‖∞ = 0.6

which is less than 1 and therefore the iteration will converge.
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Guaranteed convergence
If the matrix has the property that it is strictly diagonally dominant, which means that the diagonal
entry is larger in magnitude than the absolute sum of the other entries on that row, then both Jacobi
and Gauss-Seidel are guaranteed to converge. The reason for this is that if A is strictly diagonally
dominant then the iteration matrix M will have an infinity norm that is less than 1.

A small system is the subject of Example 20 below. A large system with slow convergence is the
subject of Engineering Example 1 on page 62.

Example 20

Show that A =

 4 −1 −1
1 −5 −2
−1 0 2

 is strictly diagonally dominant.

Solution

Looking at the diagonal entry of each row in turn we see that

4 > | − 1| + | − 1| = 2

| − 5| > 1 + | − 2| = 3

2 > | − 1| + 0 = 1

and this means that the matrix is strictly diagonally dominant.

Given that A above is strictly diagonally dominant it is certain that both Jacobi and Gauss-Seidel
will converge.

What’s so special about strict diagonal dominance?
In many applications we can be certain that the coefficient matrix A will be strictly diagonally
dominant. We will see examples of this in 32 and 33 when we consider approximating
solutions of differential equations.
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Exercises

1. Consider the system[
2 1
1 2

] [
x1

x2

]
=

[
2
−5

]

(a) Use the starting guess X(0) =

[
1
−1

]
in an implementation of the Jacobi method to

show that X(1) =

[
1.5
−3

]
. Find X(2) and X(3).

(b) Use the starting guess X(0) =

[
1
−1

]
in an implementation of the Gauss-Seidel method

to show that X(1) =

[
1.5

−3.25

]
. Find X(2) and X(3).

(Hint: it might help you to know that the exact solution is

[
x1

x2

]
=

[
3
−4

]
.)

2. (a) Show that the Jacobi iteration applied to the system
5 −1 0 0
−1 5 −1 0
0 −1 5 −1
0 0 −1 5




x1

x2

x3

x4

 =


7

−10
−6
16


can be written

X(k+1) =


0 0.2 0 0

0.2 0 0.2 0
0 0.2 0 0.2
0 0 0.2 0

X(k) +


1.4
−2
−1.2
3.2

 .

(b) Show that the method is certain to converge and calculate the first three iterations using

zero starting values.

(Hint: the exact solution to the stated problem is


1
−2
1
3

.)
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Answers

1. (a) 2x
(1)
1 = 2 − 1x

(0)
2 = 2

and therefore x
(1)
1 = 1.5

2x
(1)
2 = −5 − 1x

(0)
1 = −6

which implies that x
(1)
2 = −3. These two values give the required entries in X(1). A

second and third iteration follow in a similar way to give

X(2) =

[
2.5

−3.25

]
and X(3) =

[
2.625
−3.75

]

(b) 2x
(1)
1 = 2 − 1x

(0)
2 = 3

and therefore x
(1)
1 = 1.5. This new approximation to x1 is used straight away when

finding a new approximation to x
(1)
2 .

2x
(1)
2 = −5 − 1x

(1)
1 = −6.5

which implies that x
(1)
2 = −3.25. These two values give the required entries in X(1). A

second and third iteration follow in a similar way to give

X(2) =

[
2.625

−3.8125

]
and X(3) =

[
2.906250

−3.953125

]
where X(3) is given to 6 decimal places

2. (a) In this case D =


5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5

 and therefore D−1 =


0.2 0 0 0
0 0.2 0 0
0 0 0.2 0
0 0 0 0.2

.

