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Introduction
In this Section we shall apply the basic theory of z-transforms to help us to obtain the response or
output sequence for a discrete system. This will involve the concept of the transfer function and we
shall also show how to obtain the transfer functions of series and feedback systems. We will also
discuss an alternative technique for output calculations using convolution. Finally we shall discuss
the initial and final value theorems of z-transforms which are important in digital control.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be familiar with basic z-transforms,
particularly the shift properties

'

&

$

%
Learning Outcomes

On completion you should be able to . . .

• obtain transfer functions for discrete systems
including series and feedback combinations

• state the link between the convolution
summation of two sequences and the product
of their z-transforms
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1. Applications of z-transforms

Transfer (or system) function

Consider a first order linear constant coefficient difference equation

yn + a yn−1 = bxn n = 0, 1, 2, . . . (1)

where {xn} is a given sequence.
Assume an initial condition y−1 is given.

Task

Take the z-transform of (1), insert the initial condition and obtain Y (z) in terms
of X(z).

Your solution

Answer
Using the right shift theorem

Y (z) + a(z−1Y (z) + y−1) = b X(z)

where X(z) is the z-transform of the given or input sequence {xn} and Y (z) is the z-transform of
the response or output sequence {yn}.

Solving for Y (z)

Y (z)(1 + az−1) = bX(z)− ay−1

so

Y (z) =
bX(z)

1 + az−1
− ay−1

1 + az−1
(2)

The form of (2) shows us clearly that Y (z) is made up of two components, Y1(z) and Y2(z) say,
where

(i) Y1(z) =
bX(z)

1 + az−1
which depends on the input X(z)

(ii) Y2(z) =
−ay−1

1 + az−1
which depends on the initial condition y−1.
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Clearly, from (2), if y−1 = 0 (zero initial condition) then

Y (z) = Y1(z)
and hence the term zero-state response is sometimes used for Y1(z).
Similarly if {xn} and hence X(z) = 0 (zero input)

Y (z) = Y2(z)
and hence the term zero-input response can be used for Y2(z).

In engineering the difference equation (1) is regarded as modelling a system or more specifically a
linear discrete time-invariant system. The terms linear and time-invariant arise because the difference
equation (1) is linear and has constant coefficients i.e. the coefficients do not involve the index n.
The term ‘discrete’ is used because sequences of numbers, not continuous quantities, are involved.
As noted above, the given sequence {xn} is considered to be the input sequence and {yn}, the
solution to (1), is regarded as the output sequence.

{xn}
system

input output
(stimulus) (response)

{yn}

Figure 8

A more precise block diagram representation of a system can be easily drawn since only two operations
are involved:

1. Multiplying the terms of a sequence by a constant.
2. Shifting to the right, or delaying, the terms of the sequence.

A system which consists of a single multiplier is denoted as shown by a triangular symbol:

{xn} {yn}
A yn = Axn

Figure 9

As we have seen earlier in this workbook a system which consists of only a single delay unit is
represented symbolically as follows

z−1 yn = xn−1

{xn} {yn}

Figure 10

The system represented by the difference equation (1) consists of two multipliers and one delay unit.
Because (1) can be written

yn = bxn − ayn−1

a symbolic representation of (1) is as shown in Figure 11.
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z−1

{xn} {yn}

a

b
+

−

+

Figure 11

The circle symbol denotes an adder or summation unit whose output is the sum of the two (or more)
sequences that are input to it.

We will now concentrate upon the zero state response of the system i.e. we will assume that the
initial condition y−1 is zero.

Thus, using (2),

Y (z) =
bX(z)

1 + az−1

so

Y (z)

X(z)
=

b

1 + az−1
(3)

The quantity
Y (z)

X(z)
, the ratio of the output z-transform to the input z-transform, is called the

transfer function of the discrete system. It is often denoted by H(z).

Key Point 16

The transfer function H(z) of a discrete system is defined by

H(z) =
Y (z)

X(z)
=

z-transform of output sequence

z-transform of input sequence

when the initial conditions are zero.
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Task

(a) Write down the transfer function H(z) of the system represented by (1)

(i) using negative powers of z
(ii) using positive powers of z.

(b) Write down the inverse z-transform of H(z).

