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Integral Vector
Theorems

�
�

�
�29.3

Introduction
Various theorems exist relating integrals involving vectors. Those involving line, surface and volume
integrals are introduced here.

They are the multivariable calculus equivalent of the fundamental theorem of calculus for single
variables (“integration and differentiation are the reverse of each other”).

Use of these theorems can often make evaluation of certain vector integrals easier. This Section
introduces the main theorems which are Gauss’ divergence theorem, Stokes’ theorem and Green’s
theorem.

#

"

 

!
Prerequisites

Before starting this Section you should . . .

• be able to find the gradient of a scalar field
and the divergence and curl of a vector field

• be familiar with the integration of vector
functions�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• use vector integral theorems to facilitate
vector integration
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1. Stokes’ theorem
This is a theorem that equates a line integral to a surface integral. For any vector field F and a
contour C which bounds an area S,∫ ∫

S

(∇× F ) · dS =

∮
C

F · dr

S

S

C

d

Figure 16: A surface for Stokes’ theorem
Notes

(a) dS is a vector perpendicular to the surface S and dr is a line element along the contour C.
The sense of dS is linked to the direction of travel along C by a right hand screw rule.

(b) Both sides of the equation are scalars.

(c) The theorem is often a useful way of calculating a line integral along a contour composed of
several distinct parts (e.g. a square or other figure).

(d) ∇ × F is a vector field representing the curl of the vector field F and may, alternatively, be
written as curl F .

Justification of Stokes’ theorem
Imagine that the surface S is divided into a set of infinitesimally small rectangles ABCD where the
axes are adjusted so that AB and CD lie parallel to the new x-axis i.e. AB = δx and BC and AD
lie parallel to the new y-axis i.e. BC = δy.

Now,

∮
C

F · dr is calculated, where C is the boundary of a typical such rectangle.

The contributions along AB, BC, CD and DA are

F (x, y, 0) · δx = Fx(x, y, z)δx,

F (x + δx, y, 0) · δy = Fy(x + δx, y, z)δy,

F (x, y + δy, 0) · (−δx) = −Fx(x, y + δy, z)δx

F (x, y, 0) · (−δx) = −Fy(x, y, z)δy.

Thus,∮
C

F · dr ≈ (Fx(x, y, z)− Fx(x, y + δy, z))δx + (Fy(x + δx, y, z)− Fy(x, y, z))δy

≈ ∂Fy

∂x
δxδy − ∂Fx

∂y
δxδy

≈ (∇× F )zδS

= (∇× F ) · dS

as dS is perpendicular to the x- and y- axes.
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Thus, for each small rectangle,

∮
C

F · dr ≈ (∇× F ) · dS

When the contributions over all the small rectangles are summed, the line integrals along the inner
parts of the rectangles cancel and all that remains is the line integral around the outside of the surface
S. The surface integrals sum. Hence, the theorem applies for the area S bounded by the contour C.
While the above does not constitute a formal proof of Stokes’ theorem, it does give an appreciation
of the origin of the theorem.

Contribution does
not cancel

Contributions cancel

Figure 17: Line integral cancellation and non-cancellation

Key Point 8

Stokes’ Theorem∮
C

F · dr =

∫ ∫
S

(∇× F ) · dS

The closed contour integral of the scalar product of a vector function with the vector along the
contour is equal to the integral of the scalar product of the curl of that vector function and the unit
normal, over the corresponding surface.
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Example 32
Verify Stokes’ theorem for the vector function F = y2i− (x + z)j + yzk and the
unit square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0.

Solution

If F = y2i− (x + z)j + yzk then ∇× F = (z + 1)i + (−1− 2y)k = i + (−1− 2y)k (as z = 0).
Note that dS = dxdyk so that (∇× F ) · dS = (−1− 2y)dydx

Thus

∫ ∫
S

(∇× F ) · dS =

∫ 1

x=0

∫ 1

y=0

(−1− 2y)dydx

=

∫ 1

x=0

[
(−y − y2)

]1

y=0

dx =

∫ 1

x=0

(−2)dx

=

[
− 2x

]1

0

= −2 + 0 = −2

To evaluate

∮
C

F · dr, we must consider the four sides separately.

When y = 0, F = −xj and dr = dxi so F · dr = 0 i.e. the contribution of this side to the integral
is zero.
When x = 1, F = y2i− j and dr = dyj so F · dr = −dy so the contribution to the integral is∫ 1

y=0

(−dy) =

[
− y

]1

0

= −1.

When y = 1, F = i− xj and dr = −dxi so F · dr = −dx so the contribution to the integral is∫ 1

x=0

(−dx) =

[
− x

]1

0

= −1.

When x = 0, F = y2i and dr = −dyj so F · dr = 0 so the contribution to the integral is zero.

The integral

∮
C

F · dr is the sum of the contributions i.e. 0− 1− 1 + 0 = −2.

