
Surface and
Volume Integrals

�
�

�
�29.2

Introduction
A vector or scalar field - including one formed from a vector derivative (div, grad or curl) - can be
integrated over a surface or volume. This Section shows how to carry out such operations.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be familiar with vector derivatives

• be familiar with double and triple integrals�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• carry out operations involving integration of
scalar and vector fields
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1. Surface integrals involving vectors

The unit normal
For the surface of any three-dimensional shape, it is possible to find a vector lying perpendicular to
the surface and with magnitude 1. The unit vector points outwards from a closed surface and is
usually denoted by n̂.

Example 17
If S is the surface of the sphere x2 + y2 + z2 = a2 find the unit normal n̂.

Solution

The unit normal at the point P (x, y, z) points away from the centre of the sphere i.e. it lies in
the direction of xi + yj + zk. To make this a unit vector it must be divided by its magnitude√

x2 + y2 + z2 i.e. the unit vector is

n̂ =
x√

x2 + y2 + z2
i +

y√
x2 + y2 + z2

j +
z√

x2 + y2 + z2
k

=
x

a
i +

y

a
j +

z

a
k

where a =
√

x2 + y2 + z2 is the radius of the sphere.

z

x

y

n

i

j

k

P (x, y, z)

a

Figure 6: A unit normal n̂ to a sphere
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Example 18
For the cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, find the unit outward normal n̂
for each face.

Solution

On the face given by x = 0, the unit normal points in the negative x-direction. Hence the unit
normal is −i. Similarly :-
On the face x = 1 the unit normal is i. On the face y = 0 the unit normal is −j.
On the face y = 1 the unit normal is j. On the face z = 0 the unit normal is −k.
On the face z = 1 the unit normal is k.

dddSSS and the unit normal
The vector dS is a vector, being an element of the surface with magnitude du dv and direction
perpendicular to the surface.

If the plane in question is the Oxy plane, then dS = n̂ du dv = k dx dy.

du dv

dS

u
v

Figure 7: The vector dS as an element of a surface, with magnitude du dv

If the plane in question is not one of the three coordinate planes (Oxy, Oxz, Oyz), appropriate
adjustments must be made to express dS in terms of two of dx and dy and dz.

Example 19
The rectangle OABC lies in the plane z = y (Figure 8).
The vertices are O = (0, 0, 0), A = (1, 0, 0), B = (1, 1, 1) and C = (0, 1, 1).
Find a unit vector n̂ normal to the plane and an appropriate vector dS expressed
in terms of dx and dy.

z

x

y

O
A

BC

DE

Figure 8: The plane z = y passing through OABC
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Solution

Note that two vectors in the rectangle are
−→
OA = i and

−→
OC = j + k. A vector perpendicular to the

plane is i× (j + k) = −j + k. However, this vector is of magnitude
√

2 so the unit normal vector

is n̂ =
1√
2
(−j + k) = − 1√

2
j +

1√
2
k.

The vector dS is therefore (− 1√
2
j+

1√
2
k) du dv where du and dv are increments in the plane of the

rectangle OABC. Now, one increment, say du, may point in the x-direction while dv will point in a
direction up the plane, parallel to OC. Thus du = dx and (by Pythagoras) dv =

√
(dy)2 + (dz)2.

However, as z = y, dz = dy and hence dv =
√

2dy.

Thus, dS = (− 1√
2
j +

1√
2
k) dx

√
2 dy = (−j + k) dx dy.

Note :- the factor of
√

2 could also have been found by comparing the area of rectangle OABC,

i.e. 1, with the area of its projection in the Oxy plane i.e. OADE with area
1√
2
.

Integrating a scalar field
A function can be integrated over a surface by constructing a double integral and integrating in a
manner similar to that shown in 27.1 and 27.2. Often, such integrals can be carried out
with respect to an element containing the unit normal.

Example 20
Evaluate the integral ∫

A

1

1 + x2
dS

over the area A where A is the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0.

