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Introduction
Many applications of matrices in both engineering and science utilize eigenvalues and, sometimes,
eigenvectors. Control theory, vibration analysis, electric circuits, advanced dynamics and quantum
mechanics are just a few of the application areas.

Many of the applications involve the use of eigenvalues and eigenvectors in the process of trans-
forming a given matrix into a diagonal matrix and we discuss this process in this Section. We then
go on to show how this process is invaluable in solving coupled differential equations of both first
order and second order.
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!
Prerequisites

Before starting this Section you should . . .

• have a knowledge of determinants and
matrices

• have a knowledge of linear first order
differential equations#

"

 

!
Learning Outcomes

On completion you should be able to . . .

• diagonalize a matrix with distinct eigenvalues
using the modal matrix

• solve systems of linear differential equations
by the ‘decoupling’ method
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1. Diagonalization of a matrix with distinct eigenvalues
Diagonalization means transforming a non-diagonal matrix into an equivalent matrix which is diagonal
and hence is simpler to deal with.

A matrix A with distinct eigenvalues has, as we mentioned in Property 3 in 22.1, eigenvectors
which are linearly independent. If we form a matrix P whose columns are these eigenvectors, it can
be shown that

det(P ) 6= 0

so that P−1 exists.

The product P−1AP is then a diagonal matrix D whose diagonal elements are the eigenval-
ues of A. Thus if λ1, λ2, . . . λn are the distinct eigenvalues of A with associated eigenvectors
X(1), X(2), . . . , X(n) respectively, then

P =

[
X(1) ... X(2) ... · · · ... X(n)

]
will produce a product

P−1AP = D =


λ1 0 . . . 0
0 λ2 . . . 0
...
0 . . . . . . λn


We see that the order of the eigenvalues in D matches the order in which P is formed from the
eigenvectors.

N.B.

(a) The matrix P is called the modal matrix of A

(b) Since D is a diagonal matrix with eigenvalues λ1, λ2, . . . , λn which are the same as those
of A, then the matrices D and A are said to be similar.

(c) The transformation of A into D using

P−1AP = D

is said to be a similarity transformation.
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Example 8
Let A =

[
2 3
3 2

]
. Obtain the modal matrix P and calculate the product P−1AP .

(The eigenvalues and eigenvectors of this particular matrix A were obtained earlier
in this Workbook at page 7.)

Solution

The matrix A has two distinct eigenvalues λ1 = −1, λ2 = 5 with corresponding eigenvectors

X1 =

[
x

−x

]
and X2 =

[
x
x

]
. We can therefore form the modal matrix from the simplest

eigenvectors of these forms:

P =

[
1 1

−1 1

]
(Other eigenvectors would be acceptable e.g. we could use P =

[
2 3

−2 3

]
but there is no reason

to over complicate the calculation.)

It is easy to obtain the inverse of this 2× 2 matrix P and the reader should confirm that:

P−1 =
1

det(P )
adj(P ) =

1

2

[
1 1

−1 1

]T

=
1

2

[
1 −1
1 1

]
We can now construct the product P−1AP :

P−1AP =
1

2

[
1 −1
1 1

] [
2 3
3 2

] [
1 1

−1 1

]
=

1

2

[
1 −1
1 1

] [
−1 5

1 5

]
=

1

2

[
−2 0

0 10

]
=

[
−1 0

0 5

]
which is a diagonal matrix with entries the eigenvalues, as expected. Show (by repeating the method

outlined above) that had we defined P =

[
1 1
1 −1

]
(i.e. interchanged the order in which the

eigenvectors were taken) we would find P−1AP =

[
5 0
0 −1

]
(i.e. the resulting diagonal elements

would also be interchanged.)
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Task

The matrix A =

[
−1 4

0 3

]
has eigenvalues −1 and 3 with respective

eigenvectors

[
1
0

]
and

[
1
1

]
.

If P1 =

[
1 1
0 1

]
, P2 =

[
2 2
0 2

]
, P3 =

[
1 1
1 0

]
write down the

products P−1
1 AP1, P−1

2 AP2, P−1
3 AP3

(You may not need to do detailed calculations.)

Your solution

Answer

P−1
1 AP1 =

[
−1 0

0 3

]
= D1 P−1

2 AP2 =

[
−1 0

0 3

]
= D2 P−1

3 AP3 =

[
3 0
0 −1

]
= D3

Note that D1 = D2, demonstrating that any eigenvectors of A can be used to form P . Note also
that since the columns of P1 have been interchanged in forming P3 then so have the eigenvalues in
D3 as compared with D1.

