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Introduction
In Section 22.1 it was shown how to obtain eigenvalues and eigenvectors for low order matrices, 2×2
and 3× 3. This involved firstly solving the characteristic equation det(A−λI) = 0 for a given n×n
matrix A. This is an n th order polynomial equation and, even for n as low as 3, solving it is not
always straightforward. For large n even obtaining the characteristic equation may be difficult, let
alone solving it.

Consequently in this Section we give a brief introduction to alternative methods, essentially numerical
in nature, of obtaining eigenvalues and perhaps eigenvectors.

We would emphasize that in some applications such as Control Theory we might only require one
eigenvalue of a matrix A, usually the one largest in magnitude which is called the dominant eigen-
value. It is this eigenvalue which sometimes tells us how a control system will behave.
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Prerequisites

Before starting this Section you should . . .

• have a knowledge of determinants and
matrices

• have a knowledge of linear first order
differential equations'

&

$

%
Learning Outcomes

On completion you should be able to . . .

• use the power method to obtain the
dominant eigenvalue (and associated
eigenvector) of a matrix

• state the main advantages and disadvantages
of the power method
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1. Numerical determination of eigenvalues and eigenvectors

Preliminaries
Before discussing numerical methods of calculating eigenvalues and eigenvectors we remind you of
three results for a matrix A with an eigenvalue λ and associated eigenvector X.

• A−1 (if it exists) has an eigenvalue
1

λ
with associated eigenvector X.

• The matrix (A− kI) has an eigenvalue (λ− k) and associated eigenvector X.

• The matrix (A − kI)−1, i.e. the inverse (if it exists) of the matrix (A − kI), has eigenvalue
1

λ− k
and corresponding eigenvector X.

Here k is any real number.

Task

The matrix A =

 2 1 1
1 2 1
0 0 5

 has eigenvalues λ = 5, 3, 1 with associated

eigenvectors

 1/2
1/2
1

 ,

 1
1
0

 ,

 1
−1

0

 respectively.

The inverse A−1 exists and is A−1 =
1

3

 2 −1 −5
−1 2 −5

0 0
3

5


Without further calculation write down the eigenvalues and eigenvectors of the
following matrices:

(a) A−1 (b)

 3 1 1
1 3 1
0 0 6

 (c)

 0 1 1
1 0 1
0 0 3

−1

Your solution
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Answer

(a) The eigenvalues of A−1 are
1

5
,

1

3
, 1. (Notice that the dominant eigenvalue of A yields the

smallest magnitude eigenvalue of A−1.)

(b) The matrix here is A + I. Thus its eigenvalues are the same as those of A increased by 1 i.e.
6, 4, 2.

(c) The matrix here is (A− 2I)−1. Thus its eigenvalues are the reciprocals of the eigenvalues of

(A− 2I). The latter has eigenvalues 3, 1, −1 so (A− 2I)−1 has eigenvalues
1

3
, 1, −1.

In each of the above cases the eigenvectors are the same as those of the original matrix A.

The power method
This is a direct iteration method for obtaining the dominant eigenvalue (i.e. the largest in mag-
nitude), say λ1, for a given matrix A and also the corresponding eigenvector.

We will not discuss the theory behind the method but will demonstrate it in action and, equally
importantly, point out circumstances when it fails.

Task

Let A =

[
4 2
5 7

]
. By solving det(A− λI) = 0 obtain the eigenvalues of A and

also obtain the eigenvector associated with the dominant eigenvalue.

Your solution
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Answer

det(A− λI) =

∣∣∣∣ 4− λ 2
5 7− λ

∣∣∣∣ = 0

which gives

λ2 − 11λ + 18 = 0 ⇒ (λ− 9)(λ− 2) = 0

so

λ1 = 9 ( the dominant eigenvalue) and λ2 = 2.

The eigenvector X =

[
x
y

]
for λ1 = 9 is obtained as usual by solving AX = 9X, so[

4 2
5 7

] [
x
y

]
=

[
9x
9y

]
from which 5x = 2y so X =

[
2
5

]
or any multiple.