Solution

In this integral, dS becomes k dx dy i.e. the unit normal times the surface element. Thus the
integral is∫ 1

y=0

∫ 1

x=0

k

1 + x2
dx dy = k

∫ 1

y=0

[
tan−1 x

]1

0
dy

= k

∫ 1

y=0

[
(
π

4
− 0)

]1

0
dy =

π

4
k

∫ 1

y=0

dy

=
π

4
k
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Example 21

Find

∫ ∫
S

u dS where u = x2 + y2 + z2 and S is the surface of the unit cube

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

Solution

The unit cube has six faces and the unit normal vector n̂ points in a different direction on each face;
see Example 18. The surface integral must be evaluated for each face separately and the results
summed.
On the face x = 0, the unit normal n̂ = −i and the surface integral is∫ 1

y=0

∫ 1

z=0

(02 + y2 + z2)(−i)dzdy = −i

∫ 1

y=0

[
y2z +

1

3
z3

]1

z=0

dy

= −i

∫ 1

y=0

(
y2 +

1

3

)
dy = −i

[
1

3
y3 +

1

3
y

]1

0

= −2

3
i

On the face x = 1, the unit normal n̂ = i and the surface integral is∫ 1

y=0

∫ 1

z=0

(12 + y2 + z2)(i)dzdy = i

∫ 1

y=0

[
z + y2z +

1

3
z3

]1

z=0

dy

= i

∫ 1

y=0

(
y2 +

4

3

)
dy = i

[
1

3
y3 +

4

3
y

]1

0

=
5

3
i

The net contribution from the faces x = 0 and x = 1 is −2
3
i + 5

3
i = i.

Due to the symmetry of the scalar field u and the unit cube, the net contribution from the faces
y = 0 and y = 1 is j while the net contribution from the faces z = 0 and z = 1 is k.

Adding, we obtain

∫ ∫
S

udS = i + j + k

Key Point 4

A scalar function integrated with respect to a normal vector dS gives a vector quantity.

When the surface does not lie in one of the planes Oxy, Oxz, Oyz, extra care must be taken when
finding dS.
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Example 22

Find

∫ ∫
S

(∇ · F )dS where F = 2xi + yzj + xyk and S is the surface of the

triangle with vertices at (0, 0, 0), (1, 0, 0) and (1, 1, 0).

Solution

Note that ∇ · F = 2 + z = 2 as z = 0 everywhere along S. As the triangle lies in the Oxy plane,
the normal vector n = k and dS = kdydx.
Thus,∫ ∫

S

(∇ · F )dS =

∫ 1

x=0

∫ x

y=0

2dydxk =

∫ 1

0

[
2y

]x

0

dxk =

∫ 1

0

2xdxk =
[

x2
]1

0
k = k

Here the scalar function being integrated was the divergence of a vector function.

Example 23

Find

∫ ∫
S

f dS where f is the function 2x and S is the surface of the triangle

bounded by (0, 0, 0), (0, 1, 1) and (1, 0, 1). (See Figure 9.)

z

x

y
Area

√
3

2

1

2
Area

Figure 9: The triangle defining the area S
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Solution

The unit vector n is perpendicular to two vectors in the plane e.g. (j + k) and (i + k). The

vector (j + k) × (i + k) = i + j − k which has magnitude
√

3. Hence the unit normal vector

n̂ = 1√
3
i + 1√

3
j − 1√

3
k.

As the area of the triangle S is
√

3
2

and the area of its projection in the Oxy plane is 1
2
, the vector

dS =

√
3/2

1/2
n̂ dydx = (i + j + k)dydx.

Thus ∫ ∫
S

fdS = (i + j + k)

∫ 1

x=0

∫ 1−x

y=0

2x dydx

= (i + j + k)

∫ 1

x=0

[
2xy

]1−x

y=0

dx

= (i + j + k)

∫ 1

x=0

(2x− 2x2)dx

= (i + j + k)

[
x2 − 2

3
x3

]1

0

=
1

3
(i + j + k)

Task

Evaluate the integral

∫ ∫
S

4x dS where S represents the trapezium with vertices

at (0, 0), (3, 0), (2, 1) and (0, 1).

