Sampled Functions

w Introduction

A sequence can be obtained by sampling a continuous function or signal and in this Section we
show first of all how to extend our knowledge of z-transforms so as to be able to deal with sampled
signals. We then show how the z-transform of a sampled signal is related to the Laplace transform

of the unsampled version of the signal.

-
Q Prerequisites

@efore starting this Section you should ...

e possess an outline knowledge of Laplace
transforms and of z-transforms

~

J

/
% Learning Outcomes

On completion you should be able to ...

\_

e take the z-transform of a sequence obtained \

by sampling

e state the relation between the z-transform of

a sequence obtained by sampling and the
Laplace transform of the underlying
continuous signal
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1. Sampling theory

If a continuous-time signal f(¢) is sampled at terms t = 0,7, 27T,...nT,... then a sequence of

values

{70), F(T), fF2T),... f(nT),...}

is obtained. The quantity 7" is called the sample interval or sample period.

ft)y

Figure 18

In the previous Sections of this Workbook we have used the simpler notation {f,} to denote a
sequence. If the sequence has actually arisen by sampling then f,, is just a convenient notation for

the sample value f(nT).

Most of our previous results for z-transforms of sequences hold with only minor changes for sampled

signals.

So consider a continuous signal f(t); its z-transform is the z-transform of the sequence of sample

values i.e.

Z{f (1)} = Z{f(nT)} = > f(nT)z"

n=0

We shall briefly obtain z-transforms of common sampled signals utilizing results obtained earlier. You

may assume that all signals are sampled at 0,7, 27, ...nT, ...

Unit step function

1 t>0
“(t>:{o <0

Since the sampled values here are a sequence of 1's,

Z{u(t)} = Z{un} =

= |z > 1

where {u,} = {1, 1, 1, ...} is the unit step sequence.

T
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Ramp function

t t>0
rit) = { 0 <0
The sample values here are

{r(nT)} =40, T, 2T, ...}

The ramp sequence {r,} = {0, 1, 2, ...} has z-transform R
Z J—

Hence Z{r(nT)} = since {r(nT)} =T{r,}.

(z —1)?

Obtain the z-transform of the exponential signal

et t>0
0 t < 0.

[Hint: use the z-transform of the geometric sequence {a"}.]

Your solution

Answer
The sample values of the exponential are
—aT  ,—a2T —anT
{1, e, e7 >t et L}

ie. f(nT)=e T = (e7oT)n,

But Z{a"} = —~
zZ—Q
—aT\n\ __ z _ 1
Z{(G ) } o s — e—oT o 1 —eoTy1
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Sampled sinusoids
Earlier in this Workbook we obtained the z-transform of the sequence {coswn} i.e.

22 — zcosw

Z{coswn} = 22 —2zcosw + 1

Hence, since sampling the continuous sinusoid
f(t) = coswt
yields the sequence {cosnwT'} we have, simply replacing w by wT in the z-transform:

Z{coswt} = Z{cosnwT}

22 — zcoswT

22 —2zcoswT + 1

Obtain the z-transform of the sampled version of the sine wave f(t) = sinwt.

Your solution

Answer

Z{sinwn} = il

22 —2zcosw +1

Z{sinwt} = Z{sinnwT'}
zsinwT
22 —2zcoswT + 1
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Shift theorems

These are similar to those discussed earlier in this Workbook but for sampled signals the shifts are
by integer multiples of the sample period T'. For example a simple right shift, or delay, of a sampled
signal by one sample period is shown in the following figure:

f(nT) 1
S t
T 2T 3T
f(nT —T)4
I
T 2T 3T 4T
Figure 19

The right shift properties of z-transforms can be written down immediately. (Look back at the shift
properties in Section 21.2 subsection 5, if necessary:)

If y(t) has z-transform Y'(z) which, as we have seen, really means that its sample values {y(nT")}
give Y'(z), then for y(t) shifted to the right by one sample interval the z-transform becomes