Your solution

Answer
(a) From (3)

(i) H(z) =
b

1 + az−1

(ii) H(z) =
bz

z + a

(b) Referring to the Table of z-transforms at the end of the Workbook:

{hn} = b(−a)n n = 0, 1, 2, . . .

We can represent any discrete system as follows

{xn} {yn}

X(z)

H(z)

Y (z)

Figure 12

From the definition of the transfer function it follows that

Y (z) = X(z)H(z) (at zero initial conditions).

The corresponding relation between {yn}, {xn} and the inverse z-transform {hn} of the transfer
function will be discussed later; it is called a convolution summation.

The significance of {hn} is readily obtained.

Suppose {xn} =

{
1 n = 0
0 n = 1, 2, 3, . . .

i.e. {xn} is the unit impulse sequence that is normally denoted by δn. Hence, in this case,

X(z) = Z{δn} = 1 so Y (z) = H(z) and {yn} = {hn}

In words: {hn} is the response or output of a system where the input is the unit impulse sequence
{δn}. Hence {hn} is called the unit impulse response of the system.
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Key Point 17

For a linear, time invariant discrete system, the unit impulse response and the system transfer
function are a z-transform pair:

H(z) = Z{hn} {hn} = Z−1{H(z)}

It follows from the previous Task that for the first order system (1)

H(z) =
b

1 + az−1
=

bz

z + a
is the transfer function and

{hn} = {b(−a)n} is the unit impulse response sequence.

Task

Write down the transfer function of

(a) a single multiplier unit (b) a single delay unit.

Your solution

Answer
(a) {yn} = {A xn} if the multiplying factor is A

∴ using the linearity property of z-transform

Y (z) = AX(z)

so H(z) =
Y (z)

X(z)
= A is the required transfer function.

(b) {yn} = {xn−1}

so Y (z) = z−1X(z) (remembering that initial conditions are zero)

∴ H(z) = z−1 is the transfer function of the single delay unit.
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Task

Obtain the transfer function of the system.

yn + a1yn−1 = b0xn + b1xn−1 n = 0, 1, 2, . . .

where {xn} is a known sequence with xn = 0 for n = −1,−2, . . . .
[Remember that the transfer function is only defined at zero initial condition i.e.
assume y−1 = 0 also.]

Your solution

Answer
Taking z-transforms

Y (z) + a1z
−1Y (z) = b0X(z) + b1z

−1X(z)

Y (z)(1 + a1z
−1) = (b0 + b1z

−1)X(z)

so the transfer function is

H(z) =
Y (z)

X(z)
=

b0 + b1z
−1

1 + a1z−1
=

b0z + b1

z + a1

Second order systems
Consider the system whose difference equation is

yn + a1yn−1 + a2yn−2 = bxn n = 0, 1, 2, . . . (4)

where the input sequence xn = 0, n = −1,−2, . . .

In exactly the same way as for first order systems it is easy to show that the system response has a
z-transform with two components.
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Task

Take the z-transform of (4), assuming given initial values y−1, y−2. Show that
Y (z) has two components. Obtain the transfer function of the system (4).

Your solution

Answer
From (4)

Y (z) + a1(z
−1Y (z) + y−1) + a2(z

−2Y (z) + z−1y−1 + y−2) = bX(z)

Y (z)(1 + a1z
−1 + a2z

−2) + a1y−1 + a2z
−1y−1 + a2y−2 = bX(z)

∴ Y (z) =
bX(z)

1 + a1z−1 + a2z−2
− (a1y−1 + a2z

−1y−1 + a2y−2)

1 + a1z−1 + a2z−2
= Y1(z) + Y2(z) say.

At zero initial conditions, Y (z) = Y1(z) so the transfer function is

H(z) =
b

1 + a1z−1 + a2z−2
=

bz2

z2 + a1z + a2

.

Example

Obtain (i) the unit impulse response (ii) the unit step response of the system specified by the second
order difference equation

yn −
3

4
yn−1 +

1

8
yn−2 = xn (5)

Note that both these responses refer to the case of zero initial conditions. Hence it is convenient to
first obtain the transfer function H(z) of the system and then use the relation Y (z) = X(z)H(z) in
each case.

