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Learning
In this Workbook you will learn how to integrate functions involving vectors. You will learn
how to evaluate line integrals i.e. where a scalar or a vector is summed along a line or
contour. You will be able to evaluate surface and volume integrals where a function
involving vectors is summed over a surface or volume. You will learn about some theorems
relating to line, surface or volume integrals viz Stokes' theorem, Gauss'  divergence 
theorem and Green's theorem.
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Line Integrals
�
�
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�29.1

Introduction
workbook 28 considered the differentiation of scalar and vector fields. Here we consider

how to integrate such fields along a line. Firstly, integrals involving scalars along a line will be
considered. Subsequently, line integrals involving vectors will be considered. These can give scalar
or vector answers depending on the form of integral involved. Of particular interest are the integrals
of conservative vector fields.

#
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!
Prerequisites

Before starting this Section you should . . .

• have a thorough understanding of the basic
techniques of integration

• be familiar with the operators div, grad and
curl�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• integrate a scalar or vector quantity along a
line
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1. Line integrals
28 was concerned with evaluating an integral over all points within a rectangle or other shape

(or over a cuboid or other volume). In a related manner, an integral can take place over a line or
curve running through a two-dimensional (or three-dimensional) region. Line integrals may involve
scalar or vector fields. Those involving scalar fields are dealt with first.

Line integrals in two dimensions
A line integral in two dimensions may be written as∫

C

F (x, y)dw

There are three main features determining this integral:

F (x, y): This is the scalar function to be integrated e.g. F (x, y) = x2 + 4y2.

C: This is the curve along which integration takes place. e.g. y = x2 or x = sin y
or x = t− 1; y = t2 (where x and y are expressed in terms of a parameter t).

dw: This gives the variable of the integration. Three main cases are dx, dy and ds.
Here ‘s’ is arc length and so indicates position along the curve C.

ds may be written as ds =
√

(dx)2 + (dy)2 or ds =

√
1 +

(
dy

dx

)2

dx.

A fourth case is when F (x, y) dw has the form: F1dx+F2dy. This is a combination
of the cases dx and dy.

The integral

∫
C

F (x, y) ds represents the area beneath the surface z = F (x, y) but above the curve

C.

The integrals

∫
C

F (x, y) dx and

∫
C

F (x, y) dy represent the projections of this area onto the xz

and yz planes respectively.

A particular case of the integral

∫
C

F (x, y) ds is the integral

∫
C

1 ds. This is a means of calculating

the length along a curve i.e. an arc length.

∫
C

f(x, y)dy

∫
C

f(x, y)dx

∫
C

f(x, y)ds

curve C

x

y

z

Figure 1: Representation of a line integral and its projections onto the xz and yz planes
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The technique for evaluating a line integral is to express all quantities in the integral in terms of a
single variable. If the integral is with respect to ’x’ or ’y’, then the curve ’C’ and
the function ’F ’ may be expressed in terms of the relevant variable. If the integral is with
respect to ds, normally all quantities are expressed in terms of x. If x and y are given in terms of a
parameter t, then t is used as the variable.

Example 1
Find

∫
c

x (1 + 4y) dx where C is the curve y = x2, starting from x = 0, y = 0

and ending at x = 1, y = 1.

Solution

As this integral concerns only points along C and the integration is carried out with respect to x,
y may be replaced by x2. The limits on x will be 0 to 1. So the integral becomes∫

C

x(1 + 4y) dx =

∫ 1

x=0

x
(
1 + 4x2

)
dx =

∫ 1

x=0

(
x + 4x3

)
dx

=

[
x2

2
+ x4

]1

0

=

(
1

2
+ 1

)
− (0) =

3

2

Example 2
Find

∫
c

x (1 + 4y) dy where C is the curve y = x2, starting from

x = 0, y = 0 and ending at x = 1, y = 1. This is the same as Example 1 other
than dx being replaced by dy.

Solution

As this integral concerns only points along C and the integration is carried out with respect to y,
everything may be expressed in terms of y, i.e. x may be replaced by y1/2. The limits on y will
be 0 to 1. So the integral becomes∫

C

x(1 + 4y) dy =

∫ 1

y=0

y1/2 (1 + 4y) dx =

∫ 1

y=0

(
y1/2 + 4y3/2

)
dx

=

[
2

3
y3/2 +

8

5
x5/2

]1

0

=

(
2

3
+

8

5

)
− (0) =

34

15
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Example 3
Find

∫
c

x (1 + 4y) ds where C is the curve y = x2, starting from x = 0, y = 0

and ending at x = 1, y = 1. This is the same integral and curve as the previous
two examples but the integration is now carried out with respect to s, the arc
length parameter.

Solution

As this integral is with respect to x, all parts of the integral can be expressed in terms of x, Along

y = x2, ds =

√
1 +

(
dy

dx

)2

dx =
√

1 + (2x)2dx =
√

1 + 4x2dx

So, the integral is∫
c

x (1 + 4y) ds =

∫ 1

x=0

x
(
1 + 4x2

)√
1 + 4x2 dx =

∫ 1

x=0

x
(
1 + 4x2

)3/2
dx

This can be evaluated using the transformation u = 1 + 4x2 so du = 8xdx i.e. x dx =
du

8
.

When x = 0, u = 1 and when x = 1, u = 5.
Hence,∫ 1

x=0

x
(
1 + 4x2

)3/2
dx =

1

8

∫ 5

u=1

u3/2du

=
1

8
× 2

5

[
u5/2

]5

1

=
1

20

[
55/2 − 1

]
≈ 2.745

Note that the results for Examples 1,2 and 3 are all different: Example 3 is the area between a curve
and a surface above; Examples 1 and 2 give projections of this area onto other planes.