If we normalize here such that the largest component of X is 1

X =

[
0.4
1

]

We shall now demonstrate how the power method can be used to obtain λ1 = 9 and X =

[
0.4
1

]
where A =

[
4 2
5 7

]
.

• We choose an arbitrary 2× 1 column vector

X(0) =

[
1
1

]
• We premultiply this by A to give a new column vector X(1):

X(1) =

[
4 2
5 7

] [
1
1

]
=

[
6

12

]
• We ‘normalize’ X(1) to obtain a column vector Y (1) with largest component 1: thus

Y (1) =
1

12

[
6

12

]
=

[
1/2
1

]
• We continue the process

X(2) = AY (1) =

[
4 2
6 7

] [
1/2
1

]
=

[
4

9.5

]

Y (2) =
1

9.5

[
4

9.5

]
=

[
0.421053

1

]
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Task

Continue this process for a further step and obtain X(3) and Y (3), quoting values
to 6 d.p.

Your solution

Answer

X(3) = AY (2) =

[
4 2
5 7

] [
0.421053

1

]
=

[
3.684210
9.105265

]
Y (3) =

1

9.105265

[
0.404624

1

]

The first 8 steps of the above iterative process are summarized in the following table (the first
three rows of which have been obtained above):

Table 1

Step r X
(r)
1 X

(r)
2 αr Y

(r)
1 Y

(r)
2

1 6 12 12 0.5 1
2 4 9.5 9.5 0.421053 1
3 3.684211 9.105265 9.105265 0.404624 1
4 3.618497 9.023121 9.023121 0.401025 1
5 3.604100 9.005125 9.005125 0.400228 1
6 3.600911 9.001138 9.001138 0.400051 1
7 3.600202 9.000253 9.000253 0.400011 1
8 3.600045 9.000056 9.000056 0.400002 1

In Table 1, αr refers to the largest magnitude component of X(r) which is used to normalize X(r)

to give Y (r). We can see that αr is converging to 9 which we know is the dominant eigenvalue λ1

of A. Also Y (r) is converging towards the associated eigenvector [0.4, 1]T .

Depending on the accuracy required, we could decide when to stop the iterative process by looking
at the difference |αr − αr−1| at each step.

Task

Using the power method obtain the dominant eigenvalue and associated
eigenvector of

A =

 3 −1 0
−2 4 −3

0 −1 1

 using a starting column vector X(0) =

 1
1
1


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Calculate X(1), Y (1) and α1:

Your solution

Answer

X(1) = AX(0) =

 3 −1 0
−2 4 −3

0 −1 1

 1
1
1

 =

 2
−1

0


so Y (1) = 1

2

 1
−0.5

0

 using α1 = 2, the largest magnitude component of X(1).

Carry out the next two steps of this iteration to obtains X(2), Y (2), α2 and X(3), Y (3), α3:

Your solution

Answer

X(2) =

 3 −1 0
−2 4 −3

0 −1 1

 1
−0.5

0

=

 3.5
−4
0.5

 Y (2) = −1

4

 −0.875
1

−0.125

 α2 = −4

X(3) =

 3 −1 0
−2 4 −3

0 −1 1

 −0.875
1

−0.125

=

 −3.625
6.125
−1.125

 Y (3) =
1

6.125

 −0.5918
1

−0.1837

 α3 = 6.125

After just 3 iterations there is little sign of convergence of the normalizing factor αr. However the
next two values obtained are

α4 = 5.7347 α5 = 5.4774

and, after 14 iterations, |α14 − α13| < 0.0001 and the power method converges, albeit slowly, to

α14 = 5.4773

which (correct to 4 d.p.) is the dominant eigenvalue of A. The corresponding eigenvector is −0.4037
1

−0.2233


It is clear that the power method requires, for its practical execution, a computer.
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Problems with the power method

1. If the initial column vector X(0) is an eigenvector of A other than that corresponding to the
dominant eigenvalue, say λ1, then the method will fail since the iteration will converge to the
wrong eigenvalue, say λ2, after only one iteration (because AX(0) = λ2X

(0) in this case).