(a) Find the vector dS:

Your solution

Answer

k dx dy

(b) Write the surface integral as a double integral:

Your solution
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Answer

It is easier to integrate first with respect to x. This gives

∫ 1

y=0

∫ 3−y

x=0

4x dx dy k.

The range of values of y is y = 0 to y = 1.

For each value of y, x varies from x = 0 to x = 3− y

(c) Evaluate this double integral:

Your solution

Answer
38

3
k

HELM (2008):
Section 29.2: Surface and Volume Integrals

41



Exercises

1. Evaluate the integral

∫ ∫
S

xydS where S is the triangle with vertices at (0, 0, 4), (0, 2, 0) and

(1, 0, 0).

2. Find the integral

∫ ∫
S

xyzdS where S is the surface of the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 ≤ z ≤ 1.

3. Evaluate the integral

∫ ∫
S

[
∇ · (x2i + yzj + x2yk)

]
dS where S is the rectangle with vertices

at (1, 0, 0), (1, 1, 0), (1, 1, 1) and (1, 0, 1).

Answers 1.
2

3
i +

1

3
j +

1

6
k 2.

1

4
(x + y + z), 3.

5

2
i

Integrating a vector field
In a similar manner to the case of a scalar field, a vector field may be integrated over a surface.

Two common types of integral are

∫
S

F (r) · dS and

∫
S

F (r)× dS which integrate to a scalar and a

vector respectively. Again, when dS is expressed appropriately, the expression will reduce to a double

integral. The form

∫
S

F (r) · dS has many important applications, e.g. the flux of a vector field such

as an electric or magnetic field.

Example 24
Evaluate the integral ∫

A

(x2yi + zj + (2x + y)k) · dS

over the area A where A is the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0.

Solution

On A, the unit normal is dx dy k

∴
∫

A

(x2yi + zj + (2x + y)k) · (k dx dy)

=

∫ 1

y=0

∫ 1

x=0

(2x + y) dx dy =

∫ 1

y=0

[
x2 + xy

]1

x=0

dy

=

∫ 1

y=0

(1 + y)dy =

[
y +

1

2
y2

]1

0

=
3

2
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Example 25

Evaluate

∫
A

r · dS where A represents the surface of the unit cube

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 and r represents the vector xi + yj + zk .

Solution

The vector dS (in the direction of the normal vector) will be a constant vector on each face, but
will be different for each face.

On the face x = 0 , dS = −dy dz i and the integral on this face is∫ 1

z=0

∫ 1

y=0

(0i + yj + zk) · (−dy dz i) =

∫ 1

z=0

∫ 1

y=0

0 dy dz = 0

Similarly on the face y = 0, dS = −dx dz j and the integral on this face is∫ 1

z=0

∫ 1

x=0

(xi + 0j + zk) · (−dx dz j) =

∫ 1

z=0

∫ 1

x=0

0 dx dz = 0

Furthermore on the face z = 0, dS = −dx dy k and the integral on this face is∫ 1

x=0

∫ 1

y=0

(xi + yj + 0k) · (−dx dy k) =

∫ 1

x=0

∫ 1

y=0

0 dx dy = 0

On these three faces, the contribution to the integral is thus zero.

However, on the face x = 1, dS = +dy dz i and the integral on this face is∫ 1

z=0

∫ 1

y=0

(1i + yj + zk) · (+dy dz i) =

∫ 1

z=0

∫ 1

y=0

1 dy dz = 1

Similarly, on the face y = 1, dS = +dx dz j and the integral on this face is∫ 1

z=0

∫ 1

x=0

(xi + 1j + zk) · (+dx dz j) =

∫ 1

z=0

∫ 1

x=0

1 dx dz = 1

Finally, on the face z = 1, dS = +dx dy k and the integral on this face is∫ 1

y=0

∫ 1

x=0

(xi + yj + 1k) · (+dx dy k) =

∫ 1

y=0

∫ 1

x=0

1 dx dy = 1

Adding together the contributions gives

∫
A

r · dS = 0 + 0 + 0 + 1 + 1 + 1 = 3
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Engineering Example 3

Magnetic flux

Introduction

The magnetic flux through a surface is given by

∫∫
S

B·dS where S is the surface under consideration,

B is the magnetic field and dS is the vector normal to the surface.