Example 4
Find

∫
C

xy dx where, on C, x and y are given in terms of a parameter t by

x = 3t2, y = t3 − 1 for t varying from 0 to 1.

Solution

Everything can be expressed in terms of t, the parameter. Here x = 3t2 so dx = 6t dt. The limits
on t are t = 0 and t = 1. The integral becomes∫

C

xy dx =

∫ 1

t=0

3t2 (t3 − 1) 6t dt =

∫ 1

t=0

(18t6 − 18t3) dt

=

[
18

7
t7 − 18

4
t4

]1

0

=
18

7
− 9

2
− 0 = −27

14
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Key Point 1

A line integral is normally evaluated by expressing all variables in terms of one variable.

In general ∫
C

f(x, y) ds 6=
∫

C

f(x, y) dy 6=
∫

C

f(x, y) dx

Task

For F (x, y) = 2x + y2, find (i)

∫
C

F (x, y) dx, (ii)

∫
C

F (x, y) dy,

(iii)

∫
C

F (x, y) ds where C is the line y = 2x from (0, 0) to (1, 2).

Express each integral as a simple integral with respect to a single variable and hence evaluate each
integral:

Your solution

Answer

(i)

∫ 1

x=0

(2x + 4x2) dx =
7

3
, (ii)

∫ 2

y=0

(y + y2) dy =
14

3
, (iii)

∫ 1

x=0

(2x + 4x2)
√

5 dx =
7

3

√
5
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Task

Find (i)

∫
C

F (x, y) dx, (ii)

∫
C

F (x, y) dy, (iii)

∫
C

F (x, y) ds where F (x, y) = 1

and C is the curve y = 1
2
x2 − 1

4
ln x from (1, 1

2
) to (2, 2− 1

4
ln 2).

Your solution

Answer

(i)

∫ 2

1

1 dx = 1, (ii)

∫ 2−(1/4) ln 2

1/2

1 dy =
3

2
− 1

4
ln 2, (iii) y =

1

2
x2 − 1

4
ln x ⇒ dy

dx
= x− 1

4x

∴
∫

1 ds =

∫ 2

1

√
1 + (x− 1

4x
)2 dx =

∫ 2

1

√
x2 +

1

2
+

1

16x2
dx =

∫ 2

1

(x +
1

4x
) dx =

3

2
+

1

4
ln 2.

Task

Find (i)

∫
C

F (x, y) dx, (ii)

∫
C

F (x, y) dy, (iii)

∫
C

F (x, y) ds

where F (x, y) = sin 2x and C is the curve y = sin x from (0, 0) to (
π

2
, 1).

Your solution

Answer

(i)

∫ π/2

0

sin 2x dx = 1, (ii)

∫ π/2

0

2 sin x cos2 x dx =
2

3

(iii)

∫ π/2

0

sin 2x
√

1 + cos2 x dx =
2

3
(2
√

2− 1), using the substitution u = 1 + cos2 x.
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2. Line integrals of scalar products

Integrals of the form

∫
C

F · dr occur in applications such as the following.

δr
T

B

A

v

S (current position)
dr

Figure 2: Schematic for cyclist travelling from A to B into a head wind

Consider a cyclist riding along the road from A to B (Figure 2). Suppose it is necessary to find the
total work the cyclist has to do in overcoming a wind of velocity v.

On moving from S to T , along an element δr of road, the work done is given by ‘Force × distance’
= |F | × |δr| cos θ where F , the force, is directly proportional to v, but in the opposite direction, and
|δr| cos θ is the component of the distance travelled in the direction of the wind.

So, the work done travelling δr is −kv · δr. Letting δr become infinitesimally small, the work done

becomes −kv · dr and the total work is −k

∫ B

A

v · dr.

This is an example of the integral along a line, of the scalar product of a vector field, with a vector
element of the line. The term scalar line integral is often used for integrals of this form. The
vector dr may be considered to be dx i + dy j + dz k.

Multiplying out the scalar product, the ’scalar line integral’ of the vector F along contour C, is given

by

∫
C

F · dr and equals

∫
C

{Fx dx + Fy dy + Fz dz} in three dimensions, and

∫
C

{Fx dx + Fy dy}
in two dimensions, where Fx, Fy, Fz are the components of F .

If the contour C has its start and end points in the same positions i.e. it represents a closed contour,

the symbol

∮
C

rather than

∫
C

is used, i.e.

∮
C

F · dr .

As before, to evaluate the line integral, express the path and the function F in terms of either x, y
and z, or in terms of a parameter t. Note that t often represents time.

Example 5
Find

∫
C

{2xy dx− 5x dy} where C is the curve y = x3 0 ≤ x ≤ 1.

[This is the integral

∫
C

F · dr where F = 2xyi− 5xj and dr = dx i + dy j.]

8 HELM (2008):
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Solution

It is possible to split this integral into two different integrals and express the first term as a function
of x and the second term as a function of y. However, it is also possible to express everything in
terms of x. Note that on C, y = x3 so dy = 3x2 dx and the integral becomes∫

C

{2xy dx− 5x dy} =

∫ 1

x=0

(
2x x3 dx− 5x 3x2 dx

)
=

∫ 1

0

(2x4 − 15x3) dx

=

[
2

5
x5 − 15

4
x4

]1

0

=
2

5
− 15

4
− 0 = −67

20

Key Point 2

An integral of the form

∫
C

F · dr may be expressed as

∫
C

{Fx dx + Fy dy + Fz dz}. Knowing the

expression for the path C, every term in the integral can be further expressed in terms of one of
the variables x, y or z or in terms of a parameter t and hence integrated.