We write down the transfer function of (5), using positive powers of z. Taking the z-transform of
(5) at zero initial conditions we obtain

Y (z)− 3

4
z−1Y (z) +

1

8
z−2Y (z) = X(z)

Y (z)

(
1− 3

4
z−1 +

1

8
z−2

)
= X(z)

∴ H(z) =
Y (z)

X(z)
=

z2

z2 − 3
4
z + 1

8

=
z2

(z − 1
2
)(z − 1

4
)
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We now complete the problem for inputs (i) xn = δn (ii) xn = un, the unit step sequence, using
partial fractions.

H(z) =
z2(

z − 1
2

) (
z − 1

4

) =
2z

z − 1
2

− z

z − 1
4

(i) With xn = δn so X(z) = 1 the response is, as we saw earlier,

Y (z) = H(z)

so yn = hn

where hn = Z−1H(z) = 2×
(

1

2

)n

−
(

1

4

)n

n = 0, 1, 2, . . .

(ii) The z-transform of the unit step is
z

z − 1
so the unit step response has z-transform

Y (z) =
z2(

z − 1
2

) (
z − 1

4

) z

(z − 1)

= − 2z

z − 1
2

+
1
3
z

z − 1
4

+
8
3
z

z − 1

Hence, taking inverse z-transforms, the unit step response of the system is

yn = (−2)×
(

1

2

)n

+
1

3
×

(
1

4

)n

+
8

3
n = 0, 1, 2, . . .

Notice carefully the form of this unit step response - the first two terms decrease as n increases and
are called transients. Thus

yn →
8

3
as n →∞

and the term
8

3
is referred to as the steady state part of the unit step response.

Combinations of systems
The concept of transfer function enables us to readily analyse combinations of discrete systems.

Series combination
Suppose we have two systems S1 and S2 with transfer functions H1(z), H2(z) in series with each
other. i.e. the output from S1 is the input to S2.

{xn} {yn}

X(z) Y (z)

S1

H1(z)

{y1(n)} = {x2(n)}

Y1(z) = X2(z)

S2

H2(z)

Figure 13
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Clearly, at zero initial conditions,

Y1(z) = H1(z)X(z)

Y (z) = H2(z)X2(z)

= H2(z)Y1(z)

∴ Y (z) = H2(z)H1(z)X(z)

so the ratio of the final output transform to the input transform is

Y (z)

X(z)
= H2(z) H1(z) (6)

i.e. the series system shown above is equivalent to a single system with transfer function H2(z) H1(z)

{xn} {yn}

X(z) Y (z)

H1(z)H2(z)

Figure 14

Task

Obtain (a) the transfer function (b) the governing difference equation of the system
obtained by connecting two first order systems S1 and S2 in series. The governing
equations are:

S1 : yn − ayn−1 = bxn

S2 : yn − cyn−1 = dxn

(a) Begin by finding the transfer function of S1 and S2 and then use (6):

Your solution
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Answer

S1: Y (z)− az−1Y (z) = bX(z) so H1(z) =
b

1− az−1

S2: H2(z) =
d

1− cz−1

so the series arrangement has transfer function

H(z) =
bd

(1− az−1)(1− cz−1)

=
bd

1− (a + c)z−1 + acz−2

If X(z) and Y (z) are the input and output transforms for the series arrangement, then

Y (z) = H(z) X(z) =
bdX(z)

1− (a + c)z−1 + acz−2

(b) By transfering the denominator from the right-hand side to the left-hand side and taking inverse
z-transforms obtain the required difference equation of the series arrangement:

Your solution

Answer
We have

Y (z)(1− (a + c)z−1 + acz−2) = bdX(z)

Y (z)− (a + c)z−1Y (z) + acz−2Y (z) = bdX(z)

from which, using the right shift theorem,

yn − (a + c)yn−1 + acyn−2 = bd xn.

which is the required difference equation.

You can see that the two first order systems in series have an equivalent second order system.
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Feedback combination

+

+

{xn}

X(z)

{wn}
W (z)

H1(z)

H2(z)

Y (z)

−1

Figure 15

For the above negative feedback arrangement of two discrete systems with transfer functions
H1(z), H2(z) we have, at zero initial conditions,

Y (z) = W (z)H1(z) where W (z) = X(z)−H2(z)Y (z)

Task

Eliminate W (z) and hence obtain the transfer function of the feedback system.