Problem in words

The magnetic field generated by an infinitely long vertical wire on the z-axis, carrying a current I, is
given by:

B =
µ0I

2π

(−yi + xj

x2 + y2

)
Find the flux through a rectangular region (with sides parallel to the axes) on the plane y = 0.

Mathematical statement of problem

Find the integral

∫ ∫
S

B · dS over the surface, x1 ≤ x ≤ x2, z1 ≤ z ≤ z2. (see Figure 10 which

shows part of the plane y = 0 for which the flux is to be found and a single magnetic field line. The
strength of the field is inversely proportional to the distance from the axis.)

x

y

z

x1

x2

z1

z2

S

Figure 10: The surface S defined by x1 ≤ x ≤ x2, z1 ≤ z ≤ z2

Mathematical analysis

On y = 0, B =
µ0I

2πx
j and dS = dx dz j so B · dS =

µ0I

2πx
dx dz

The flux is given by the double integral:∫ z2

z=z1

∫ x2

x=x1

µ0I

2πx
dx dz =

µ0I

2π

∫ z2

z=z1

[
ln x

]x2

x1

dz

=
µ0I

2π

∫ z2

z=z1

(
ln x2 − ln x1

)
dz

=
µ0I

2π

[
z
(
ln x2 − ln x1

)]z2

z=z1

=
µ0I

2π
(z2 − z1) ln

(
x2

x1

)
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Interpretation

The magnetic flux increases in direct proportion to the extent of the side parallel to the axis (i.e.
along the z-direction) but logarithmically with respect to the extent of the side perpendicular to the
axis (i.e. along the x-axis).

Example 26
If F = x2i + y2j + z2k, evaluate

∫ ∫
S

F × dS where S is the part of the plane

z = 0 bounded by x = ±1, y = ±1.

Solution

Here dS = dx dy k and hence F × dS =

∣∣∣∣∣∣∣∣∣∣
i j k

x2 y2 z2

0 0 dx dy

∣∣∣∣∣∣∣∣∣∣
= y2 dx dy i− x2 dx dy j

∫ ∫
S

F × dS =

∫ 1

y=−1

∫ 1

x=−1

y2 dx dy i−
∫ 1

y=−1

∫ 1

x=−1

x2 dx dy j

The first integral is∫ 1

y=−1

∫ 1

x=−1

y2 dx dy =

∫ 1

y=−1

[
y2x

]1

x=−1

dy =

∫ 1

y=−1

2y2dy =

[
2

3
y3

]1

−1

=
4

3

Similarly

∫ 1

y=−1

∫ 1

x=−1

x2 dx dy =
4

3
.

Thus

∫ ∫
S

F × dS =
4

3
i− 4

3
j

Key Point 5

(a) An integral of the form

∫
S

F (r) · dS evaluates to a scalar.

(b) An integral of the form

∫
S

F (r)× dS evaluates to a vector.

The vector function involved may be the gradient of a scalar or the curl of a vector.
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Example 27
Integrate

∫ ∫
S

(∇φ).dS where φ = x2 + 2yz and S is the area between y = 0 and

y = x2 for 0 ≤ x ≤ 1 and z = 0. (See Figure 11.)

x

y

1

1

S

Figure 11: The area S between y = 0 and y = x2, for 0 ≤ x ≤ 1 and z = 0

Solution

Here ∇φ = 2xi + 2zj + 2yk and dS = k dydx. Thus (∇φ).dS = 2ydydx and∫ ∫
S

(∇φ).dS =

∫ 1

x=0

∫ x2

y=0

2y dydx

=

∫ 1

x=0

[
y2

]x2

y=0

dx =

∫ 1

x=0

x4dx

=

[
1

5
x5

]1

0

=
1

5

For integrals of the form

∫ ∫
S

F · dS, non-Cartesian coordinates e.g. cylindrical polar or spherical

polar coordinates may be used. Once again, it is necessary to include any scale factors along with
the unit normal.