Z{y(t = T)} = y(=T) + 271V (2)
The proof is very similar to that used for sequences earlier which gave the result:

Z{yn-1} = y-1 + 271V (2)

Using the result

Z{yn—2} = y-o +y-1z~ " + 27V (2)
write down the result for Z{y(t — 27}

Your solution

Answer
Z{y(t —2T)} = y(=2T) + y(-T)z~" + 27*Y(2)

These results can of course be generalised to obtain Z{y(t — mT')} where m is any positive integer.
In particular, for causal or one-sided signals y(¢) (i.e. signals which are zero for ¢ < 0):
Z{y(t —mT)} = z7"Y (2)

Note carefully here that the power of z is still z=™ not z~™7 .
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Examples:
For the unit step function we saw that:

Z{u(t)) =~ =

Hence from the shift properties above we have immediately, since u(t) is certainly causal,

zz71 271
{u )} z—1 1—271
2273 273
ZAu(t — 3T = =
{ul )} z—1 1—2z71
and so on.
A
u(t—1T)
_t
T 27 3T
A
u(t —37)
_t

T 27T 31 4T 5T

Figure 20

2. z-transforms and Laplace transforms

In this Workbook we have developed the theory and some applications of the z-transform from first
principles. We mentioned much earlier that the z-transform plays essentially the same role for discrete
systems that the Laplace transform does for continuous systems. We now explore the precise link
between these two transforms. A brief knowledge of Laplace transform will be assumed.

At first sight it is not obvious that there is a connection. The z-transform is a summation defined,
for a sampled signal f,, = f(nT), as

= f(nT)z"

while the Laplace transform written symbolically as IL{ f(¢)} is an integral, defined for a continuous
time function f(t), t > 0 as

/ f(t)e *tdt.
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Thus, for example, if

fit) = e« (continuous time exponential)
LU0} = Fls) = —
= S =
S+«
which has a (simple) pole at s = —a = 7 say.
As we have seen, sampling f(t) gives the sequence {f(nT)} = {e7*"T} with z-transform
1 z

F(z) = =

o 1 — e—aT -1 5 — e—al”’

The z-transform has a pole when z = z; where

2 = efaT — 6slT

[Note the abuse of notations in writing both F'(s) and F(z) here since in fact these are different
functions.]

The continuous time function  f(t) =te™* has Laplace transform
1
(s + a)?

Firstly write down the pole of this function and its order:

Your solution

Answer

1
F(s) = m has its pole at s = s; = —«. The pole is second order.

Now obtain the z-transform F'(z) of the sampled version of f(t¢), locate the pole(s) of F(z) and
state the order:

Your solution
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Answer
Consider f(nT) = nTe "l = (nT)(e oT)"
Tz
The ramp sequence {nT'} has z-transform o1
Z —
f(nT) has z-transform
TzeT Tze oT .

F(z)= (e —1)2 = (o o) (see Key Point 8)

This has a (second order) pole when z = 2; = ¢71 = 517,

We have seen in both the above examples a close link between the pole s; of the Laplace transform
of f(t) and the pole z; of the z-transform of the sampled version of f(t) i.e.

2z = etT (1)
where T is the sample interval.

Multiple poles lead to similar results i.e. if F'(s) has poles s, s, ... then F(z) has poles 2, 2, . ..

where z; = e*T.

The relation (1) between the poles is, in fact, an example of a more general relation between the
values of s and z as we shall now investigate.

q Key Point 19

The unit impulse function §(¢) can be defined informally as follows:

Fe(t)

A

M| =

Figure 21

1
The rectangular pulse P.(t) of width € and height — shown in Figure 21 encloses unit area and has
€
Laplace transform
°1 1
P — oSt 1 — ¢ ¢S 9
()= [ 2= S )

As ¢ becomes smaller P.(t) becomes taller and narrower but still encloses unit area. The unit impulse
function §(t) (sometimes called the Dirac delta function) can be defined as
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o(t) = lim P(t)

e—0

The Laplace transform, say A(s), of 6(¢) can be obtained correspondingly by letting ¢ — 0 in (2),
le.