Matrix powers

If P−1AP = D then we can obtain A (i.e. make A the subject of this matrix equation) as follows:

Multiplying on the left by P and on the right by P−1 we obtain

PP−1APP−1 = PDP−1

Now using the fact that PP−1 = P−1P = I we obtain

IAI = PDP−1 and so

A = PDP−1

We can use this result to obtain the powers of a square matrix, a process which is sometimes useful
in control theory. Note that

A2 = A.A A3 = A.A.A. etc.

Clearly, obtaining high powers of A directly would in general involve many multiplications. The
process is quite straightforward, however, for a diagonal matrix D, as this next Task shows.

HELM (2008):
Section 22.2: Applications of Eigenvalues and Eigenvectors

21



Task

Obtain D2 and D3 if D =

[
3 0
0 −2

]
. Write down D10.

Your solution

Answer

D2 =

[
3 0
0 −2

] [
3 0
0 −2

]
=

[
32 0
0 (−2)2

]
=

[
9 0
0 4

]
D3 =

[
32 0
0 (−2)2

] [
3 0
0 (−2)

]
=

[
33 0
0 (−2)3

]
=

[
27 0
0 −8

]

Continuing in this way: D10 =

[
310 0
0 (−2)10

]
=

[
58049 0

0 1024

]

We now use the relation A = PDP−1 to obtain a formula for powers of A in terms of the easily
calculated powers of the diagonal matrix D:

A2 = A.A = (PDP−1)(PDP−1) = PD(P−1P )DP−1 = PDIDP−1 = PD2P−1

Similarly: A3 = A2.A = (PD2P−1)(PDP−1) = PD2(P−1P )DP−1 = PD3P−1

The general result is given in the following Key Point:

Key Point 2

For a matrix A with distinct eigenvalues λ1, λ2, . . . , λn and associated eigenvectors
X(1), X(2), . . . , X(n) then if

P = [X(1) : X(2) : . . . : X(n)]

D = P−1AP is a diagonal matrix such that

D =


λ1

λ2

. . .

λn

 and Ak = PDkP−1
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Example 9
If A =

[
2 3
3 2

]
find A23. (Use the results of Example 8.)

Solution

We know from Example 8 that if P =

[
1 1

−1 1

]
then P−1AP =

[
−1 0

0 5

]
= D

where P−1 =
1

2

[
1 −1
1 1

]
∴ A = PDP−1 and A23 = PD23P−1 using the general result in Key Point 2

i.e. A =

[
1 1

−1 1

] [
−1 0

0 523

] [
1 −1
1 1

]
which is easily evaluated.

Exercise

Find a diagonalizing matrix P if

(a) A =

[
4 2

−1 1

]

(b) A =

1 0 0
1 2 0
2 −2 3


Verify, in each case, that P−1AP is diagonal, with the eigenvalues of A as its diagonal elements.

Answer

(a) P =

[
−1 −2

1 1

]
, PAP−1 =

[
1 0
0 3

]

(b) P =

 1 0 0
−1 1 0
−2 2 1

, PAP−1 =

1 0 0
0 2 0
0 0 3


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2. Systems of first order differential equations
Systems of first order ordinary differential equations arise in many areas of mathematics and engi-
neering, for example in control theory and in the analysis of electrical circuits. In each case the basic
unknowns are each a function of the time variable t. A number of techniques have been developed
to solve such systems of equations; for example the Laplace transform. Here we shall use eigenvalues
and eigenvectors to obtain the solution. Our first step will be to recast the system of ordinary differ-
ential equations in the matrix form Ẋ = AX where A is an n× n coefficient matrix of constants,
X is the n×1 column vector of unknown functions and Ẋ is the n×1 column vector containing the
derivatives of the unknowns.. The main step will be to use the modal matrix of A to diagonalise
the system of differential equations. This process will transform Ẋ = AX into the form Ẏ = DY
where D is a diagonal matrix. We shall find that this new diagonal system of differential equations
can be easily solved. This special solution will allow us to obtain the solution of the original system.