If an integral is two-dimensional there are no terms involving z.

The integral

∫
C

F · dr evaluates to a scalar.

Example 6
Three paths from (0, 0) to (1, 2) are defined by

(a) C1 : y = 2x
(b) C2 : y = 2x2

(c) C3 : y = 0 from (0, 0) to (1, 0) and x = 1 from (1, 0) to (1, 2)

Sketch each path, and along each path find

∫
F · dr, where F = y2i + xyj.

HELM (2008):
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Solution

(a)

∫
F · dr =

∫ {
y2dx + xydy

}
. Along y = 2x,

dy

dx
= 2 so dy = 2dx. Then

∫
C1

F · dr =

∫ 1

x=0

{
(2x)2 dx + x (2x) (2dx)

}
=

∫ 1

0

(
4x2 + 4x2

)
dx =

∫ 1

0

8x2dx =

[
8

3
x2

]1

0

=
8

3

y = 2x

C1

A(1, 2)

x

y

1

2

Figure 3(a): Integration along path C1

(b)

∫
F · dr =

∫ {
y2dx + xydy

}
. Along y = 2x2,

dy

dx
= 4x so dy = 4xdx. Then∫

C2

F · dr =

∫ 1

x=0

{(
2x2

)2
dx + x

(
2x2

)
(4xdx)

}
=

∫ 1

0

12x4dx =

[
12

5
x5

]1

0

=
12

5

y = 2x2

A(1, 2)

C2

y

1

2

x

Figure 3(b): Integration along path C2

Note that the answer is different to part (a), i.e., the line integral depends upon the path taken.

(c) As the contour C3, has two distinct parts with different equations, it is necessary to break the
full contour OA into the two parts, namely OB and BA where B is the point (1, 0). Hence∫

C3

F · dr =

∫ B

O

F · dr +

∫ A

B

F · dr

10 HELM (2008):
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Solution (contd.)

Along OB, y = 0 so dy = 0. Then∫ B

O

F · dr =

∫ 1

x=0

(
02dx + x× 0× 0

)
=

∫ 1

0

0dx = 0

Along AB, x = 1 so dx = 0. Then∫ B

A

F · dr =

∫ 2

y=0

(
y2 × 0 + 1× y × dy

)
=

∫ 2

0

ydy =

[
1

2
y2

]2

0

= 2.

Hence

∫
C3

F · dr = 0 + 2 = 2

y

1

2

y = 0

x = 1

C3

A(1, 2)

xO
B

Figure 3(c): Integration along path C3

Once again, the result is path dependent.

Key Point 3

In general, the value of a line integral depends on the path of integration as well as upon the end
points.
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Example 7

Find

∫ O

A

F · dr, where F = y2i+xyj (as in Example 6) and the path C4 from A

to O is the straight line from (1, 2) to (0, 0), that is the reverse of C1 in Example
6(a).

Deduce

∮
C

F · dr, the integral around the closed path C formed by the parabola

y = 2x2 from (0, 0) to (1, 2) and the line y = 2x from (1, 2) to (0, 0).

Solution

Reversing the path interchanges the limits of integration, which results in a change of sign for the
value of the integral.∫ O

A

F · dr = −
∫ A

O

F · dr = −8

3

The integral along the parabola (calculated in Example 6(b)) evaluates to
12

5
, then∮

C

F · dr =

∫
C2

F · dr +

∫
C4

F · dr =
12

5
− 8

3
= − 4

15
≈ −0.267

Example 8
Consider the vector field

F = y2z3i + 2xyz3j + 3xy2z2k

Let C1 and C2 be the curves from O = (0, 0, 0) to A = (1, 1, 1), given by

C1 : x = t, y = t, z = t (0 ≤ t ≤ 1)

C2 : x = t2, y = t, z = t2 (0 ≤ t ≤ 1)

(a) Evaluate the scalar integral of the vector field along each path.

(b) Find the value of

∮
C

F · dr where C is the closed path along C1 from

O to A and back along C2 from A to O.

12 HELM (2008):
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Solution

(a) The path C1 is given in terms of the parameter t by x = t, y = t and z = t. Hence

dx

dt
=

dy

dt
=

dz

dt
= 1 and

dr

dt
=

dx

dt
i +

dy

dt
j +

dz

dt
k = i + j + k

Now by substituting for x = y = z = t in F we have

F = t5i + 2t5j + 3t5k

Hence F · dr

dt
= t5 + 2t5 + 3t5 = 6t5. The values of t = 0 and t = 1 correspond to the

start and end point of C1 and so these are the required limits of integration. Now∫
C1

F · dr =

∫ 1

0

F · dr

dt
dt =

∫ 1

0

6t5dt =

[
t6

]1

0

= 1

For the path C2 the parameterisation is x = t2, y = t and z = t2 so
dr

dt
= 2ti+ j +2tk.

Substituting x = t2, y = t and z = t2 in F we have

F = t8i + 2t9j + 3t8k and F · dr

dt
= 2t9 + 2t9 + 6t9 = 10t9

∫
C2

F · dr =

∫ 1

0

10t9dt =

[
t10

]1

0

= 1

(b) For the closed path C∮
C

F · dr =

∫
C1

F · dr −
∫

C2

F · dr = 1− 1 = 0

(Note: A line integral round a closed path is not necessarily zero - see Example 7.)

Further points on Example 8

Vector Field Path Line Integral
F C1 1
F C2 1
F closed 0

Note that the value of the line integral of F is 1 for both paths C1 and C2. In fact, this result would
hold for any path from (0, 0, 0) to (1, 1, 1).