Als) = lim—(1—e)

e—=0¢es
2
= lir% 2! (Using the Maclaurin seies expansion of e %)
e— ES
(es)® | (es)’
. Y 3] + ...
= lim
e—0 €S
= 1
e, Lo(t)=1 (3)

A shifted unit impulse §(t — nT') is defined as lir% P.(t —nT) as illustrated below.

R(t —nT)

A

1
€

t

>

nT nT + ¢

Obtain the Laplace transform of this rectangular pulse and, by letting ¢ — 0,
obtain the Laplace transform of (¢t — nT).

Your solution
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Answer

nT+e 1 1 nT+e
L{P.(t —nT)} = / —e St = — { — e_St]
Wy € £s T
1
_ (e—snT . e—s(nT—i—a))
ES
— _6fsnT<1 o efse) e snT as e — 0
ES
Hence L{6(t — nT)} = e—*"T (4)

which reduces to the result (3)

L{5(t)} =1 whenn=0

These results (3) and (4) can be compared with the results
Z{6,} =1
2{0p—m} =2""

for discrete impulses of height 1.

Now consider a continuous function f(¢). Suppose, as usual, that this function is sampled at ¢t = nT
for n=20,1,2,...

ft)y

T 2T 3T 4T
Figure 22

This sampled equivalent of f(t), say f.(t) can be defined as a sequence of equidistant impulses, the
‘strength’ of each impulse being the sample value f(nT)i.e.

fo(t) =) f(nT)s(t — nT)

This function is a continuous-time signal i.e. is defined for all t. Using (4) it has a Laplace transform
Fu(s) =) f(nT)e " (5)
n=0

If, in this sum (5) we replace e*7 by z we obtain the z-transform of the sequence {f(nT')} of samples:

Z f(nT)z""
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The Laplace transform
F(s) =Y f(nT)e*""
n=0

of a sampled function is equivalent to the z-transform F'(z) of the sequence {f(n71)} of sample

values with z = 7.

Table 2: z-transforms of some sampled signals

This table can be compared with the table of the z-transforms of sequences on the following page.

f(t) (nT) F(z) Radius of convergence
£>0 n=0,12,... R
1 1 - - - 1
t nT e _Z )2 1
t2 (nT)? % 1
oot o—anT — Ze_aT e
sin wt sin nwT’ 2 ;Sg(l):)fT ] 1
cos wi cos nwT o Z—(ZZz_c((:)(;SwaT —)i— ] 1
te~ot nTe—onT —<27lzi_z;)2 e
e~ sin wt e~ sinwnT - 2e—a§_z(ii:s i;w+T€_2aTZ_2 le=oT|
e Tcoswt | e " coswnT - 26;;’:__1(1 :()Zs_;;:’oj—wej—;aTz—2 le=oT|

Note: R is such that the closed forms of F(z) (those listed in the above table) are valid for |z| > R.
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Table of z-transforms

I F(2) Name
On 1 unit impulse
On—m z™m
z )
Up, unit step sequence
z—1
n Z .
a geometric sequence
zZ—a
an Z
e
z — e
) zsinh a
sinh an 5
22 —2zcosha+1
2?2 — zcosh «
cosh an 5
z2 —2zcosha+1
. zsinw
sin wn
22 —2zcosw +1
2
2% — ZCcoSw
COS wn

22 —2zcosw +1

e " sin wn

ze “sinw

22 — 2ze~%cosw + e 2«

e " coswn

22 — ze ®cosw

22 — 2ze % cosw + e 2

n ﬁ ramp sequence
Z JE—
2 2(z+1)
(z=1)°
3 (22 +42+1)
n
(z—1)*
afy F(2)
a
dF
n fn i
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