Example 28
Using cylindrical polar coordinates, (see 28.3), find the integral

∫
S

F (r) ·dS

for F = ρzρ̂ + z sin2 φẑ and S being the complete surface (including ends) of the
cylinder ρ ≤ a, 0 ≤ z ≤ 1. (See Figure 12.)

z

x

y

ρ = a

z = 1

Figure 12: The cylinder ρ ≤ a, 0 ≤ z ≤ 1
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Solution

The integral

∫
S

F (r) · dS must be evaluated separately for the curved surface and the ends.

For the curved surface, dS = ρ̂adφdz (with the a coming from ρ the scale factor for φ and the fact
that ρ = a on the curved surface.) Thus, F · dS = a2z dφdz and∫ ∫

S

F (r) · dS =

∫ 1

z=0

∫ 2π

φ=0

a2z dφdz

= 2πa2

∫ 1

z=0

z dz = 2πa2

[
1

2
z2

]1

0

= πa2

On the bottom surface, z = 0 so F = 0 and the contribution to the integral is zero.
On the top surface, z = 1 and dS = ẑρ dρdφ and F · dS = ρz sin2 φ dφdρ = ρ sin2 φ dφdρ and∫ ∫

S

F (r) · dS =

∫ a

ρ=0

∫ 2π

φ=0

ρ sin2 φ dφdρ

= π

∫ a

ρ=0

ρ dρ =
1

2
πa2

So

∫ ∫
S

F (r) · dS = πa2 +
1

2
πa2 =

3

2
πa2

Engineering Example 4

The current continuity equation

Introduction

When an electric current flows at a constant rate through a conductor, then the current continuity
equation states that∮

S

J · dS = 0

where J is the current density (or current flow per unit area) and S is a closed surface. The equation
is an expression of the fact that, under these conditions, the current flow into a closed volume equals
the flow out.

Problem in words

A person is standing nearby when lightning strikes the ground. Find the potential difference between
the feet of that person.
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Figure 13: Lightning: a current dissipating into the ground

Mathematical statement of problem

The current from the lightning dissipates radially (see Fig 13).

(a) Find a relationship between the current I and current density J at a distance r from the

strike by integrating the current density over the hemisphere I =

∫
S

J · dS

(b) Find the field E from the equation E =
ρI

2π2r
where E = |E| and I is the current.

(c) Find V from the integral

∫ R2

R1

E · dr

Mathematical analysis

Imagine a hemisphere of radius r level with the surface of the ground so that the point of lightning
strike is at its centre. By symmetry, the pattern of current flow from the point of strike will be
uniform radial lines, and the magnitude of J will be a constant, i.e. over the curved surface of the
hemisphere J = Jr̂.

Since the amount of current entering the hemisphere is I, then it follows that the current leaving
must be the same i.e.

I =

∫
Sc

J · dS (where Sc is the curved surface of the hemisphere)

=

∫
Sc

(Jr̂) · (dS r̂)

= J

∫
Sc

dS

= 2πr2J [= surface area (2πr2)× flux (J)]

since the surface area of a sphere is 4πr2. Therefore

J =
I

2πr2

Note that if the current density J is uniformly radial over the curved surface, then so must be the
electric field E, i.e. E = Er̂. Using Ohm’s law

J = σE or E = ρJ

where σ = conductivity = 1/ρ.
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Hence E =
ρI

2πr2

The potential difference between two points at radii R1 and R2 from the lightning strike is found by
integrating E between them, so that