The field F is an example of a conservative vector field; these are discussed in detail in the
next subsection.

In

∫
C

F · dr, the vector field F may be the gradient of a scalar field or the curl of a vector field.

HELM (2008):
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Task

Consider the vector field

G = xi + (4x− y)j

Let C1 and C2 be the curves from O = (0, 0, 0) to A = (1, 1, 1), given by

C1 : x = t, y = t, z = t (0 ≤ t ≤ 1)

C2 : x = t2, y = t, z = t2 (0 ≤ t ≤ 1)

(a) Evaluate the scalar integral

∫
C

G · dr of each vector field along each

path.

(b) Find the value of

∮
C

G · dr where C is the closed path along C1 from

O to A and back along C2 from A to O.

Your solution

14 HELM (2008):
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Answer

(a) The path C1 is given in terms of the parameter t by x = t, y = t and z = t. Hence

dx

dt
=

dy

dt
=

dz

dt
= 1 and

dr

dt
=

dx

dt
i +

dy

dt
j +

dz

dt
k = i + j + k

Substituting for x = y = z = t in G we have

G = ti + 3tj and G · dr

dt
= t + 3t = 4t

The limits of integration are t = 0 and t = 1, then∫
C1

G · dr =

∫ 1

0

G · dr

dt
dt =

∫ 1

0

4tdt =

[
2t2

]1

0

= 2

For the path C2 the parameterisation is x = t2, y = t and z = t2 so
dr

dt
= 2ti+ j +2tk.

Substituting x = t2, y = t and z = t2 in G we have

G = t2i +
(
4t2 − t

)
j and G · dr

dt
= 2t3 + 4t2 − t∫

C2

G · dr =

∫ 1

0

(
2t3 + 4t2 − t

)
dt =

[
1

2
t4 +

4

3
t3 − 1

2
t2

]1

0

=
4

3

(b) For the closed path C

∮
C

G · dr =

∫
C1

G · dr −
∫

C2

G · dr = 2− 4

3
=

2

3

(Note: The value of the integral around the closed path is non-zero, unlike Example 8.)

Example 9
Find

∫
C

{
∇(x2y)

}
· dr where C is the contour y = 2x− x2 from (0, 0) to (2, 0).

Here, ∇ refers to the gradient operator, i.e. ∇φ ≡ grad φ

Solution

Note that ∇(x2y) = 2xyi + x2j so the integral is

∫
C

{
2xy dx + x2 dy

}
.

On y = 2x− x2, dy = (2− 2x) dx so the integral becomes∫
C

{
2xy dx + x2 dy

}
=

∫ 2

x=0

{
2x(2x− x2) dx + x2(2− 2x) dx

}
=

∫ 2

0

(6x2 − 4x3) dx =

[
2x3 − x4

]2

0

= 0
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Example 10
Two paths from (0, 0) to (4, 2) are defined by

(a) C1 : y =
1

2
x 0 ≤ x ≤ 4

(b) C2 : The straight line y = 0 from (0, 0) to (4, 0) followed by
C3 : The straight line x = 4 from (4, 0) to (4, 2)

For each path find

∫
C

F · dr, where F = 2xi + 2yj.

Solution

(a) For the straight line y =
1

2
x we have dy =

1

2
dx

Then,

∫
C1

F · dr =

∫
C1

2x dx + 2y dy =

∫ 4

0

(
2x +

x

2

)
dx =

∫ 4

0

5x

2
dx = 20

(b) For the straight line from (0, 0) to (4, 0) we have

∫
C2

F · dr =

∫ 4

0

2x dx = 16

For the straight line from (4, 0) to (4, 2) we have

∫
C3

F · dr =

∫ 2

0

2y dy = 4

Adding these two results gives

∫
C

F · dr = 16 + 4 = 20

Task

Evaluate

∫
C

F · dr, where F = (x − y)i + (x + y)j along each of the following

paths

(a) C1 : from (1, 1) to (2, 4) along the straight line y = 3x− 2:

(b) C2 : from (1, 1) to (2, 4) along the parabola y = x2:

(c) C3 : along the straight line x = 1 from (1, 1) to (1, 4) then along the
straight line y = 4 from (1, 4) to (2, 4).

Your solution

16 HELM (2008):
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Answer

(a)

∫ 2

1

(10x− 4) dx = 11,

(b)

∫ 2

1

(x + x2 + 2x3) dx =
34

3
, (this differs from (a) showing path dependence)

(c)

∫ 4

1

(1 + y) dy +

∫ 2

1

(x− 4) dx = 8

Task

For the function F and paths in the last Task, deduce

∮
F · dr for the closed

paths

(a) C1 followed by the reverse of C2.

(b) C2 followed by the reverse of C3.

(c) C3 followed by the reverse of C1.

Your solution

Answer

(a) −1

3
, (b)

10

3
, (c) −3. (note that all these are non-zero.)
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Exercises

1. Consider

∫
C

F · dr, where F = 3x2y2i + (2x3y− 1)j. Find the value of the line integral along

each of the paths from (0, 0) to (1, 4).

(a) y = 4x (b) y = 4x2 (c) y = 4x1/2 (d) y = 4x3

2. Consider the vector field F = 2xi + (xz− 2)j + xyk and the two curves between (0, 0, 0) and
(1,−1, 2) defined by

C1 : x = t2, y = −t, z = 2t for 0 ≤ t ≤ 1.
C2 : x = t− 1, y = 1− t, z = 2t− 2 for 1 ≤ t ≤ 2.

