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Introduction
From an applications viewpoint, eigenvalue problems are probably the most important problems that
arise in connection with matrix analysis. In this Section we discuss the basic concepts. We shall see
that eigenvalues and eigenvectors are associated with square matrices of order n × n. If n is small
(2 or 3), determining eigenvalues is a fairly straightforward process (requiring the solutiuon of a low
order polynomial equation). Obtaining eigenvectors is a little strange initially and it will help if you
read this preliminary Section first.

#

"

 

!
Prerequisites

Before starting this Section you should . . .

• have a knowledge of determinants and
matrices

• have a knowledge of linear first order
differential equations#

"

 

!
Learning Outcomes

On completion you should be able to . . .

• obtain eigenvalues and eigenvectors of 2× 2
and 3× 3 matrices

• state basic properties of eigenvalues and
eigenvectors
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1. Basic concepts

Determinants
A square matrix possesses an associated determinant. Unlike a matrix, which is an array of numbers,
a determinant has a single value.

A two by two matrix C =

[
c11 c12

c21 c22

]
has an associated determinant

det (C) =

∣∣∣∣ c11 c12

c21 c22

∣∣∣∣ = c11 c22 − c21 c12

(Note square or round brackets denote a matrix, straight vertical lines denote a determinant.)

A three by three matrix has an associated determinant

det(C) =

∣∣∣∣∣∣
c11 c12 c13

c21 c22 c23

c31 c32 c33

∣∣∣∣∣∣
Among other ways this determinant can be evaluated by an “expansion about the top row”:

det(C) = c11

∣∣∣∣ c22 c23

c32 c33

∣∣∣∣− c12

∣∣∣∣ c21 c23

c31 c33

∣∣∣∣ + c13

∣∣∣∣ c21 c22

c31 c32

∣∣∣∣
Note the minus sign in the second term.

Task

Evaluate the determinants

det(A) =

∣∣∣∣ 4 6
3 1

∣∣∣∣ det(B) =

∣∣∣∣ 4 8
1 2

∣∣∣∣ det(C) =

∣∣∣∣∣∣
6 5 4
2 −1 7

−3 2 0

∣∣∣∣∣∣
Your solution

Answer
det A = 4× 1− 6× 3 = −14 det B = 4× 2− 8× 1 = 0

det C = 6

∣∣∣∣ −1 7
2 0

∣∣∣∣− 5

∣∣∣∣ 2 7
−3 0

∣∣∣∣ + 4

∣∣∣∣ 2 −1
−3 2

∣∣∣∣ = 6× (−14)− 5(21) + 4(4− 3) = −185

A matrix such as B =

[
4 8
1 2

]
in the previous task which has zero determinant is called a singular

matrix. The other two matrices A and C are non-singular. The key factor to be aware of is as
follows:

HELM (2008):
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Key Point 1

Any non-singular n× n matrix C, for which det(C) 6= 0, possesses an inverse C−1 i.e.

CC−1 = C−1C = I where I denotes the n× n identity matrix

A singular matrix does not possess an inverse.

Systems of linear equations
We first recall some basic results in linear (matrix) algebra. Consider a system of n equations in n
unknowns x1, x2, . . . , xn:

c11x1 + c12x2 + . . . + c1nxn = k1

c21x1 + c22x2 + . . . + c2nxn = k2
... +

... + . . . +
... =

...
cn1x1 + cn2x2 + . . . + cnnxn = kn

We can write such a system in matrix form:
c11 c12 . . . c1n

c21 c22 . . . c2n
...

... . . .
...

cn1 cn2 . . . cnn




x1

x2
...

xn

 =


k1

k2
...

kn

 , or equivalently CX = K.

We see that C is an n×n matrix (called the coefficient matrix), X = {x1, x2, . . . , xn}T is the n× 1
column vector of unknowns and K = {k1, k2, . . . , kn}T is an n×1 column vector of given constants.