Your solution

Answer

Y (z) = (X(z)−H2(z)Y (z))H1(z)

= X(z)H1(z)−H2(z)H1(z)Y (z)

so

Y (z)(1 + H2(z)H1(z)) = X(z)H1(z)

∴
Y (z)

X(z)
=

H1(z)

1 + H2(z)H1(z)

This is the required transfer function of the negative feedback system.
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2. Convolution and z-transforms
Consider a discrete system with transfer function H(z)

{xn} {yn}

X(z) Y (z)
H(z)

Figure 16

We know, from the definition of the transfer function that at zero initial conditions

Y (z) = X(z)H(z) (7)

We now investigate the corresponding relation between the input sequence {xn} and the output
sequence {yn}. We have seen earlier that the system itself can be characterised by its unit impulse
response {hn} which is the inverse z-transform of H(z).

We are thus seeking the inverse z-transform of the product X(z)H(z). We emphasize immediately
that this is not given by the product {xn}{hn}, a point we also made much earlier in the workbook.

We go back to basic definitions of the z-transform:

Y (z) = y0 + y1z
−1 + y2z

−2 + y3z
−3 + . . .

X(z) = x0 + x1z
−1 + x2z

−2 + x3z
−3 + . . .

H(z) = h0 + h1z
−1 + h2z

−2 + h3z
−3 + . . .

Hence, multiplying X(z) by H(z) we obtain, collecting the terms according to the powers of z−1:

x0h0 + (x0h1 + x1h0)z
−1 + (x0h2 + x1h1 + x2h0)z

−2 + . . .

Task

Write out the terms in z−3 in the product X(z)H(z) and, looking at the emerging
pattern, deduce the coefficient of z−n.

Your solution
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Answer
(x0h3 + x1h2 + x2h1 + x3h0)z

−3

which suggests that the coefficient of z−n is

x0hn + x1hn−1 + x2hn−2 + . . . + xn−1h1 + xnh0

Hence, comparing corresponding terms in Y (z) and X(z)H(z)

z0 : y0 = x0h0

z−1 : y1 = x0h1 + x1h0

z−2 : y2 = x0h2 + x1h1 + x2h0

z−3 : y3 = x0h3 + x1h2 + x2h1 + x3h0

 (8)

...
...

z−n : yn = x0hn + x1hn−1 + x2hn−2 + . . . + xn−1h1 + xnh0 (9)

=
n∑

k=0

xkhn−k (10a)

=
n∑

k=0

hkxn−k (10b)

(Can you see why (10b) also follows from (9)?)

The sequence {yn} whose n th term is given by (9) and (10) is said to be the convolution (or more
precisely the convolution summation) of the sequences {xn} and {hn},

The convolution of two sequences is usually denoted by an asterisk symbol (∗).

We have shown therefore that

Z−1{X(z)H(z)} = {xn} ∗ {hn} = {hn} ∗ {xn}

where the general term of {xn} ∗ {hn} is in (10a) and that of {hn} ∗ {xn} is in (10b).

In words: the output sequence {yn} from a linear time invariant system is given by the convolution
of the input sequence with the unit impulse response sequence of the system.

This result only holds if initial conditions are zero.

HELM (2008):
Section 21.4: Engineering Applications of z-Transforms

77



Key Point 18

{xn} {yn}

X(z) Y (z)
H(z)

Figure 17

We have, at zero initial conditions

Y (z) = X(z)H(z) (definition of transfer function)

{yn} = {xn} ∗ {hn} (convolution summation)

where yn is given in general by (9) and (10) with the first four terms written out explicitly in (8).

Although we have developed the convolution summation in the context of linear systems the proof
given actually applies to any sequences i.e. for arbitrary causal sequences say {vn} {wn} with z-
transforms V (z) and W (z) respectively:

Z−1{V (z)W (z)} = {vn} ∗ {wn} or, equivalently, Z({vn} ∗ {wn}) = V (z)W (z).

Indeed it is simple to prove this second result from the definition of the z-transform for any causal
sequences {vn} = {v0, v1, v2, . . .} and {wn} = {w0, w1, w2, . . .}

Thus since the general term of {vn} ∗ {wn} is
n∑

k=0

vkwn−k

we have

Z({vn} ∗ {wn}) =
∞∑

n=0

{
n∑

k=0

vkwn−k

}
z−n

or, since wn−k = 0 if k > n,

Z({vn} ∗ {wn}) =
∞∑

n=0

∞∑
k=0

vkwn−kz
−n

Putting m = n− k or n = m + k we obtain

Z({vn} ∗ {wn}) =
∞∑

m=0

∞∑
k=0

vkwmz−(m+k) (Why is the lower limit m = 0 correct?)