(a) Find

∫
C1

F · dr,

∫
C2

F · dr

(b) Find

∮
C

F · dr where C is the closed path from (0, 0, 0) to (1,−1, 2) along C1 and back

to (0, 0, 0) along C2.

3. Consider the vector field G = x2zi + y2zj + 1
3
(x3 + y3)k and the two curves between (0, 0, 0)

and (1,−1, 2) defined by

C1 : x = t2, y = −t, z = 2t for 0 ≤ t ≤ 1.
C2 : x = t− 1, y = 1− t, z = 2t− 2 for 1 ≤ t ≤ 2.

(a) Find

∫
C1

G · dr,

∫
C2

G · dr

(b) Find

∮
C

G · dr where C is the closed path from (0, 0, 0) to (1,−1, 2) along C1 and back

to (0, 0, 0) along C2.

4. Find

∫
C

F · dr) along y = 2x from (0, 0) to (2, 4) for

(a) F = ∇(x2y)

(b) F = ∇× (1
2
x2y2k) [Here ∇× f represents the curl of f ]

Answers

1. All are 12, and in fact the integral would be 12 for any path from (0,0) to (1,4).

2 (a) 2, 5
3

(b) 1
3
.

3 (a) 0, 0 (b) 0.

4. (a)

∫
C

2xy dx + x2 dy = 16, (b)

∫
C

x2y dx− xy2 dy = −24.
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3. Conservative vector fields
For some line integrals in the previous section, the value of the integral depended only on the vector
field F and the start and end points of the line but not on the actual path between the start and
end points. However, for other line integrals, the result depended on the actual details of the path
of the line.

Vector fields are classified according to whether the line integrals are path dependent or path indepen-
dent. Those vector fields for which all line integrals between all pairs of points are path independent
are called conservative vector fields.

There are five properties of a conservative vector field (P1 to P5 below). It is impossible to check the
value of every line integral over every path, but it is possible to use any one of these five properties
(particularly property P3 below) to determine whether or not a vector field is conservative. These
properties are also used to simplify calculations with conservative vector fields over non-closed paths.

P1 The line integral

∫ B

A

F · dr depends only on the end points A and B and is independent of

the actual path taken.

P2 The line integral around any closed curve is zero. That is

∮
C

F · dr = 0 for all C.

P3 The curl of a conservative vector field F is zero i.e. ∇× F = 0.

P4 For any conservative vector field F , it is possible to find a scalar field φ such that ∇φ = F .

Then,

∮
C

F · dr = φ(B)− φ(A) where A and B are the start and end points of contour C.

[This is sometimes called the Fundamental Theorem of Line Integrals and is comparable with
the Fundamental Theorem of Calculus.]

P5 All gradient fields are conservative. That is, F = ∇φ is a conservative vector field for any
scalar field φ.

Example 11
Consider the following vector fields.
1. F 1 = y2i + xyj (Example 6) 2. F 2 = 2xi + 2yj (Example 10)

3. F 3 = y2z3i + 2xyz3j + 3xy2z2k (Example 8)

4. F 4 = xi + (4x− y) j (Task on page 14)

Determine which of these vector fields are conservative where possible by referring
to the answers given in the solution. For those that are conservative find a scalar
field φ such that F = ∇φ and use property P4 to verify the values of the line
integrals.

Solution

1. Two different values were obtained for line integrals over the paths C1 and C2. Hence, by P1,
F 1 is not conservative. [It is also possible to reach this conclusion from P3 by finding that
∇× F = −yk 6= 0.]
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Solution (contd.)

2. For the closed path consisting of C2 and C3 from (0, 0) to (4, 2) and back to (0, 0) along C1

we obtain the value 20 + (−20) = 0. This alone does not mean that F 2 is conservative as there
could be other paths giving different values. So by using P3

∇× F 2 =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

2x 2y 0

∣∣∣∣∣∣∣∣∣∣∣∣
= i(0− 0)− j(0− 0) + k(0− 0) = 0

As ∇× F 2 = 0, P3 gives that F 2 is a conservative vector field.

Now, find a φ such that F 2 = ∇φ. Then
∂φ

∂x
i +

∂φ

∂y
j = 2xi + 2yj.

Thus

∂φ

∂x
= 2x ⇒ φ = x2 + f(y)

∂φ

∂y
= 2y ⇒ φ = y2 + g(x)

 ⇒ φ = x2 + y2(+ constant)

Using P4:

∫ (4,2)

(0,0)

F 2 · dr =

∫ (4,2)

(0,0)

(∇φ) · dr = φ(4, 2)− φ(0, 0) = (42 + 22)− (02 + 02) = 20.

3. The fact that line integrals along two different paths between the same start and end points
have the same value is consistent with F 3 being a conservative field according to P1. So too is the
fact that the integral around a closed path is zero according to P2. However, neither fact can be
used to conclude that F 3 is a conservative field. This can be done by showing that ∇× F 3 = 0.

Now,

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

y2z3 2xyz3 3xy2z2

∣∣∣∣∣∣∣∣∣∣∣∣
= (6xyz2 − 6xyz2)i− (3y2z2 − 3y2z2)j + (2yz3 − 2yz3)k = 0.

As ∇× F 3 = 0, P3 gives that F 3 is a conservative field.

To find φ that satisfies ∇φ = F 3, it is necessary to satisfy

∂φ

∂x
= y2z3 → φ = xy2z3 + f(y, z)

∂φ

∂y
= 2xyz3 → φ = xy2z3 + g(x, z)

∂φ

∂z
= 3xy2z2 → φ = xy2z3 + h(x, y)


→ φ = xy2z3

Using P4:

∫ (1,1,1)

(0,0,0)

F 3 · dr = φ(1, 1, 1)− φ(0, 0, 0) = 1− 0 = 1 in agreement with Example 8(a).
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Solution (contd.)