Thus

∫ ∫
S

(∇× F ) · dS =

∮
C

F · dr = −2 i.e. Stokes’ theorem has been verified.

58 HELM (2008):
Workbook 29: Integral Vector Calculus



®

Example 33
Using cylindrical polar coordinates verify Stokes’ theorem for the function F = ρ2φ̂
the circle ρ = a, z = 0 and the surface ρ ≤ a, z = 0.

Solution

Firstly, find

∮
C

F · dr. This can be done by integrating along the contour ρ = a from φ = 0 to

φ = 2π. Here F = a2φ̂ (as ρ = a) and dr = a dφ φ̂ (remembering the scale factor) so F ·dr = a3dφ
and hence∮

C

F · dr =

∫ 2π

0

a3dφ = 2πa3

As F = ρ2φ̂, ∇× F = 3ρẑ and (∇× F ) · dS = 3ρ as dS = ẑ.
Thus ∫ ∫

S

(∇× F ) · dS =

∫ 2π

φ=0

∫ 1

ρ=0

3ρ× ρdρdφ =

∫ 2π

φ=0

∫ a

ρ=0

3ρ2dρdφ

=

∫ 2π

φ=0

[
ρ3

]a

ρ=0

dφ =

∫ 2π

0

a3dφ = 2πa3

Hence∮
C

F · dr =

∫ ∫
S

(∇× F ) · dS = 2πa3

Example 34
Find the closed line integral

∮
C

F ·dr for the vector field F = y2i+(x2−z)j+2xyk

and for the contour ABCDEFGHA in Figure 18.

A(0, 0)

H(0, 4)

F (1, 7)

G(1, 4)

E(5, 7)

D(2, 4)
C(6, 4)

B(6, 0) x

y

Figure 18: Closed contour ABCDEFGHA
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Solution

To find the line integral directly would require eight line integrals i.e. along AB, BC, CD, DE,

EF , FG, GH and HA. It is easier to carry out a surface integral to find

∫ ∫
S

(∇× F ) · dS which

is equal to the required line integral

∮
C

F · dr by Stokes’ theorem.

As F = y2i + (x2 − z)j + 2xyk, ∇× F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y2 x2 − z 2xy

∣∣∣∣∣∣∣ = (2x + 1)i− 2yj + (2x− 2y)k

As the contour lies in the x-y plane, the unit normal is k and dS = dxdyk
Hence (∇× F ) · dS = (2x− 2y)dxdy.

To work out

∫ ∫
S

(∇×F ) · dS, it is necessary to divide the area inside the contour into two smaller

areas i.e. the rectangle ABCDGH and the trapezium DEFG. On ABCDGH, the integral is∫ 4

y=0

∫ 6

x=0

(2x− 2y)dxdy =

∫ 4

y=0

[
x2 − 2xy

]6

x=0
dy =

∫ 4

y=0

(36− 12y)dy

=

[
36y − 6y2

]4

0

= 36× 4− 6× 16− 0 = 48

On DEFG, the integral is∫ 7

y=4

∫ y−2

x=1

(2x− 2y)dxdy =

∫ 7

y=4

[
x2 − 2xy

]y−2

x=1

dy =

∫ 7

y=4

(−y2 + 2y + 3)dy

=

[
−1

3
y3 + y2 + 3y

]7

4

= −343

3
+ 49 + 21 +

64

3
− 16− 12 = −51

So the full integral is,

∫ ∫
S

(∇× F ) · dS = 48− 51 = −3.

∴ By Stokes’ theorem,

∮
C

F · dr = −3

From Stokes’ theorem, it can be seen that surface integrals of the form

∫ ∫
S

(∇× F ) · dS depend

only on the contour bounding the surface and not on the internal part of the surface.
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Task

Verify Stokes’ theorem for the vector field F = x2i + 2xyj + zk and the triangle
with vertices at (0, 0, 0), (3, 0, 0) and (3, 1, 0).

First find the normal vector dS:

Your solution

Answer

dxdyk

Then find the vector ∇× F :

Your solution

Answer

2yk

Now evaluate the double integral

∫ ∫
S

(∇× F ) · dS over the triangle:

Your solution

Answer

1
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Finally find the integral

∫
F · dr along the 3 sides of the triangle and so verify that the two sides of

the Stokes’ theorem are equal:

Your solution

Answer

9 + 3− 11 = 1, Both sides of Stokes’ theorem have value 1.

Exercises

1. Using plane-polar coordinates (or cylindrical polar coordinates with z = 0), verify Stokes’

theorem for the vector field F = ρρ̂ + ρ cos
(πρ

2

)
φ̂ and the semi-circle ρ ≤ 1, −π

2
≤ φ ≤ π

2
.

2. Verify Stokes’ theorem for the vector field F = 2xi + (y2− z)j + xzk and the contour around
the rectangle with vertices at (0,−2, 0),(2,−2, 0), (2, 0, 1) and (0, 0, 1).