So the iteration matrix M =D−1


0 −1 0 0
−1 0 −1 0
0 −1 0 −1
0 0 −1 0

=


0 0.2 0 0

0.2 0 0.2 0
0 0.2 0 0.2
0 0 0.2 0


and that the Jacobi iteration takes the form

X(k+1) = MX(k) + M−1


7

−10
−6
16

 =


0 0.2 0 0

0.2 0 0.2 0
0 0.2 0 0.2
0 0 0.2 0

X(k) +


1.4
−2
−1.2
3.2


as required.
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Answers

2(b)

Using the starting values x
(0)
1 = x

(0)
2 = x

(0)
3 = x

(0)
4 = 0, the first iteration of the Jacobi method

gives

x1
1 = 0.2x0

2 + 1.4 = 1.4

x1
2 = 0.2(x0

1 + x0
3) − 2 = −2

x1
3 = 0.2(x0

2 + x0
4) − 1.2 = −1.2

x1
4 = 0.2x0

3 + 3.2 = 3.2

The second iteration is

x2
1 = 0.2x1

2 + 1.4 = 1

x2
2 = 0.2(x1

1 + x1
3) − 2 = −1.96

x2
3 = 0.2(x1

2 + x1
4) − 1.2 = −0.96

x2
4 = 0.2x1

3 + 3.2 = 2.96

And the third iteration is

x3
1 = 0.2x2

2 + 1.4 = 1.008

x3
2 = 0.2(x2

1 + x2
3) − 2 = −1.992

x3
3 = 0.2(x2

2 + x2
4) − 1.2 = −1

x3
4 = 0.2x2

3 + 3.2 = 3.008
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Engineering Example 1

Detecting a train on a track

Introduction

One means of detecting trains is the ‘track circuit’ which uses current fed along the rails to detect
the presence of a train. A voltage is applied to the rails at one end of a section of track and a relay is
attached across the other end, so that the relay is energised if no train is present, whereas the wheels
of a train will short circuit the relay, causing it to de-energise. Any failure in the power supply or a
breakage in a wire will also cause the relay to de-energise, for the system is fail safe. Unfortunately,
there is always leakage between the rails, so this arrangement is slightly complicated to analyse.

Problem in words

A 1000 m track circuit is modelled as ten sections each 100 m long. The resistance of 100 m of one
rail may be taken to be 0.017 ohms, and the leakage resistance across a 100 m section taken to be
30 ohms. The detecting relay and the wires to it have a resistance of 10 ohms, and the wires from
the supply to the rail connection have a resistance of 5 ohms for the pair. The voltage applied at
the supply is 4V . See diagram below. What is the current in the relay?

4 volts

5 ohm

0.017

30
oh

m

relay and wires
10 ohm

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11
ohm 0.017 ohm 0.017 ohm

30
oh

m

30
oh

m

30
oh

m

0.017 ohm 0.017 ohm

Figure 1
Mathematical statement of problem

There are many ways to apply Kirchhoff’s laws to solve this, but one which gives a simple set of
equations in a suitable form to solve is shown below. i1 is the current in the first section of rail (i.e.
the one close to the supply), i2 , i3, . . . i10, the current in the successive sections of rail and i11 the
current in the wires to the relay. The leakage current between the first and second sections of rail
is i1 − i2 so that the voltage across the rails there is 30(i1 − i2) volts. The first equation below
uses this and the voltage drop in the feed wires, the next nine equations compare the voltage drop
across successive sections of track with the drop in the (two) rails, and the last equation compares
the voltage drop across the last section with that in the relay wires.

30(i1 − i2) + (5.034)i1 = 4

30(i1 − i2) = 0.034i2 + 30(i2 − i3)

30(i2 − i3) = 0.034i2 + 30(i3 − i4)
...

30(i9 − i10) = 0.034i10 + 30(i10 − i11)

30(i10 − i11) = 10i11
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These can be reformulated in matrix form as Ai = v, where v is the 11× 1 column vector with first
entry 4 and the other entries zero, i is the column vector with entries i1, i2, . . . , i11 and A is the
matrix

A =



35.034 -30 0 0 0 0 0 0 0 0 0
-30 60.034 -30 0 0 0 0 0 0 0 0
0 -30 60.034 -30 0 0 0 0 0 0 0
0 0 -30 60.034 -30 0 0 0 0 0 0
0 0 0 -30 60.034 -30 0 0 0 0 0
0 0 0 0 -30 60.034 -30 0 0 0 0
0 0 0 0 0 -30 60.034 -30 0 0 0
0 0 0 0 0 0 -30 60.034 -30 0 0
0 0 0 0 0 0 0 -30 60.034 -30 0
0 0 0 0 0 0 0 0 -30 60.034 -30
0 0 0 0 0 0 0 0 0 -30 40


Find the current i1 in the relay when the input is 4V , by Gaussian elimination or by performing an
L-U decomposition of A.