4. As the integral along C1 is 2 and the integral along C2 (same start and end points but different
intermediate points) is 4

3
, F4 is not a conservative field using P1.

Note that ∇ × F 4 = 4k 6= 0 so, using P3, this is an independent conclusion that F 4 is not
conservative.

Engineering Example 1

Work done moving a charge in an electric field

Introduction

If a charge, q, is moved through an electric field, E, from A to B, then the work
required is given by the line integral

WAB = −q

∫ B

A

E · dr

Problem in words

Compare the work done in moving a charge through the electric field around a point charge in a
vacuum via two different paths.

Mathematical statement of problem

An electric field E is given by

E =
Q

4πε0r2
r̂

=
Q

4πε0(x2 + y2 + z2)
×

xi + yj + zk√
x2 + y2 + z2

=
Q(xi + yj + zk)

4πε0(x2 + y2 + z2)
3
2

where r is the position vector with magnitude r and unit vector r̂, and
1

4πε0

is a combination of

constants of proportionality, where ε0 = 10−9/36π F m−1.

Given that Q = 10−8C, find the work done in bringing a charge of q = 10−10C from the point
A = (10, 10, 0) to the point B = (1, 1, 0) (where the dimensions are in metres)

(a) by the direct straight line y = x, z = 0

(b) by the straight line pair via C = (10, 1, 0)
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A

B C
x

y

a
b

b

Figure 4: Two routes (a and b) along which a charge can move through an electric field

The path comprises two straight lines from A = (10, 10, 0) to B = (1, 1, 0) via C = (10, 1, 0) (see
Figure 4).

Mathematical analysis

(a) Here Q/(4πε0) = 90 so

E =
90[xi + yj]

(x2 + y2)
3
2

as z = 0 over the region of interest. The work done

WAB = −q

∫ B

A

E · dr

= −10−10

∫ B

A

90

(x2 + y2)
3
2

[xi + yj] · [dxi + dyj]

Using y = x, dy = dx

WAB = −10−10

∫ 1

x=10

90

(2x2)
3
2

{x dx + x dx}

= −10−10

∫ 1

10

90

(2
√

2)
x−3 2x dx

=
90×−10−10

√
2

∫ 1

10

x−2 dx

=
9×−10−9

√
2

[
− x−1

]1

10

=
9× 10−9

√
2

[
x−1

]1

10

=
9× 10−9

√
2

[1− 0.1]

= 5.73× 10−9 J
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(b) The first part of the path is A to C where x = 10, dx = 0 and y goes from 10 to 1.

WAC = −q

∫ C

A

E · dr

= −10−10

∫ 1

y=10

90

(100 + y2)
3
2

[xi + yj] · [0i + dyj]

= −10−10

∫ 1

10

90y dy

(100 + y2)
3
2

= −10−10

∫ 101

u=200

45 du

u
3
2

(substituting u = 100 + y2, du = 2y dy)

= −45× 10−10

∫ 101

200

u−
3
2 du

= −45× 10−10
[
−2u−

1
2

]101

200

= 45× 10−10

(
2√
101

− 2√
200

)
= 2.59× 10−10J

The second part is C to B, where y = 1, dy = 0 and x goes from 10 to 1.

WCB = −10−10

∫ 1

x=10

90

(x2 + 1)
3
2

[xi + yj] · [dxi + 0j]

= −10−10

∫ 1

10

90x dx

(x2 + 1)
3
2

= −10−10

∫ 2

u=101

45 du

u
3
2

(substituting u = x2 + 1, du = 2x dx)

= −45× 10−10

∫ 2

101

u−
3
2 du

= −45× 10−10
[
−2u−

1
2

]2

101

= 45× 10−10

(
2√
2
− 2√

101

)
= 5.468× 10−9J

The sum of the two components WAC and WCB is 5.73× 10−9J.

Therefore the work done over the two paths (a) and (b) is identical.

Interpretation

In fact, the work done is independent of the route taken as the electric field E around a point charge
in a vacuum is a conservative field.
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Example 12

1. Show that I =

∫ (2,1)

(0,0)

{
(2xy + 1)dx + (x2 − 2y)dy

}
is independent of the

path taken.

2. Find I using property P1. (Page 19)

3. Find I using property P4. (Page 19)

4. Find I =

∮
C

{
(2xy + 1)dx + (x2 − 2y)dy

}
where C is

(a) the circle x2 + y2 = 1

(b) the square with vertices (0, 0), (1, 0), (1, 1), (0, 1).

Solution

1. The integral I =

∫ (2,1)

(0,0)

{
(2xy + 1)dx + (x2 − 2y)dy

}
may be re-written

∫
C

F · dr where

F = (2xy + 1)i + (x2 − 2y)j.

Now ∇× F =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

2xy + 1 x2 − 2y 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0i + 0j + 0k = 0

As ∇×F = 0, F is a conservative field and I is independent of the path taken between (0, 0)
and (2, 1).

2. As I is independent of the path taken from (0, 0) to (2, 1), it can be evaluated along any
such path. One possibility is the straight line y = 1

2
x. On this line, dy = 1

2
dx. The integral

I becomes

I =

∫ (2,1)

(0,0)

{
(2xy + 1)dx + (x2 − 2y)dy

}
=

∫ 2

x=0

{
(2x× 1

2
x + 1)dx + (x2 − x)

1

2
dx

}
=

∫ 2

0

(
3

2
x2 − 1

2
x + 1)dx

=

[
1

2
x3 − 1

4
x2 + x

]2

0

= 4− 1 + 2− 0 = 5
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Solution (contd.)