3. Verify Stokes’ theorem for the vector field F = −yi + xj + zk

(a) Over the triangle (0, 0, 0), (1, 0, 0), (1, 1, 0).

(b) Over the triangle (1, 0, 0), (1, 1, 0), (1, 1, 1).

4. Use Stokes’ theorem to evaluate the integral∮
C

F · dr where F =

(
sin(

1

x
+ 1) + 5y

)
i + (2x− ey2

)j

and C is the contour starting at (0, 0) and going to (5, 0), (5, 2), (6, 2), (6, 5), (3, 5), (3, 2),
(0, 2) and returning to (0, 0).

Answers

1. Both integrals give 0,

2. Both integrals give 1

3. (a) Both integrals give 1 (b) Both integrals give 0 (as ∇× F is perpendicular to dS)

4. −57, [∇× F = −3 k].
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2. Gauss’ theorem
This is sometimes known as the divergence theorem and is similar in form to Stokes’ theorem but
equates a surface integral to a volume integral. Gauss’ theorem states that for a volume V , bounded
by a closed surface S, any ‘well-behaved’ vector field F satisfies∫ ∫

S

F · dS =

∫ ∫ ∫
V

∇ · F dV

Notes:

(a) dS is a unit normal pointing outwards from the interior of the volume V .

(b) Both sides of the equation are scalars.

(c) The theorem is often a useful way of calculating a surface integral over a surface composed of
several distinct parts (e.g. a cube).

(d) ∇ · F is a scalar field representing the divergence of the vector field F and may, alternatively,
be written as div F .

(e) Gauss’ theorem can be justified in a manner similar to that used for Stokes’ theorem (i.e. by
proving it for a small volume element, then summing up the volume elements and allowing the
internal surface contributions to cancel.)

Key Point 9

Gauss’ Theorem∫ ∫
S

F · dS =

∫ ∫ ∫
V

∇ · FdV

The closed surface integral of the scalar product of a vector function with the unit normal (or flux of
a vector function through a surface) is equal to the integral of the divergence of that vector function
over the corresponding volume.
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Example 35
Verify Gauss’ theorem for the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 and
the function F = xi + zj

Solution

To find

∫ ∫
S

F · dS, the integral must be evaluated for all six faces of the cube and the results

summed.
On the face x = 0, F = zj and dS = −i dydz so F · dS = 0 and∫ ∫

S

F · dS =

∫ 1

0

∫ 1

0

0 dydz = 0

On the face x = 1, F = i + zj and dS = i dydz so F · dS = 1 dydz and∫ ∫
S

F · dS =

∫ 1

0

∫ 1

0

1 dydz = 1

On the face y = 0, F = xi + zj and dS = −j dxdz so F · dS = −z dxdz and∫ ∫
S

F · dS = −
∫ 1

0

∫ 1

0

z dxdz = −1

2

On the face y = 1, F = xi + zj and dS = j dxdz so F · dS = z dxdz and∫ ∫
S

F · dS =

∫ 1

0

∫ 1

0

z dxdz =
1

2

On the face z = 0, F = xi and dS = −k dydz so F · dS = 0 dxdy and∫ ∫
S

F · dS =

∫ 1

0

∫ 1

0

0 dxdy = 0

On the face z = 1, F = xi + j and dS = k dydz so F · dS = 0 dxdy and∫ ∫
S

F · dS =

∫ 1

0

∫ 1

0

0 dxdy = 0

Thus, summing over all six faces,

∫ ∫
S

F · dS = 0 + 1− 1

2
+

1

2
+ 0 + 0 = 1.

To find

∫ ∫ ∫
V

∇ · F dV note that ∇ · F =
∂

∂x
x +

∂

∂y
z = 1 + 0 = 1.

So

∫ ∫ ∫
V

∇ · F dV =

∫ 1

0

∫ 1

0

∫ 1

0

1 dxdydz = 1.

So

∫ ∫
S

F · dS =

∫ ∫ ∫
V

∇ · F dV = 1 hence verifying Gauss’ theorem.

Note: The volume integral needed just one triple integral, but the surface integral required six double
integrals. Reducing the number of integrals is often the motivation for using Gauss’ theorem.
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Example 36
Use Gauss’ theorem to evaluate the surface integral

∫ ∫
S

F · dS where F is the

vector field x2yi + 2xyj + z3k and S is the surface of the unit cube 0 ≤ x ≤ 1,
0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

Solution

Note that to carry out the surface integral directly will involve, as in Example 35, the evaluation of
six double integrals. However, by Gauss’ theorem, the same result comes from the volume integral∫ ∫ ∫

V

∇ · F dV . As ∇ · F = 2xy + 2x + 3z2, we have the triple integral

∫ 1

0

∫ 1

0

∫ 1

0

(2xy + 2x + 3z2) dxdydz

=

∫ 1

0

∫ 1

0

[
x2y + x2 + 3xz2

]1

x=0

dydz =

∫ 1

0

∫ 1

0

(y + 1 + 3z2)dydz

=

∫ 1

0

[
1

2
y2 + y + 3yz2

]1

y=0

dz =

∫ 1

0

(
1

2
+ 1 + 3z2)dz =

∫ 1

0

(
3

2
+ 3z2)dz

=

[
3

2
z + z3

]1

0

=
5

2

The six double integrals would also sum to 5
2

but this approach would require much more effort.