Task

Obtain the solutions of the pair of first order differential equations

ẋ = −2x
ẏ = −5y

}
(1)

given the initial conditions

x(0) = 3 i.e. x = 3 at t = 0
y(0) = 2 i.e. y = 2 at t = 0

(The notation is that ẋ ≡ dx

dt
, ẏ ≡ dy

dt
)

[Hint: Recall, from your study of differential equations, that the general solution

of the differential equation
dy

dt
= Ky is y = y0e

Kt.]

Your solution

Answer
Using the hint: x = x0e

−2t y = y0e
−5t where x0 = x(0) and y0 = y(0).

From the given initial condition x0 = 3 y0 = 2 so finally x = 3e−2t y = 2e−5t.
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In the above Task although we had two differential equations to solve they were really quite separate.
We needed no knowledge of matrix theory to solve them. However, we should note that the two
differential equations can be written in matrix form.

Thus if X =

[
x
y

]
Ẋ =

[
ẋ
ẏ

]
A =

[
−2 0

0 −5

]
the two equations (1) can be written as[

ẋ
ẏ

]
=

[
−2 0

0 −5

] [
x
y

]
i.e. Ẋ = AX.

Task

Write in matrix form the pair of coupled differential equations

ẋ = 4x + 2y
ẏ = −x + y

}
(2)

Your solution

Answer[
ẋ
ẏ

]
=

[
4 2

−1 1

] [
x
y

]
Ẋ = A X

The essential difference between the two pairs of differential equations just considered is that the
pair (1) were really separate equations whereas pair (2) were coupled:

• The first equation of (1) involving only the unknown x, the second involving only y. In matrix
terms this corresponded to a diagonal matrix A in the system Ẋ = AX.

• The pair (2) were coupled in that both equations involved both x and y. This corresponded
to the non-diagonal matrix A in the system Ẋ = AX which you found in the last Task.

Clearly the second system here is more difficult to deal with than the first and this is where we can
use our knowledge of diagonalization.

Consider a system of differential equations written in matrix form: Ẋ = AX where

X =

[
x(t)
y(t)

]
and Ẋ =

[
ẋ(t)
ẏ(t)

]
We now introduce a new column vector of unknowns Y =

[
r(t)
s(t)

]
through the relation
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X = PY

where P is the modal matrix of A. Then, since P is a matrix of constants:

Ẋ = PẎ so Ẋ = AX becomes PẎ = A(PY )

Then, multiplying by P−1 on the left, Ẏ = (P−1AP )Y

But, because of the properties of the modal matrix, we know that P−1AP is a diagonal matrix.
Thus if λ1, λ2 are distinct eigenvalues of A then:

P−1AP =

[
λ1 0
0 λ2

]
Hence Ẏ = (P−1AP )Y becomes[

ṙ
ṡ

]
=

[
λ1 0
0 λ2

] [
r
s

]
.

That is, when written out we have

ṙ = λ1r

ṡ = λ2s.

These equations are decoupled. The first equation only involves the unknown function r(t) and
has solution r(t) = Ceλ1t. The second equation only involves the unknown function s(t) and has
solution s(t) = Keλ2t. [C, K are arbitrary constants.]

Once r, s are known the original unknowns x, y can be found from the relation X = PY .

Note that the theory outlined above is more widely applicable as specified in the next Key Point:

Key Point 3

For any system of differential equations of the form

Ẋ = AX

where A is an n×n matrix with distinct eigenvalues λ1, λ2, . . . , λn, and t is the independent variable
the solution is

X = PY

where P is the modal matrix of A and

Y = [C1e
λ1t, C2e

λ2t, . . . , Cneλnt]T
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Example 10
Find the solution of the coupled differential equations

ẋ = 4x + 2y

ẏ = −x + y with initial conditions x(0) = 1 y(0) = 0

Here ẋ ≡ dx

dt
and ẏ ≡ dy

dt
.

Solution

Here A =

[
4 2

−1 1

]
. It is easily checked that A has distinct eigenvalues λ1 = 3 λ2 = 2 and

corresponding eigenvectors X1 =

[
−2

1

]
, X2 =

[
1

−1

]
.

Therefore, taking P =

[
−2 1

1 −1

]
then P−1AP =

[
3 0
0 2

]
and using Key Point 3, r(t) = Ce3t s(t) = Ke2t.

So

[
x
y

]
≡ X = PY =

[
−2 1

1 −1

] [
r
s

]
=

[
−2 1

1 −1

] [
Ce3t

Ke2t

]
=

[
−2Ce3t + Ke2t

Ce3t −Ke2t

]
.