2. It is possible to show that the speed of convergence of the power method depends on the ratio

magnitude of dominant eigenvalue λ1

magnitude of next largest eigenvalue

If this ratio is small the method is slow to converge.

In particular, if the dominant eigenvalue λ1 is complex the method will fail completely to
converge because the complex conjugate λ1 will also be an eigenvalue and |λ1| = |λ1|

3. The power method only gives one eigenvalue, the dominant one λ1 (although this is often the
most important in applications).

Advantages of the power method

1. It is simple and easy to implement.

2. It gives the eigenvector corresponding to λ1 as well as λ1 itself. (Other numerical methods
require separate calculation to obtain the eigenvector.)

Finding eigenvalues other than the dominant

We discuss this topic only briefly.

1. Obtaining the smallest magnitude eigenvalue

If A has dominant eigenvalue λ1 then its inverse A−1 has an eigenvalue
1

λ1

(as we discussed at the

beginning of this Section.) Clearly
1

λ1

will be the smallest magnitude eigenvalue of A−1. Conversely if

we obtain the largest magnitude eigenvalue, say λ′
1, of A−1 by the power method then the smallest

eigenvalue of A is the reciprocal,
1

λ′
1

.

This technique is called the inverse power method.

Example

If A =

 3 −1 0
−2 4 −3

0 −1 1

 then the inverse is A−1 =

 1 1 3
2 3 9
2 3 10

.

Using X(0) =

 1
1
1

 in the power method applied to A−1 gives λ′
1 = 13.4090. Hence the smallest

magnitude eigenvalue of A is
1

13.4090
= 0.0746. The corresponding eigenvector is

 0.3163
0.9254

1

 .
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In practice, finding the inverse of a large order matrix A can be expensive in computational effort.
Hence the inverse power method is implemented without actually obtaining A−1 as follows.

As we have seen, the power method applied to A utilizes the scheme:

X(r) = AY (r−1) r = 1, 2, . . .

where Y (r−1) =
1

αr−1

X(r−1), αr−1 being the largest magnitude component of X(r−1).

For the inverse power method we have

X(r) = A−1Y (r−1)

which can be re-written as

AX(r) = Y (r−1)

Thus X(r) can actually be obtained by solving this system of linear equations without needing to
obtain A−1. This is usually done by a technique called LU decomposition i.e. writing A (once and
for all) in the form

A = LU L being a lower triangular matrix and U upper triangular.

2. Obtaining the eigenvalue closest to a given number ppp

Suppose λk is the (unknown) eigenvalue of A closest to p . We know that if λ1, λ2, . . . , λn are the
eigenvalues of A then λ1 − p, λ2 − p, . . . , λn − p are the eigenvalues of the matrix A − pI. Then

λk−p will be the smallest magnitude eigenvalue of A−pI but
1

λk − p
will be the largest magnitude

eigenvalue of (A − pI)−1. Hence if we apply the power method to (A − pI)−1 we can obtain λk.
The method is called the shifted inverse power method.

3. Obtaining all the eigenvalues of a large order matrix

In this case neither solving the characteristic equation det(A− λI) = 0 nor the power method (and
its variants) is efficient.

The commonest method utilized is called the QR technique. This technique is based on similarity
transformations i.e. transformations of the form

B = M−1AM

where B has the same eigenvalues as A. (We have seen earlier in this Workbook that one type of
similarity transformation is D = P−1AP where P is formed from the eigenvectors of A. However,
we are now, of course, dealing with the situation where we are trying to find the eigenvalues and
eigenvectors of A.)

In the QR method A is reduced to upper (or lower) triangular form. We have already seen that a
triangular matrix has its eigenvalues on the diagonal.

For details of the QR method, or more efficient techniques, one of which is based on what is called
a Householder transformation, the reader should consult a text on numerical methods.
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