Engineering Example 5

Gauss’ law

Introduction

From Gauss’ theorem, it is possible to derive a result which can be used to gain insight into situations
arising in Electrical Engineering. Knowing the electric field on a closed surface, it is possible to find
the electric charge within this surface. Alternatively, in a sufficiently symmetrical situation, it is
possible to find the electric field produced by a given charge distribution.
Gauss’ theorem states∫ ∫

S

F · dS =

∫ ∫ ∫
V

∇ · F dV

If F = E, the electric field, it can be shown that,

∇ · F = ∇ · E =
q

ε0
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where q is the amount of charge per unit volume, or charge density, and ε0 is the permittivity of free
space: ε0 = 10−9/36π F m−1 ≈ 8.84×10−12 F m−1. Gauss’ theorem becomes in this case∫ ∫

S

E · dS =

∫ ∫ ∫
V

∇ · E dV =

∫ ∫ ∫
V

q

ε0

dV =
1

ε0

∫ ∫ ∫
V

q dV =
Q

ε0

i.e. ∫ ∫
S

E · dS =
Q

ε0

which is known as Gauss’ law. Here Q is the total charge inside the surface S.

Note: this is one of the important Maxwell’s Laws.

Problem in words

A point charge lies at the centre of a cube. Given the electric field, find the magnitude of the charge,
using Gauss’ law .

Mathematical statement of problem

Consider the cube −1
2
≤ x ≤ 1

2
, −1

2
≤ y ≤ 1

2
, −1

2
≤ z ≤ 1

2
where the dimensions are in metres. A

point charge Q lies at the centre of the cube. If the electric field on the top face (z = 1
2
) is given by

E = 10
xi + yj + zk

(x2 + y2 + z2)
3
2

find the charge Q from Gauss’ law .

[
Hint :

∫ 1
2

x=− 1
2

∫ 1
2

y=− 1
2

(
x2 + y2 +

1

4

)− 3
2

dy dx =
4π

3

]
Mathematical analysis

From Gauss’ law∫ ∫
S

E · dS =
Q

ε0

so

Q = ε0

∫ ∫
S

E · dS = 6ε0

∫ ∫
S(top)

E · dS

since, using the symmetry of the six faces of the cube, it is possible to integrate over just one of
them (here the top face is chosen) and multiply by 6. On the top face

E = 10
xi + yj + 1

2
k(

x2 + y2 + 1
4

) 3
2

and

dS = (element of surface area)× (unit normal)

= dx dy k

66 HELM (2008):
Workbook 29: Integral Vector Calculus



®

So

E · dS = 10
1
2(

x2 + y2 + 1
4

) 3
2

dy dx

= 5

(
x2 + y2 +

1

4

)− 3
2

dy dx

Now

∫ ∫
S(top)

E · dS =

∫ 1
2

x=− 1
2

∫ 1
2

y=− 1
2

5

(
x2 + y2 +

1

4

)− 3
2

dy dx

= 5× 4π

3
(using the hint)

=
20π

3

So, from Gauss’ law,

Q = 6ε0 ×
20π

3
= 40πε0 ≈ 10−9C

Interpretation

Gauss’ law can be used to find a charge from its effects elsewhere.

The form of E = 10
xi + yj + 1

2
k(

x2 + y2 + 1
4

) 3
2

comes from the fact that E is radial and equals 10
r

r3
= 10

r̂

r2

Example 37
Verify Gauss’ theorem for the vector field F = y2j− xzk and the triangular prism
with vertices at (0, 0, 0), (2, 0, 0), (0, 0, 1), (0, 4, 0), (2, 4, 0) and (0, 4, 1) (see
Figure 19).

(0, 0, 0)

(0, 0, 1)

(2, 0, 0)

(0, 4, 0)
(2, 4, 0)

(0, 4, 1)

x

y
z

Figure 19: The triangular prism defined by six vertices
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Solution

As F = y2j − xzk, ∇ · F = 0 + 2y − x = 2y − x.
Thus∫ ∫ ∫

V

∇ · FdV =

∫ 2

x=0

∫ 4

y=0

∫ 1−x/2

z=0

(2y − x)dzdydx

=

∫ 2

x=0

∫ 4

y=0

[
2yz − xz

]1−x/2

z=0

dydx =

∫ 2

x=0

∫ 4

y=0

(2y − xy − x +
1

2
x2)dydx

=

∫ 2

x=0

[
y2 − 1

2
xy2 − xy +

1

2
x2y

]4

y=0

dx =

∫ 2

x=0

(16− 12x + 2x2)dx

=

[
16x− 6x2 +

2

3
x3

]2

0

=
40

3

To work out

∫ ∫
S

F · dS, it is necessary to consider the contributions from the five faces separately.