The zero matrix will be denoted by O.

If K 6= O the system is called inhomogeneous; if K = O the system is called homogeneous.

Basic results in linear algebra
Consider the system of equations CX = K.

We are concerned with the nature of the solutions (if any) of this system. We shall see that this
system only exhibits three solution types:

• The system is consistent and has a unique solution for X

• The system is consistent and has an infinite number of solutions for X

• The system is inconsistent and has no solution for X

4 HELM (2008):
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There are two basic cases to consider:

det(C) 6= 0 or det(C) = 0

Case 1: det(C) 6= 0

In this case C−1 exists and the unique solution to CX = K is

X = C−1K

Case 2: det(C) = 0

In this case C−1 does not exist.

(a) If K 6= O the system CA = K has no solutions.

(b) If K = O the system CX = O has an infinite number of solutions.

We note that a homogeneous system

CX = O

has a unique solution X = O if det(C) 6= 0 (this is called the trivial solution) or an infinite number
of solutions if det(C) = 0.

Example 1
(Case 1) Solve the inhomogeneous system of equations

x1 + x2 = 1 2x1 + x2 = 2

which can be expressed as CX = K where

C =

[
1 1
2 1

]
X =

[
x1

x2

]
K =

[
1
2

]

Solution

Here det(C)=−1 6=0.

The system of equations has the unique solution: X =

[
x1

x2

]
=

[
1
0

]
.

HELM (2008):
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Example 2
(Case 2a) Examine the following inhomogeneous system for solutions

x1 + 2x2 = 1

3x1 + 6x2 = 0

Solution

Here det (C) =

∣∣∣∣1 2
3 6

∣∣∣∣ = 0. In this case there are no solutions.

To see this we see the first equation of the system states x1 +2x2 = 1 whereas the second equation
(after dividing through by 3) states x1 + 2x2 = 0, a contradiction.

Example 3
(Case 2b) Solve the homogeneous system

x1 + x2 = 0

2x1 + 2x2 = 0

Solution

Here det(C) =

∣∣∣∣ 1 1
2 2

∣∣∣∣ = 0. The solutions are any pairs of numbers {x1, x2} such that x1 = −x2,

i.e. X =

[
α

−α

]
where α is arbitrary.

There are an infinite number of solutions.

A simple eigenvalue problem
We shall be interested in simultaneous equations of the form:

AX = λX,

where A is an n× n matrix, X is an n× 1 column vector and λ is a scalar (a constant) and, in the
first instance, we examine some simple examples to gain experience of solving problems of this type.
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Example 4
Consider the following system with n = 2:

2x + 3y = λx

3x + 2y = λy

so that

A =

[
2 3
3 2

]
and X =

[
x
y

]
.

It appears that there are three unknowns x, y, λ. The obvious questions to ask
are: can we find x, y? what is λ?

Solution

To solve this problem we firstly re-arrange the equations (take all unknowns onto one side);

(2− λ)x + 3y = 0 (1)

3x + (2− λ)y = 0 (2)

Therefore, from equation (2):

x = −(2− λ)

3
y. (3)

Then when we substitute this into (1)

−(2− λ)2

3
y + 3y = 0 which simplifies to [−(2− λ)2 + 9] y = 0.

We conclude that either y = 0 or 9 = (2− λ)2. There are thus two cases to consider:

Case 1

If y = 0 then x = 0 (from (3)) and we get the trivial solution. (We could have guessed this
solution at the outset.)

Case 2

9 = (2− λ)2

which gives, on taking square roots:

±3 = 2− λ giving λ = 2± 3 so λ = 5 or λ = −1.

Now, from equation (3), if λ = 5 then x = +y and if λ = −1 then x = −y.

We have now completed the analysis. We have found values for λ but we also see that we cannot
obtain unique values for x and y: all we can find is the ratio between these quantities. This behaviour
is typical, as we shall now see, of an eigenvalue problem.