V =

∫ R2

R1

E · dr

=

∫ R2

R1

E dr

=
ρI

2π

∫ R2

R1

dr

r2

=
ρI

2π

[
−1

r

]R2

R1

=
ρI

2π

(
1

R1

− 1

R2

) (
=

ρI

2π

(
R2 −R1

R1R2

))
Interpretation

Suppose the lightning strength is a current I = 10, 000 A, that the person is 12 m away with
feet 0.35 m apart, and that the resistivity of the ground is 80 Ω m. Clearly, the worst case (i.e.
maximum voltage) would occur when the difference between R1 and R2 is greatest, i.e. R1=12 m
and R2=12.35 m which would be the case if both feet were on the same radial line. The voltage
produced between the person’s feet under these circumstances is

V =
ρI

2π

[
1

R1

− 1

R2

]
=

80× 10000

2π

[
1

12
− 1

12.35

]
≈ 300 V

Task

For F = (x2 + y2)i + (x2 + z2)j + 2xzk and S the square bounded by (1, 0, 1),

(1, 0,−1), (−1, 0,−1) and (−1, 0, 1) find the integral

∫
S

F · dS

Your solution

Answer

dS = dxdzj

∫ 1

−1

∫ 1

−1

(x2 + z2) dxdz =
8

3
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Task

For F = (x2 + y2)i + (x2 + z2)j + 2xzk and S being the rectangle bounded by
(1, 0, 1), (1, 0,−1), (−1, 0,−1) and (−1, 0, 1) (i.e. the same F and S as in the

previous Task), find the integral

∫
S

F × dS

Your solution

Answer{∫ 1

−1

∫ 1

−1

(−2xz)i +

∫ 1

−1

∫ 1

−1

(x2 + 0)k

}
dxdz =

4

3
k

Exercises

1. Evaluate the integral

∫ ∫
S

∇φ · dS for φ = x2z sin y and S being the rectangle bounded by

(0, 0, 0), (1, 0, 1), (1, π, 1) and (0, π, 0).

2. Evaluate the integral

∫ ∫
S

(∇ × F ) × dS where F = xeyi + zeyj and S represents the unit

square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

3. Using spherical polar coordinates (r, θ, φ), evaluate the integral

∫ ∫
S

F ·dS where F = r cos θr̂

and S is the curved surface of the top half of the sphere r = a.

Answers 1. −2

3
, 2. (e− 1)j, 3. πa3

2. Volume integrals involving vectors
Integrating a scalar function of a vector over a volume involves essentially the same procedure as in

27.3. In 3D cartesian coordinates the volume element dV is dxdydz. The scalar function may
be the divergence of a vector function.
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Example 29
Integrate ∇ · F over the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 where F is
the vector function x2yi + (x− z)j + 2xz2k.

Solution

∇ · F =
∂

∂x
(x2y) +

∂

∂y
(x− z) +

∂

∂z
(2xz2) = 2xy + 4xz

The integral is∫ 1

x=0

∫ 1

y=0

∫ 1

z=0

(2xy + 4xz)dzdydx =

∫ 1

x=0

∫ 1

y=0

[
2xyz + 2xz2

]1

0

dydx

=

∫ 1

x=0

∫ 1

y=0

(2xy + 2x) dydx =

∫ 1

x=0

[
xy2 + 2xy

]1

0

dx

=

∫ 1

x=0

3xdx =

[
3

2
x2

]1

0

=
3

2

Key Point 6

The volume integral of a scalar function (including the divergence of a vector) is a scalar.

Task

Using spherical polar coordinates (r, θ, φ) and the vector field F = r2 r̂+r2 sin θ θ̂,

evaluate the integral

∫ ∫ ∫
V

∇ · F dV over the sphere given by 0 ≤ r ≤ a.