On the front face, y = 0, F = −xzk and dS = −j thus F · dS = 0 and the contribution to the
integral is zero.
On the back face, y = 4, F = 16j − xzk and dS = j thus F · dS = 16 and the contribution to the
integral is∫ 2

x=0

∫ 1−x/2

z=0

16dzdx =

∫ 2

x=0

[
16z

]1−x/2

z=0

dx =

∫ 2

x=0

16(1− x/2)dx =

[
16x− 4x2

]2

0

= 16.

On the left face, x = 0, F = y2j and dS = −i thus F · dS = 0 and the contribution to the integral
is zero.
On the bottom face, z = 0, F = y2j and dS = −k thus F · dS = 0 and the contribution to the
integral is zero.
On the top right (sloping) face, z = 1−x/2, F = y2j+(1

2
x2−x)k and the unit normal n̂ = 1√

5
i+ 2√

5
k

Thus dS =
[

1√
5
i + 2√

5
k
]
dydw where dw measures the distance along the slope for a constant y.

As dw =
√

5
2

dx, dS =
[

1
2
i + k

]
dydx thus F · dS = 16 and the contribution to the integral is∫ 2

x=0

∫ 4

y=0

(
1

2
x2 − x)dydx =

∫ 2

x=0

(2x2 − 4x)dx =

[
2

3
x3 − 2x2

]2

0

= −8

3
.

Adding the contributions,

∫ ∫
S

F · dS = 0 + 16 + 0 + 0− 8

3
=

40

3
.

Thus

∫ ∫
S

F · dS =

∫ ∫ ∫
V

∇ · FdV =
40

3
hence verifying Gauss’ divergence theorem.
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Engineering Example 6

Field strength around a charged line

Problem in words

Find the electric field strength at a given distance from a uniformly charged line.

Mathematical statement of problem

Determine the electric field at a distance r from a uniformly charged line (charge per unit length ρL).
You may assume from symmetry that the field points directly away from the line.

l

r

Figure 20: Field strength around a line charge

Mathematical analysis

Imagine a cylinder a distance r from the line and of length l (see Figure 20). From Gauss’ law∫ ∫
S

E · dS =
Q

ε0

As the charge per unit length is ρL, then the right-hand side equals ρLl/ε0. On the left-hand side,
the integral can be expressed as the sum∫ ∫

S

E · dS =

∫ ∫
S(ends)

E · dS +

∫ ∫
S(curved)

E · dS

Looking first at the circular ends of the cylinder, the fact that the field lines point radially away
from the charged line implies that the electric field is in the plane of these circles and has no normal
component. Therefore E · dS will be zero for these ends.
Next, over the curved surface of the cylinder, the electric field is normal to it, and the symmetry
of the problem implies that the strength of the electric field will be constant (here denoted by E).
Therefore the integral = Total curved surface area × Field strength = 2πrlE.

So, by Gauss’ law∫ ∫
S(ends)

E · dS +

∫ ∫
S(curved)

E · dS =
Q

ε0

or

0 + 2πrlE =
ρLl

ε0

Interpretation

Hence, the field strength E is given by E =
ρL

2πε0r
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Engineering Example 7

Field strength on a cylinder

Problem in words

Given the electric field E on the surface of a cylinder, use Gauss’ law to find the charge per unit
length.

Mathematical statement of problem

On the surface of a long cylinder of radius a and length l, the electric field is given by

E =
ρL

2πε0

(a + b cos θ) r̂ − b sin θ θ̂

(a2 + 2ab cos θ + b2)

(using cylindrical polar co-ordinates) due to a line of charge a distance b (< a) from the centre of
the cylinder. Using Gauss’ law , find the charge per unit length.

Hint:-

∫ 2π

0

a + b cos θ

(a2 + 2ab cos θ + b2)
dθ =

2π

a

Mathematical analysis

Consider a cylindrical section - as in the previous example, there are no contributions from the ends
of the cylinder since the electric field has no normal component here. However, on the curved surface

dS = a dθ dz r̂

so

E · dS =
ρL

2πε0

a + b cos θ

(a2 + 2ab cos θ + b2)
a dθ dz

Integrating over the curved surface of the cylinder∫ ∫
S

E · dS =

∫ l

z=0

∫ θ=2π

θ=0

aρL

2πε0

a + b cos θ

(a2 + 2ab cos θ + b2)
dθ dz

=
aρLl

2πε0

∫ 2π

0

a + b cos θ

(a2 + 2ab cos θ + b2)
dθ

=
ρLl

ε0

using the given result for the integral.