Therefore x = −2Ce3t + Ke2t and y = Ce3t −Ke2t.

We can now impose the initial conditions x(0) = 1 and y(0) = 0 to give

1 = −2C + K

0 = C −K.

Thus C = K = −1 and the solution to the original system of differential equations is

x(t) = 2e3t − e2t

y(t) = −e3t + e2t

The approach we have demonstrated in Example 10 can be extended to

(a) Systems of first order differential equations with n unknowns (Key Point 3)

(b) Systems of second order differential equations (described in the next subsection).

The only restriction, as we have said, is that the matrix A in the system Ẋ = AX has distinct
eigenvalues.
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3. Systems of second order differential equations
The decoupling method discussed above can be readily extended to this situation which could arise,
for example, in a mechanical system consisting of coupled springs.
A typical example of such a system with two unknowns has the form

ẍ = ax + by ÿ = cx + dy

or, in matrix form,

Ẍ = AX where X =

[
x
y

]
A =

[
a b
c d

]
, ẍ =

d2x

dt2
, ÿ =

d2y

dt2

Task

Make the substitution X = PY where Y =

[
r(t)
s(t)

]
and P is the modal matrix

of A, A being assumed here to have distinct eigenvalues λ1 and λ2. Solve the
resulting pair of decoupled equations for the case, which arises in practice, where
λ1 and λ2 are both negative.

Your solution

Answer
Exactly as with a first order system, putting X = PY into the second order system Ẍ = AX gives

Ÿ = P−1APY that is Ÿ = DY where D =

[
λ1 0
0 λ2

]
and Ÿ =

[
r̈
s̈

]
so[

r̈
s̈

]
=

[
λ1 0
0 λ2

] [
r
s

]
That is, r̈ = λ1r = −ω2

1r and s̈ = λ2s = −ω2
2s (where λ1 and λ2 are both negative.)

The two decoupled equations are of the form of the differential equation governing simple harmonic
motion. Hence the general solution is

r = K cos ω1t + L sin ω1t and s = M cos ω2t + N sin ω2t

The solutions for x and y are then obtained by use of X = PY.

Note that in this second order case four initial conditions, two each for both x and y, are required
because four constants K, L, M, N arise in the solution.

28 HELM (2008):
Workbook 22: Eigenvalues and Eigenvectors



®

Exercises

1. Solve by decoupling each of the following first order systems:

(a)
dX

dt
= AX where A =

[
3 4
4 −3

]
, X(0) =

[
1
3

]
(b) ẋ1 = x2 ẋ2 = x1 + 3x3 ẋ3 = x2 with x1(0) = 2, x2(0) = 0, x3(0) = 2

(c)
dX

dt
=

2 2 1
1 3 1
1 2 2

X, with X(0) =

1
0
0


(d) ẋ1 = x1 ẋ2 = −2x2 +x3 ẋ3 = 4x2 +x3 with x1(0) = x2(0) = x3(0) = 1

2. Matrix methods can be used to solve systems of second order differential equations such as
might arise with coupled electrical or mechanical systems. For example the motion of two
masses m1 and m2 vibrating on coupled springs, neglecting damping and spring masses, is
governed by

m1ÿ1 = −k1y1 + k2(y2 − y1)

m2ÿ2 = −k2(y2 − y1)

where dots denote derivatives with respect to time.

Write this system as a matrix equation Ÿ = AY and use the decoupling method to find Y if

(a) m1 = m2 = 1, k1 = 3, k2 = 2

and the initial conditions are y1(0) = 1, y2(0) = 2, ẏ(0) = −2
√

6, ẏ2(0) =
√

6

(b) m1 = m2 = 1, k1 = 6, k2 = 4

and the initial conditions are y1(0) = y2(0) = 0, ẏ1(0) =
√

2, ẏ2(0) = 2
√

2

Verify your solutions by substitution in each case.

Answers

1. (a) X =

[
2e5t − e−5t

e5t + 2e−5t

]
(b) X =

2 cosh 2t
4 sinh 2t
2 cosh 2t



(c) X =
1

4

e5t + 3et

e5t − et

e5t − et

 (d) X =
1

5

 5et

2e2t + 3e−3t

8e2t − 3e−3t


2. (a) Y =

[
cos t− 2 sin

√
6t

2 cos t + sin
√

6t

]
(b) Y =

[
sin

√
2t

2 sin
√

2t

]
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