3. If F = ∇φ then

∂φ

∂x
= 2xy + 1 → φ = x2y + x + f(y)

∂φ

∂y
= x2 − 2y → φ = x2y − y2 + g(x)

 → φ = x2y + x− y2 + C.

These are consistent if φ = x2y + x − y2 (plus a constant which may be omitted since it
cancels).
So I = φ(2, 1)− φ(0, 0) = (4 + 2− 1)− 0 = 5

4. As F is a conservative field, all integrals around a closed contour are zero.

Exercises

1. Determine whether the following vector fields are conservative

(a) F = (x− y)i + (x + y)j

(b) F = 3x2y2i + (2x3y − 1)j

(c) F = 2xi + (xz − 2)j + xyk

(d) F = x2zi + y2zj + 1
3
(x3 + y3)k

2. Consider the integral

∫
C

F · dr with F = 3x2y2i + (2x3y − 1)j. From Exercise 1(b) F is a

conservative vector field. Find a scalar field φ so that ∇φ = F . Use property P4 to evaluate

the integral

∫
C

F · dr where C is an integral with start-point (0, 0) and end point (1, 4).

3. For the following conservative vector fields F , find a scalar field φ such that ∇φ = F and

hence evaluate the I =

∫
C

F · dr for the contours C indicated.

(a) F = (4x3y − 2x)i + (x4 − 2y)j; any path from (0, 0) to (2, 1).

(b) F = (ex + y3)i + (3xy2)j; closed path starting from any point on the circle x2 + y2 = 1.

(c) F = (y2 + sin z)i + 2xyj + x cos zk; any path from (1, 1, 0) to (2, 0, π).

(d) F =
1

x
i + 4y3z2j + 2y4zk; any path from (1, 1, 1) to (1, 2, 3).

Answers

1. (a) No, (b) Yes, (c) No, (d) Yes

2. x3y2 − y + C, 12

3. (a) x4y − x2 − y2, 11; (b) ex + xy3, 0; (c) xy2 + x sin z, −1; (d) ln x + y4z2,143

HELM (2008):
Section 29.1: Line Integrals

25



4. Vector line integrals
It is also possible to form less commonly used integrals of the types:∫

C

f(x, y, z) dr and

∫
C

F (x, y, z)× dr.

Each of these integrals evaluates to a vector.

Remembering that dr = dx i + dy j + dz k, an integral of the form

∫
C

f(x, y, z) dr becomes∫
C

f(x, y, z)dx i +

∫
C

f(x, y, z) dy j +

∫
C

f(x, y, z)dz k. The first term can be evaluated by

expressing y and z in terms of x. Similarly the second and third terms can be evaluated by expressing
all terms as functions of y and z respectively. Alternatively, all variables can be expressed in terms
of a parameter t. If an integral is two-dimensional, the term in z will be absent.

Example 13
Evaluate the integral

∫
C

xy2dr where C represents the contour y = x2 from (0, 0)

to (1, 1).

Solution

This is a two-dimensional integral so the term in z will be absent.

I =

∫
C

xy2dr

=

∫
C

xy2(dxi + dyj)

=

∫
C

xy2dx i +

∫
C

xy2 dy j

=

∫ 1

x=0

x(x2)2dx i +

∫ 1

y=0

y1/2y2 dy j

=

∫ 1

0

x5dx i +

∫ 1

0

y5/2 dy j

=

[
1

6
x6

]1

0

i +

[
2

7
x7/2

]1

0

j

=
1

6
i +

2

7
j
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Example 14
Find I =

∫
C

xdr for the contour C given parametrically by x = cos t, y = sin t,

z = t − π starting at t = 0 and going to t = 2π, i.e. the contour starts at
(1, 0,−π) and finishes at (1, 0, π).

Solution

The integral becomes

∫
C

x(dx i + dy j + dz k).

Now, x = cos t, y = sin t, z = t− π so dx = − sin t dt, dy = cos t dt and dz = dt. So

I =

∫ 2π

0

cos t(− sin t dt i + cos t dt j + dt k)

= −
∫ 2π

0

cos t sin t dt i +

∫ 2π

0

cos2 t dt j +

∫ 2π

0

cos t dt k

= −1

2

∫ 2π

0

sin 2t dt i +
1

2

∫ 2π

0

(1 + cos 2t) dt j +
[

sin t
]2π

0
k

=
1

4

[
cos 2t

]2π

0
i +

1

2

[
t +

1

2
sin 2t

]2π

0

j + 0k

= 0i + π j = πj

Integrals of the form

∫
C

F × dr can be evaluated as follows. If the vector field F = F1i+F2j +F3k

and dr = dx i + dy j + dz k then:

F × dr =

∣∣∣∣∣∣∣∣∣∣
i j k

F1 F2 F3

dx dy dz

∣∣∣∣∣∣∣∣∣∣
= (F2 dz − F3 dy)i + (F3 dx− F1 dz)j + (F1 dy − F2 dx)k

= (F3j − F2k)dx + (F1k − F3i)dy + (F2i− F1j)dz

There are thus a maximum of six terms involved in one such integral; the exact details may dictate
which method to use.
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Example 15
Evaluate the integral

∫
C

(x2i + 3xyj)× dr where C represents the curve y = 2x2

from (0, 0) to (1, 2).

Solution

Note that the z components of both F and dr are zero.