Mathematical analysis

We solve Ai = v as above, although actually we only want to know i11. Letting M be the matrix A
with the column v added at the right, as in Section 30.2, then performing Gaussian elimination on
M , working to four decimal places gives

M=



35.0340 -30.0000 0 0 0 0 0 0 0 0 0 4.0000
0 34.3447 -30.0000 0 0 0 0 0 0 0 0 3.4252
0 0 33.8291 -30.0000 0 0 0 0 0 0 0 2.9919
0 0 0 33.4297 -30.0000 0 0 0 0 0 0 2.6532
0 0 0 0 33.1118 -30.0000 0 0 0 0 0 2.3810
0 0 0 0 0 32.8534 -30.0000 0 0 0 0 2.1572
0 0 0 0 0 0 32.6396 -30.0000 0 0 0 1.9698
0 0 0 0 0 0 0 32.4601 -30.0000 0 0 1.8105
0 0 0 0 0 0 0 0 32.3077 -30.0000 0 1.6733
0 0 0 0 0 0 0 0 0 32.1769 -30.0000 1.5538
0 0 0 0 0 0 0 0 0 0 12.0296 1.4487


from which we can calculate that the solution i is

i =



0.5356
0.4921
0.4492
0.4068
0.3649
0.3234
0.2822
0.2414
0.2008
0.1605
0.1204


so the current in the relay is 0.1204 amps, or 0.12 A to two decimal places.

You can alternatively solve this problem by an L-U decomposition by finding matrices L and U such
that M = LU . Here we have
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L =



1.0000 0 0 0 0 0 0 0 0 0 0
-0.8563 1.0000 0 0 0 0 0 0 0 0 0

0 -0.8735 1.0000 0 0 0 0 0 0 0 0
0 0 -0.8868 1.0000 0 0 0 0 0 0 0
0 0 0 -0.8974 1.0000 0 0 0 0 0 0
0 0 0 0 -0.9060 1.0000 0 0 0 0 0
0 0 0 0 0 -0.9131 1.0000 0 0 0 0
0 0 0 0 0 0 -0.9191 1.0000 0 0 0
0 0 0 0 0 0 0 -0.9242 1.0000 0 0
0 0 0 0 0 0 0 0 -0.9286 1.0000 0
0 0 0 0 0 0 0 0 0 -0.9323 1.0000


and

U =



35.0340 -30.0000 0 0 0 0 0 0 0 0 0
0 34.3447 -30.0000 0 0 0 0 0 0 0 0
0 0 33.8291 -30.0000 0 0 0 0 0 0 0
0 0 0 33.4297 -30.0000 0 0 0 0 0 0
0 0 0 0 33.1118 -30.0000 0 0 0 0 0
0 0 0 0 0 32.8534 -30.0000 0 0 0 0
0 0 0 0 0 0 32.6395 -30.0000 0 0 0
0 0 0 0 0 0 0 32.4601 -30.0000 0 0
0 0 0 0 0 0 0 0 32.3076 -30.0000 0
0 0 0 0 0 0 0 0 0 32.1768 -30.0000
0 0 0 0 0 0 0 0 0 0 12.0295



Therefore Ui =



4.0000
3.4240
2.9892
2.6514
2.3783
2.1547
1.9673
1.8079
1.6705
1.5519
1.4464


and hence i =



0.5352
0.4917
0.4487
0.4064
0.3644
0.3230
0.2819
0.2411
0.2006
0.1603
0.1202


and again the current is found to be 0.12 amps.

Mathematical comment

You can try to solve the equation Ai = v by Jacobi or Gauss-Seidel iteration but in both cases it will
take very many iterations (over 200 to get four decimal places). Convergence is very slow because the
norms of the relevant matrices in the iteration are only just less than 1. Convergence is nevertheless
assured because the matrix A is diagonally dominant.
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