Then, if Q is the total charge inside the cylinder, from Gauss’ law

ρLl

ε0

=
Q

ε0

so ρL =
Q

l
as one would expect.

Interpretation

Therefore the charge per unit length on the line of charge is given by ρL (i.e. the charge per unit
length is constant).
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Task

Verify Gauss’ theorem for the vector field F = xi − yj + zk and the unit cube
0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

(a) Find the vector ∇ · F .

(b) Evaluate the integral

∫ 1

z=0

∫ 1

y=0

∫ 1

x=0

∇ · Fdxdydz.

(c) For each side, evaluate the normal vector dS and the surface integral∫ ∫
S

F · dS.

(d) Show that the two sides of the statement of Gauss’ theorem are equal.

Your solution

Answer
(a) 1− 1 + 1 = 1

(b) 1

(c) −dxdyk, 0; dxdyk, 1; −dxdzj, 0; dxdzj, −1; −dydzi, 0; dydzi, 1

(d) Both sides are equal to 1.
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Exercises

1. Verify Gauss’ theorem for the vector field F = 4xzi − y2j + yzk and the cuboid 0 ≤ x ≤ 2,
0 ≤ y ≤ 3, 0 ≤ z ≤ 4.

2. Verify Gauss’ theorem, using cylindrical polar coordinates, for the vector field F = ρ−2ρ̂ over
the cylinder 0 ≤ ρ ≤ r0, −1 ≤ z ≤ 1 for

(a) r0 = 1

(b) r0 = 2

3. If S is the surface of the tetrahedron with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1),
find the surface integral∫ ∫

S

(xi + yzj) · dS

(a) directly

(b) by using Gauss’ theorem

Hint :- When evaluating directly, show that the unit normal on the sloping face is 1√
3
(i+ j +k)

and that dS = (i + j + k)dxdy

Answers

1. Both sides are 156,

2. Both sides equal (a) 4π, (b) 2π,

3. (a)
5

24
[only contribution is from the sloping face] (b)

5

24
[by volume integral of (1 + z)].
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3. Green’s Identities (3D)
Like Gauss’ theorem, Green’s identities relate surface integrals to volume integrals. However, Green’s
identities are concerned with two scalar fields u(x, y, z) and w(x, y, z). Two statements of Green’s
identities are as follows∫ ∫

S

(u∇w) · dS =

∫ ∫ ∫
V

{
∇u · ∇w + u∇2w

}
dV [1]

and ∫ ∫
S

{u∇w − v∇u} · dS =

∫ ∫ ∫
V

{
u∇2w − w∇2u

}
dV [2]

Proof of Green’s identities
Green’s identities can be derived from Gauss’ theorem and a vector derivative identity.

Vector identity (1) from subsection 6 of 28.2 states that ∇ · (φA) = (∇φ) · A + φ(∇ · A).

Letting φ = u and A = ∇w in this identity,

∇ · (u∇w) = (∇u) · (∇w) + u(∇ · (∇w)) = (∇u) · (∇w) + u∇2w

Gauss’ theorem states∫ ∫
S

F · dS =

∫ ∫ ∫
V

∇ · FdV

Now, letting F = u∇w,∫ ∫
S

(u∇w) · dS =

∫ ∫ ∫
V

∇ · (u∇w)dV

=

∫ ∫ ∫
V

{
(∇u) · (∇w) + u∇2w

}
dV

This is Green’s identity [1].

Reversing the roles of u and w,∫ ∫
S

(w∇u) · dS =

∫ ∫ ∫
V

{
(∇w) · (∇u) + w∇2u

}
dV

Subtracting the last two equations yields Green’s identity [2].

Key Point 10

Green’s Identities

[1]

∫ ∫
S

(u∇w) · dS =

∫ ∫ ∫
V

{
∇u · ∇w + u∇2w

}
dV

[2]

∫ ∫
S

{u∇w − v∇u} · dS =

∫ ∫ ∫
V

{
u∇2w − w∇2u

}
dV
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Example 38
Verify Green’s first identity for u = (x − x2)y, w = xy + z2 and the unit cube,
0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

Solution

As w = xy + z2, ∇w = yi + xj + 2zk. Thus u∇w = (xy − x2y)(yi + xj + 2zk) and the surface
integral is of this quantity (scalar product with dS) integrated over the surface of the unit cube.

On the three faces x = 0, x = 1, y = 0, the vector u∇w = 0 and so the contribution to the surface
integral is zero.

On the face y = 1, u∇w = (x−x2)(i+xj +2zk) and dS = dxdzj so (u∇w) ·dS = (x2−x3)dxdz
and the contribution to the integral is∫ 1

x=0

∫ 1

z=0

(x2 − x3)dzdx =

∫ 1

0

(x2 − x3)dx =

[
x3

3
− x4

4

]1

0

=
1

12
.

On the face z = 0, u∇w = (x − x2)y(yi + xj) and dS = −dxdzk so (u∇w) · dS = 0 and the
contribution to the integral is zero.