Your solution

Answer

∇ · F = 4r + 2r cos θ,

∫ a

r=0

∫ π

θ=0

∫ 2π

φ=0

{(4r + 2r cos θ)r2 sin θ} dφdθdr = 4πa4

The r2 sin θ term comes from the Jacobian for the transformation from spherical to cartesian coor-
dinates (see 27.4 and 28.3).
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Exercises

1. Evaluate

∫ ∫ ∫
V

∇ · FdV when F is the vector field yzi + xyj and V is the unit cube

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1

2. For the vector field F = (x2y+sin z)i+(xy2+ez)j+(z2+xy)k, find the integral

∫ ∫ ∫
V

∇·FdV

where V is the volume inside the tetrahedron bounded by x = 0, y = 0, z = 0 and x+y+z = 1.

Answers 1. ∇ · F = x,
1

2
2.

7

60

Integrating a vector function over a volume integral is similar, but less common. Care should be
taken with the various components. It may help to think in terms of a separate volume integral for
each component. The vector function may be of the form ∇f or ∇× F .

Example 30
Integrate the function F = x2i+2j over the prism given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 2,
0 ≤ z ≤ (1− x). (See Figure 14.)

z

x

y

1 2

1

Figure 14: The prism bounded by 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ (1− x)

Solution

The integral is∫ 1

x=0

∫ 2

y=0

∫ 1−x

z=0

(x2i + 2j)dzdydx =

∫ 1

x=0

∫ 2

y=0

[
x2zi + 2zj

]1−x

z=0

dydx

=

∫ 1

x=0

∫ 2

y=0

{
x2(1− x)i + 2(1− x)j

}
dydx =

∫ 1

x=0

∫ 2

y=0

{
(x2 − x3)i + (2− 2x)j

}
dydx

=

∫ 1

x=0

{
(2x2 − 2x3)i + (4− 4x)j

}
dx =

[
(
2

3
x3 − 1

2
x4)i + (4x− 2x2)j

]1

0

=
1

6
i + 2j
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Example 31
For F = x2yi + y2j evaluate

∫ ∫ ∫
V

(∇×F )dV where V is the volume under the

plane z = x + y + 2 (and above z = 0) for −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

Solution

∇× F =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

x2y y2 0

∣∣∣∣∣∣∣∣∣∣∣∣
= −x2k

so ∫ ∫ ∫
V

(∇× F )dV =

∫ 1

x=−1

∫ 1

y=−1

∫ x+y+2

z=0

(−x2)k dzdydx

=

∫ 1

x=−1

∫ 1

y=−1

[
(−x2)zk

]x+y+2

z=0

dydx

=

∫ 1

x=−1

∫ 1

y=−1

[
−x3 − x2y − 2x2

]
dydx k

=

∫ 1

x=−1

[
−x3y − 1

2
x2y2 − 2x2y

]1

y=−1

dx k

=

∫ 1

x=−1

(
−2x3 − 0− 4x2

)
dx k =

[
−1

2
x4 − 4

3
x3

]1

−1

k = −8

3
k

(−1,−1, 0)

(−1, 1, 0)

(1, 1, 4)

(1, 1, 0)

(1,−1, 0)

z

x

y

Figure 15: The plane defined by z = x + y + z, for z > 0, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1
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Key Point 7

The volume integral of a vector function (including the gradient of a scalar or the curl of a vector)
is a vector.

Task

Evaluate the integral

∫
V

FdV for the case where F = xi + y2j + zk and V is the

cube −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1.

Your solution

Answer∫ 1

x=−1

∫ 1

y=−1

∫ 1

z=−1

(xi + y2j + zk)dzdydx =
8

3
j

Exercises

1. For f = x2 + yz, and V the volume bounded by y = 0, x + y = 1 and −x + y = 1 for

−1 ≤ z ≤ 1, find the integral

∫ ∫ ∫
V

(∇f)dV .

2. Evaluate the integral

∫
V

(∇× F )dV for the case where F = xzi + (x3 + y3)j − 4yk and V is

the cube −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1.

Answers

1.

∫ ∫ ∫
V

(2xi + zj + yk)dV =
2

3
k,

2.

∫ ∫ ∫
V

(−4i + xj + 3x2k)dV = −32i + 8k
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