F × dr =

∣∣∣∣∣∣∣∣∣∣
i j k

x2 3xy 0

dx dy 0

∣∣∣∣∣∣∣∣∣∣
= (x2dy − 3xydx)k and

∫
C

(x2i + 3xyj)× dr =

∫
C

(x2dy − 3xydx)k

Now, on C, y = 2x2 dy = 4xdx and∫
C

(x2i + 3xyj)× dr =

∫
C

{x2dy − 3xydx}k

=

∫ 1

x=0

{
x2 × 4xdx− 3x× 2x2dx

}
k

=

∫ 1

0

−2x3dxk

= −
[
1

2
x4

]1

0

k

= −1

2
k
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Engineering Example 2

Force on a loop due to a magnetic field

Introduction

A current I in a magnetic field B is subject to a force F given by

F = I dr ×B

where the current can be regarded as having magnitude I and flowing (positive charge) in the
direction given by the vector dr. The force is known as the Lorentz force and is responsible for the
workings of an electric motor. If current flows around a loop, the total force on the loop is given by
the integral of F around the loop, i.e.

F =

∮
(I dr ×B) = −I

∮
(B × dr)

where the closed path of the integral represents one circuit of the loop.

Figure 5: The magnetic field through a loop of current

Problem in words

A current of 1 amp flows around a circuit in the shape of the unit circle in the Oxy plane. A magnetic
field of 1 tesla (T) in the positive z-direction is present. Find the total force on the circuit loop.

Mathematical statement of problem

Choose an origin at the centre of the circuit and use polar coordinates to describe the position of
any point on the circuit and the length of a small element.

Calculate the line integral around the circuit to give the force required using the given values of
current and magnetic field.

Mathematical analysis

The circuit is described parametrically by

x = cos θ y = sin θ z = 0

with

dr = − sin θ dθ i + cos θ dθ j

B = B k
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since B is constant. Therefore, the force on the circuit is given by

F = −IB

∮
k × dr = −

∮
k × dr (since I = 1 A and B = 1 T)

where

k × dr =

∣∣∣∣∣∣∣∣
i j k

0 0 1

− sin θ dθ cos θ dθ 0

∣∣∣∣∣∣∣∣
=

(
− cos θ i− sin θ j

)
dθ

So

F = −
∫ 2π

θ=0

(
− cos θ i− sin θ j

)
dθ

=
[
sin θ i− cos θ j

]2π

θ=0

= (0− 0) i− (1− 1) j = 0

Hence there is no net force on the loop.

Interpretation

At any given point of the circle, the force on the point opposite is of the same magnitude but opposite
direction, and so cancels, leaving a zero net force.

Tip: Use symmetry arguments to avoid detailed calculations whenever possible!
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A scalar or vector involved in a vector line integral may itself be a vector derivative as this next
Example illustrates.

Example 16
Find the vector line integral

∫
C

(∇·F ) dr where F is the vector x2i+2xyj +2xzk

and C is the curve y = x2, z = x3 from x = 0 to x = 1 i.e. from (0, 0, 0) to
(1, 1, 1). Here ∇ · F is the (scalar) divergence of the vector F .

Solution

As F = x2i + 2xyj + 2xzk, ∇ · F = 2x + 2x + 2x = 6x.
The integral∫

C

(∇ · F ) dr =

∫
C

6x(dx i + dy j + dz k)

=

∫
C

6x dx i +

∫
C

6x dy j +

∫
C

6x dz k

The first term is∫
C

6x dx i =

∫ 1

x=0

6x dx i =

[
3x2

]1

0

i = 3i

In the second term, as y = x2 on C, dy may be replaced by 2x dx so∫
C

6x dy j =

∫ 1

x=0

6x× 2x dx j =

∫ 1

0

12x2 dx j =

[
4x3

]1

0

j = 4j

In the third term, as z = x3 on C, dz may be replaced by 3x2 dx so∫
C

6x dz k =

∫ 1

x=0

6x× 3x2 dx k =

∫ 1

0

18x3 dx k =

[
9

2
x4

]1

0

k =
9

2
k

On summing,

∫
C

(∇ · F ) dr = 3i + 4j +
9

2
k.

Task

Find the vector line integral

∫
C

fdr where f = x2 and C is

(a) the curve y = x1/2 from (0, 0) to (9, 3).

(b) the line y = x/3 from (0, 0) to (9, 3).
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Your solution

Answer

(a)

∫ 9

0

(x2i +
1

2
x3/2j)dx = 243i +

243

5
j, (b)

∫ 9

0

(x2i +
1

3
x2j)dx = 243i + 81j.

Task

Evaluate the vector line integral

∫
C

F × dr when C represents the contour

y = 4−4x, z = 2−2x from (0, 4, 2) to (1, 0, 0) and F is the vector field (x−z)j.

Your solution

Answer∫ 1

0

{(4− 6x)i + (2− 3x)k} = i +
1

2
k
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Exercises

1. Evaluate the vector line integral

∫
C

(∇ · F ) dr in the case where F = xi + xyj + xy2k and

C is the contour described by x = 2t, y = t2, z = 1 − t for t starting at t = 0 and going to
t = 1.

2. When C is the contour y = x3, z = 0, from (0, 0, 0) to (1, 1, 0), evaluate the vector line
integrals

(a)

∫
C

{∇(xy)} × dr

(b)

∫
C

{
∇× (x2i + y2k)

}
× dr

Answers

1.

∫
C

(1 + x)(dx i + dy j + dz k) = 4i +
7

3
j − 2k,

2. (a) k

∫
C

y dy − x dx = 0k = 0, (b) k

∫
C

2y dy = 1k = k
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