On the face z = 1, u∇w = (x−x2)y(yi+xj+2k) and dS = dxdyk so (u∇w)·dS = 2y(x−x2)dxdy
and the contribution to the integral is∫ 1

x=0

∫ 1

y=0

2y(x− x2)dydx =

∫ 1

x=0

[
y2(x− x2)

]1

y=0

dx =

∫ 1

0

(x− x2)dx =
1

6
.

Thus,

∫ ∫
S

(u∇w) · dS = 0 + 0 + 0 +
1

12
+ 0 +

1

6
=

1

4
.

Now evaluate

∫ ∫ ∫
V

{
∇u · ∇w + u∇2w

}
dV .

Note that ∇u = (1− 2x)yi + (x− x2)j and ∇2w = 2 so

∇u · ∇w + u∇2w = (1− 2x)y2 + (x− x2)x + 2(x− x2)y = x2 − x3 + 2xy − 2x2y + y2 − 2xy2

and the integral∫ ∫ ∫
V

{
∇u · ∇w + u∇2w

}
dV =

∫ 1

z=0

∫ 1

y=0

∫ 1

x=0

(x2 − x3 + 2xy − 2x2y + y2 − 2xy2)dxdydz

=

∫ 1

z=0

∫ 1

y=0

[
x3

3
− x4

4
+ x2y − 2

3
x3y + xy2 − x2y2

]1

x=0

dydz

=

∫ 1

z=0

∫ 1

y=0

(
1

12
+

y

3
)dydz =

∫ 1

z=0

[
y

12
+

y2

6

]1

y=0

dz

=

∫ 1

z=0

(
1

4
)dz =

[z

4

]1

z=0
=

1

4

Hence

∫ ∫
S

(u∇w) ·dS =

∫ ∫ ∫
V

[
∇u · ∇w + u∇2w

]
dV =

1

4
and Green’s first identity is verified.
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Green’s theorem in the plane
This states that∮

C

(Pdx + Qdy) =

∫ ∫
S

(
∂Q

∂x
− ∂P

∂y

)
dxdy

S is a 2-D surface with perimeter C; P (x, y) and Q(x, y) are scalar functions.

This should not be confused with Green’s identities.

Justification of Green’s theorem in the plane
Green’s theorem in the plane can be derived from Stokes’ theorem.∫ ∫

S

(∇× F ) · dS =

∮
C

F · dr

Now let F be the vector field P (x, y)i + Q(x, y)j i.e. there is no dependence on z and there are no
components in the z− direction. Now

∇× F =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

P (x, y) Q(x, y) 0

∣∣∣∣∣∣∣∣∣∣∣∣
=

(
∂Q

∂x
− ∂P

∂y

)
k

and dS = dxdyk giving (∇× F ) · dS =

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

Thus Stokes’ theorem becomes∫ ∫
S

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮
C

F · dr

and Green’s theorem in the plane follows.

Key Point 11

Green’s Theorem in the Plane∮
C

(Pdx + Qdy) =

∫ ∫
S

(
∂Q

∂x
− ∂P

∂y

)
dxdy

This relates a line integral around a closed path C with a double integral over the region S enclosed
by C. It is effectively a two-dimensional form of Stokes’ theorem.
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Example 39
Evaluate the line integral

∮
C

[
(4x2 + y − 3)dx + (3x2 + 4y2 − 2)dy

]
around the

rectangle 0 ≤ x ≤ 3, 0 ≤ y ≤ 1.

Solution

The integral could be obtained by evaluating four line integrals but it is easier to note that
[(4x2 + y − 3)dx + (3x2 + 4y2 − 2)dy] is of the form Pdx + Qdy with P = 4x2 + y − 3 and
Q = 3x2 + 4y2 − 2. It is thus of a suitable form for Green’s theorem in the plane.

Note that
∂Q

∂x
= 6x and

∂P

∂y
= 1.

Green’s theorem in the plane becomes∮
C

{(4x2 + y − 3)dx + (3x2 + 4y2 − 2)dy} =

∫ 1

y=0

∫ 3

x=0

(6x− 1) dxdy

=

∫ 1

y=0

[
3x2 − x

]3

x=0

dy =

∫ 1

y=0

24 dy = 24
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Example 40
Verify Green’s theorem in the plane for the integral

∮
C

[
4zdy + (y2 − 2)dz

]
and

the triangular contour starting at the origin O = (0, 0, 0) and going to A = (0, 2, 0)
and B = (0, 0, 1) before returning to the origin.

Solution

The whole of the contour is in the plane x = 0 and Green’s theorem in the plane becomes∮
C

(Pdy + Qdz) =

∫ ∫
S

(
∂Q

∂y
− ∂P

∂z

)
dydz

(a) Firstly evaluate

∮
C

{
4zdy + (y2 − 2)dz

}
.