HELM (2008):
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2. General eigenvalue problems
Consider a given square matrix A. If X is a column vector and λ is a scalar (a number) then the
relation.

AX = λX (4)

is called an eigenvalue problem. Our purpose is to carry out an analysis of this equation in a
manner similar to the example above. However, we will attempt a more general approach which will
apply to all problems of this kind.
Firstly, we can spot an obvious solution (for X) to these equations. The solution X = 0 is a
possibility (for then both sides are zero). We will not be interested in these trivial solutions of the
eigenvalue problem. Our main interest will be in the occurrence of non-trivial solutions for X.
These may exist for special values of λ, called the eigenvalues of the matrix A. We proceed as in
the previous example:

take all unknowns to one side:

(A− λI)X = 0 (5)

where I is a unit matrix with the same dimensions as A. (Note that AX − λX = 0 does not
simplify to (A − λ)X = 0 as you cannot subtract a scalar λ from a matrix A). This equation (5)
is a homogeneous system of equations. In the notation of the earlier discussion C ≡ A − λI and
K ≡ 0. For such a system we know that non-trivial solutions will only exist if the determinant of the
coefficient matrix is zero:

det(A− λI) = 0 (6)

Equation (6) is called the characteristic equation of the eigenvalue problem. We see that the
characteristic equation only involves one unknown λ. The characteristic equation is generally a
polynomial in λ, with degree being the same as the order of A (so if A is 2 × 2 the characteristic
equation is a quadratic, if A is a 3× 3 it is a cubic equation, and so on). For each value of λ that is
obtained the corresponding value of X is obtained by solving the original equations (4). These X’s
are called eigenvectors.

N.B. We shall see that eigenvectors are only unique up to a multiplicative factor: i.e. if X satisfies
AX = λX then so does kX when k is any constant.

8 HELM (2008):
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Example 5
Find the eigenvalues and eigenvectors of the matrix A =

[
1 0
1 2

]

Solution

The eigenvalues and eigenvectors are found by solving the eigenvalue probelm

AX = λX X =

[
x
y

]
i.e. (A− λI)X = 0.

Non-trivial solutions will exist if det (A− λI) = 0

that is, det

{[
1 0
1 2

]
− λ

[
1 0
0 1

]}
= 0, ∴

∣∣∣∣ 1− λ 0
1 2− λ

∣∣∣∣ = 0,

expanding this determinant: (1−λ)(2−λ) = 0. Hence the solutions for λ are: λ = 1 and λ = 2.

So we have found two values of λ for this 2× 2 matrix A. Since these are unequal they are said to
be distinct eigenvalues.

To each value of λ there corresponds an eigenvector. We now proceed to find the eigenvectors.

Case 1
λ = 1 (smaller eigenvalue). Then our original eigenvalue problem becomes: AX = X. In full this
is

x = x

x + 2y = y

Simplifying

x = x (a)

x + y = 0 (b)

All we can deduce here is that x = −y ∴ X =

[
x
−x

]
for any x 6= 0

(We specify x 6= 0 as, otherwise, we would have the trivial solution.)

So the eigenvectors corresponding to eigenvalue λ = 1 are all proportional to

[
1

−1

]
, e.g.

[
2

−2

]
,[

−1
1

]
etc.

Sometimes we write the eigenvector in normalised form that is, with modulus or magnitude 1.
Here, the normalised form of X is

1√
2

[
1

−1

]
which is unique.

HELM (2008):
Section 22.1: Basic Concepts

9



Solution (contd.)

Case 2 Now we consider the larger eigenvalue λ = 2. Our original eigenvalue problem AX = λX
becomes AX = 2X which gives the following equations:[

1 0
1 2

] [
x
y

]
= 2

[
x
y

]
i.e.

x = 2x

x + 2y = 2y

These equations imply that x = 0 whilst the variable y may take any value whatsoever (except zero
as this gives the trivial solution).

Thus the eigenvector corresponding to eigenvalue λ = 2 has the form

[
0
y

]
, e.g.

[
0
1

]
,

[
0
2

]
etc.

The normalised eigenvector here is

[
0
1

]
.

In conclusion: the matrix A =

[
1 0
1 2

]
has two eigenvalues and two associated normalised eigen-

vectors:

λ1 = 1, λ2 = 2

X1 =
1√
2

[
1
−1

]
X2 =

[
0
1

]

Example 6
Find the eigenvalues and eigenvectors of the 3× 3 matrix

A =

 2 −1 0
−1 2 −1

0 −1 2



Solution

The eigenvalues and eigenvectors are found by solving the eigenvalue problem

AX = λX X =

 x
y
z


Proceeding as in Example 5:

(A− λI)X = 0 and non-trivial solutions for X will exist if det (A− λI) = 0

10 HELM (2008):
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Solution (contd.)

that is,

det


 2 −1 0
−1 2 −1

0 −1 2

− λ

 1 0 0
0 1 0
0 0 1

 = 0

i.e.

∣∣∣∣∣∣
2− λ −1 0
−1 2− λ −1
0 −1 2− λ

∣∣∣∣∣∣ = 0.

Expanding this determinant we find:

(2− λ)

∣∣∣∣ 2− λ −1
−1 2− λ

∣∣∣∣ +

∣∣∣∣ −1 −1
0 2− λ

∣∣∣∣ = 0

that is,

(2− λ) {(2− λ)2 − 1} − (2− λ) = 0

Taking out the common factor (2− λ):

(2− λ) {4− 4λ + λ2 − 1− 1}

which gives: (2− λ) [λ2 − 4λ + 2] = 0.

This is easily solved to give: λ = 2 or λ =
4±

√
16− 8

2
= 2±

√
2.

So (typically) we have found three possible values of λ for this 3× 3 matrix A.

To each value of λ there corresponds an eigenvector.

Case 1: λ = 2−
√

2 (lowest eigenvalue)

Then AX = (2−
√

2)X implies

2x− y = (2−
√

2)x

−x + 2y − z = (2−
√

2)y

−y + 2z = (2−
√

2)z

Simplifying

√
2x− y = 0 (a)

−x +
√

2y − z = 0 (b)

−y +
√

2z = 0 (c)

We conclude the following:

(c) ⇒ y =
√

2z (a) ⇒ y =
√

2x

∴ these two relations give x = z then (b) ⇒ −x + 2x− x = 0

The last equation gives us no information; it simply states that 0 = 0.

HELM (2008):
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Solution (contd.)

∴ X =

 x√
2x
x

 for any x 6= 0 (otherwise we would have the trivial solution). So the

eigenvectors corresponding to eigenvalue λ = 2−
√

2 are all proportional to

 1√
2

1

.

In normalised form we have an eigenvector
1

2

 1√
2

1

 .

Case 2: λ = 2

Here AX = 2X implies

 2 −1 0
−1 2 −1

0 −1 2

 x
y
z

 = 2

 x
y
z


i.e.

2x− y = 2x

−x + 2y − z = 2y

−y + 2z = 2z

After simplifying the equations become:

−y = 0 (a)

−x− z = 0 (b)

−y = 0 (c)

(a), (c) imply y = 0: (b) implies x = −z

∴ eigenvector has the form

 x
0

−x

 for any x 6= 0.

That is, eigenvectors corresponding to λ = 2 are all proportional to

 1
0

−1

.

In normalised form we have an eigenvector
1√
2

 1
0

−1

 .

12 HELM (2008):
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Solution (contd.)

Case 3: λ = 2 +
√

2 (largest eigenvalue)

Proceeding along similar lines to cases 1,2 above we find that the eigenvectors corresponding to

λ = 2 +
√

2 are each proportional to

 1

−
√

2
1

 with normalised eigenvector
1

2

 1

−
√

2
1

 .