On OA, z = 0 and dz = 0. As the integrand is zero, the integral will also be zero.
On AB, z = (1− y

2
) and dz = −1

2
dy. The integral is∫ 0

y=2

(
(4− 2y)dy − 1

2
(y2 − 2)dy

)
=

∫ 0

2

(5− 2y − 1

2
y2)dy =

[
5y − y2 − 1

6
y3

]0

2

= −14

3

On BO, y = 0 and dy = 0. The integral is

∫ 0

1

(−2)dz =

[
− 2z

]0

1

= 2.

Summing,

∮
C

(
4zdy + (y2 − 2)dz

)
= −8

3

(b) Secondly evaluate

∫ ∫
S

(
∂Q

∂y
− ∂P

∂z

)
dydz

In this example, P = 4z and Q = y2 − 2. Thus
∂P

∂z
= 4 and

∂Q

∂y
= 2y. Hence,

∫ ∫
S

(
∂Q

∂y
− ∂P

∂z

)
dydz =

∫ 2

y=0

∫ 1−y/2

z=0

(2y − 4) dzdy

=

∫ 2

y=0

[
2yz − 4z

]1−y/2

z=0

dy =

∫ 2

y=0

(
−y2 + 4y − 4

)
dy

=

[
−1

3
y3 + 2y2 − 4y

]2

0

= −8

3

Hence:∮
C

(Pdy + Qdz) =

∫ ∫
S

(
∂Q

∂y
− ∂P

∂z

)
dydz = −8

3
and Green’s theorem in the plane is verified.
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One very useful, special case of Green’s theorem in the plane is when Q = x and P = −y. The
theorem becomes∮

C

{−ydx + xdy} =

∫ ∫
S

(1− (−1)) dxdy

The right-hand side becomes

∫ ∫
S

2 dxdy i.e. 2A where A is the area inside the contour C. Hence

A =
1

2

∮
C

{xdy − ydx}

This result is known as the area theorem. It gives us the area bounded by a curve C in terms of a
line integral around C.

Example 41
Verify the area theorem for the segment of the circle x2 + y2 = 4 lying above the
line y = 1.

Solution

Firstly, the area of the segment ADBC can be found by subtracting the area of the triangle OADB
from the area of the sector OACB. The triangle has area 1

2
× 2

√
3× 1 =

√
3. The sector has area

π
3
× 22 = 4

3
π. Thus segment ADBC has area 4

3
π −

√
3.

Now, evaluate the integral

∮
C

{xdy − ydx} around the segment.

Along the line, y = 1, dy = 0 so the integral

∫
C

{xdy − ydx} becomes

∫ √
3

−
√

3

(x × 0 − 1 × dx) =∫ √
3

−
√

3

(−dx) = −2
√

3.

Along the arc of the circle, y =
√

4− x2 = (4 − x2)1/2 so dy = −x(4 − x2)−1/2dx. The integral∫
C

{xdy − ydx} becomes

∫ −
√

3

√
3

{−x2(4− x2)−1/2 − (4− x2)1/2}dx =

∫ √
3

−
√

3

4√
4− x2

dx

=

∫ π/3

−π/3

4
1

2 cos θ
2 cos θ dθ (letting x = 2 sin θ)

=

∫ π/3

−π/3

4dθ =
8

3
π

So, 1
2

∮
C

{xdy − ydx} =
1

2

[
8

3
π − 2

√
3

]
=

4

3
π −

√
3.

Hence both sides of the area theorem equal 4
3
π −

√
3 thus verifying the theorem.
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Task

Verify Green’s theorem in the plane when applied to the integral∮
C

{(5x + 2y − 7)dx + (3x− 4y + 5)dy}

where C represents the perimeter of the trapezium with vertices at (0, 0), (3, 0),
(6, 1) and (1, 1).

First let P = 5x + 2y − 7 and Q = 3x− 4y + 5 and find
∂Q

∂x
− ∂P

∂y
:

Your solution

Answer

1

Now find

∫ ∫ (
∂Q

∂x
− ∂P

∂y

)
dxdy over the trapezium:

Your solution

Answer

4 (by elementary geometry)

Now find

∫
(Pdx + Qdy) along the four sides of the trapezium, beginning with the line from (0, 0)

to (3, 0), and then proceeding anti-clockwise.

Your solution

Answers 1.5, 66, −62.5, −1 whose sum is 4.
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Finally show that the two sides of the statement of Green’s theorem are equal:

Your solution

Answer

Both sides are 4.

Exercises

1. Verify Green’s identity [1] (page 73) for the functions u = xyz, w = y2 and the unit cube
0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

2. Verify the area theorem for

(a) The area above y = 0, but below y = 1− x2.

(b) The segment of the circle x2 + y2 = 1, to the upper left of the line y = 1− x.

Answers

1. Both integrals in [1] equal
1

2

2. (a) both sides give a value of
4

3
, (b) both sides give a value of

π

4
− 1

2
.
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