In conclusion the matrix A has three distinct eigenvalues:

λ1 = 2−
√

2, λ2 = 2 λ3 = 2 +
√

2

and three corresponding normalised eigenvectors:

X1 =
1

2

 1√
2

1

 , X2 =
1√
2

 1
0

−1

 , X3 =
1

2

 1

−
√

2
1



Exercise

Find the eigenvalues and eigenvectors of each of the following matrices A:

(a)

[
4 −2
1 1

]
(b)

[
1 2

−8 11

]
(c)

 2 0 −2
0 4 0

−2 0 5

 (d)

 10 −2 4
−20 4 −10
−30 6 −13


Answer (eigenvectors are written in normalised form)

(a) 3 and 2;

[
2/
√

5

1/
√

5

]
and

[
1/
√

2

1/
√

2

]

(b) 3 and 9;
1√
2

[
1
1

]
and

1√
17

[
1
4

]

(c) 1, 4 and 6;
1√
5

2
0
1

 ;

0
1
0

 ;
1√
5

 1
0

−2



(d) 0, −1 and 2;
1√
26

1
5
0

 ;
1√
5

0
2
1

 ;
1√
5

 1
0

−2



HELM (2008):
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3. Properties of eigenvalues and eigenvectors
There are a number of general properties of eigenvalues and eigenvectors which you should be familiar
with. You will be able to use them as a check on some of your calculations.

Property 1: Sum of eigenvalues

For any square matrix A:

sum of eigenvalues = sum of diagonal terms of A (called the trace of A)

Formally, for an n× n matrix A:
n∑

i=1

λi = trace(A)

(Repeated eigenvalues must be counted according to their multiplicity.)

Thus if λ1 = 4, λ2 = 4, λ3 = 1 then
3∑

i=1

λi = 9).

Property 2: Product of eigenvalues

For any square matrix A:

product of eigenvalues = determinant of A

Formally: λ1λ2λ3 · · ·λn =
n∏

i=1

λi = det(A)

The symbol
∏

simply denotes multiplication, as
∑

denotes summation.

Example 7
Verify Properties 1 and 2 for the 3× 3 matrix:

A =

 2 −1 0
−1 2 −1

0 −1 2


whose eigenvalues were found earlier.

Solution

The three eigenvalues of this matrix are:

λ1 = 2−
√

2, λ2 = 2, λ3 = 2 +
√

2

Therefore

λ1 + λ2 + λ3 = (2−
√

2) + 2 + (2 +
√

2) = 6 = trace(A)

whilst λ1λ2λ3 = (2−
√

2)(2)(2 +
√

2) = 4 = det(A)

14 HELM (2008):
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Property 3: Linear independence of eigenvectors

Eigenvectors of a matrix A corresponding to distinct eigenvalues are linearly independent i.e. one
eigenvector cannot be written as a linear sum of the other eigenvectors. The proof of this result is
omitted but we illustrate this property with two examples.

We saw earlier that the matrix

A =

[
1 0
1 2

]
has distinct eigenvalues λ1 = 1 λ2 = 2 with associated eigenvectors

X(1) =
1√
2

[
1
−1

]
X(2) =

[
0
1

]
respectively.

Clearly X(1) is not a constant multiple of X(2) and these eigenvectors are linearly independent.

We also saw that the 3× 3 matrix

A =

 2 −1 0
−1 2 −1

0 −1 2


had the following distinct eigenvalues λ1 = 2 −

√
2, λ2 = 2, λ3 = 2 +

√
2 with corresponding

eigenvectors of the form shown:

X(1) =

 1√
2

1

 , X(2) =

 1
0

−1

 , X(3) =

 1

−
√

2
1


Clearly none of these eigenvectors is a constant multiple of any other. Nor is any one obtainable as
a linear combination of the other two. The three eigenvectors are linearly independent.

Property 4: Eigenvalues of diagonal matrices

A 2× 2 diagonal matrix D has the form

D =

[
a 0
0 d

]
The characteristic equation

|D − λI| = 0 is

∣∣∣∣ a− λ 0
0 d− λ

∣∣∣∣ = 0

i.e. (a− λ)(d− λ) = 0

So the eigenvalues are simply the diagonal elements a and d.

Similarly a 3× 3 diagonal matrix has the form

D =

 a 0 0
0 b 0
0 0 c


having characteristic equation

HELM (2008):
Section 22.1: Basic Concepts

15



|D − λI| = (a− λ)(b− λ)(c− λ) = 0

so again the diagonal elements are the eigenvalues.

We can see that a diagonal matrix is a particularly simple matrix to work with. In addition to the
eigenvalues being obtainable immediately by inspection it is exceptionally easy to multiply diagonal
matrices.

Task

Obtain the products D1D2 and D2D1 of the diagonal matrices

D1 =

 a 0 0
0 b 0
0 0 c

 D2 =

 e 0 0
0 f 0
0 0 g



Your solution

Answer

D1D2 = D2D1 =

 ae 0 0
0 bf 0
0 0 cg


which of course is also a diagonal matrix.

Exercise

If λ1, λ2, . . . λn are the eigenvalues of a matrix A, prove the following:

(a) AT has eigenvalues λ1, λ2, . . . λn.

(b) If A is upper triangular, then its eigenvalues are exactly the main diagonal entries.

(c) The inverse matrix A−1 has eigenvalues
1

λ1

,
1

λ2

, . . .
1

λn

.

(d) The matrix A− kI has eigenvalues λ1 − k, λ2 − k, . . . λn − k.

(e) (Harder) The matrix A2 has eigenvalues λ2
1, λ

2
2, . . . λ

2
n.

(f) (Harder) The matrix Ak (k a non-negative integer) has eigenvalues λk
1, λ

k
2, . . . λ

k
n.

Verify the above results for any 2 × 2 matrix and any 3 × 3 matrix found in the previous Exercises
on page 13.

N.B. Some of these results are useful in the numerical calculation of eigenvalues which we shall
consider later.

16 HELM (2008):
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Answer

(a) Using the property that for any square matrix A, det(A) = det(AT ) we see that if

det(A− λI) = 0 then det(A− λI)T = 0

This immediately tells us that det(AT−λI) = 0 which shows that λ is also an eigenvalue
of AT .

(b) Here simply write down a typical upper triangular matrix U which has terms on the leading
diagonal u11, u22, . . . , unn and above it. Then construct (U − λI). Finally imagine how
you would then obtain det(U−λI) = 0. You should see that the determinant is obtained
by multiplying together those terms on the leading diagonal. Here the characteristic
equation is:

(u11 − λ)(u22 − λ) . . . (unn − λ) = 0

This polynomial has the obvious roots λ1 = u11, λ2 = u22, . . . , λn = unn.

(c) Here we begin with the usual eigenvalue problem AX = λX. If A has an inverse A−1

we can multiply both sides by A−1 on the left to give

A−1(AX) = A−1λX which gives X = λA−1X

or, dividing through by the scalar λ we get

A−1X =
1

λ
X which shows that if λ and X are respectively eigenvalue and eigen-

vector of A then λ−1 and X are respectively eigenvalue and eigenvector of A−1.

As an example consider A =

[
2 3
3 2

]
. This matrix has eigenvalues λ1 = −1, λ2 = 5

with corresponding eigenvectors X1 =

[
1

−1

]
and X2 =

[
1
1

]
. The reader should

verify (by direct multiplication) that A−1 = −1

5

[
2 −3

−3 2

]
has eigenvalues −1 and

1

5

with respective eigenvectors X1 =

[
1

−1

]
and X2 =

[
1
1

]
.

(d) (e) and (f) are proved in similar way to the proof outlined in (c).
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