Finally,

Z({vn} ∗ {wn}) =
∞∑

m=0

wmz−m

∞∑
k=0

vkz
−k = W (z)V (z)

which completes the proof.
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Example 2
Calculate the convolution {yn} of the sequences

{vn} = {an} {wn} = {bn} a 6= b

(i) directly (ii) using z-transforms.

Solution

(i) We have from (10)

yn =
n∑

k=0

vkwn−k =
n∑

k=0

akbn−k

= bn

n∑
k=0

(a

b

)k

= bn

(
1 +

(a

b

)
+

(a

b

)2

+ . . .
(a

b

)n
)

The bracketed sum involves n + 1 terms of a geometric series of common ratio
a

b
.

∴ yn = bn

(
1−

(a

b

)n+1
)

1− a

b

=
(bn+1 − an+1)

(b− a)

(ii) The z-transforms are

V (z) =
z

z − a

W (z) =
z

z − b
so

∴ yn = Z−1{ z2

(z − a)(z − b)
}

=
bn+1 − an+1

(b− a)
using partial fractions or residues
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Task

Obtain by two methods the convolution of the causal sequence

{2n} = {1, 2, 22, 23, . . .}

with itself.

Your solution

Answer
(a) By direct use of (10) if {yn} = {2n} ∗ {2n}

yn =
n∑

k=0

2k2n−k = 2n

n∑
k=0

1 = (n + 1)2n

(b) Using z-transforms:

Z{2n} =
z

z − 2

so {yn} = Z−1{ z2

(z − 2)2
}

We will find this using the residue method. Y (z)zn−1 has a second order pole at z = 2.

∴ yn = Res

(
zn+1

(z − 2)2
, 2

)
=

[
d

dz
zn+1

]
2

= (n + 1)2n
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3. Initial and final value theorems of z-transforms
These results are important in, for example, Digital Control Theory where we are sometimes partic-
ularly interested in the initial and ultimate behaviour of systems.

Initial value theorem
.
If fn is a sequence with z-transform F (z) then the ‘initial value’ f0 is given by

f0 = lim
z→∞

F (z) (provided, of course, that this limit exists).

This result follows, at least informally, from the definition of the z-transform:

F (z) = f0 + f1z
−1 + f2z

−2 + . . .

from which, taking limits as z →∞ the required result is obtained.

Task

Obtain the z-transform of

f(n) = 1− an, 0 < a < 1

Verify the initial value theorem for the z-transform pair you obtain.

Your solution

Answer
Using standard z-transforms we obtain

Z{fn} = F (z) =
z

z − 1
− z

z − a

=
1

1− z−1
− 1

1− az−1

hence, as z →∞ : F (z) → 1− 1 = 0

Similarly, as n → 0

fn → 1− 1 = 0

so the initial value theorem is verified for this case.
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Final value theorem
Suppose again that {fn} is a sequence with z-transform F (z). We further assume that all the poles
of F (z) lie inside the unit circle in the z−plane (i.e. have magnitude less than 1) apart possibly from
a first order pole at z = 1.

The ‘final value’ of fn i.e. lim
n→∞

fn is then given by lim
n→∞

fn = lim
z→1

(1− z−1)F (z)

Proof: Recalling the left shift property

Z{fn+1} = zF (z)− zf0

we have

Z{fn+1 − fn} = lim
k→∞

k∑
n=0

(fn+1 − fn)z−n = zF (z)− zf0 − F (z)

or, alternatively, dividing through by z on both sides:

(1− z−1)F (z)− f0 = lim
k→∞

k∑
n=0

(fn+1 − fn)z−(n+1)

Hence (1− z−1)F (z) = f0 + (f1 − f0)z
−1 + (f2 − f1)z

−2 + . . .

or as z → 1

lim
z→1

(1− z−1)F (z) = f0 + (f1 − f0) + (f2 − f1) + . . .

= lim
k→∞

fk

Example

Again consider the sequence fn = 1− an 0 < a < 1 and its z-transform

F (z) =
z

z − 1
− z

z − a
=

1

1− z−1
− 1

1− az−1

Clearly as n →∞ then fn → 1.
Considering the right-hand side

(1− z−1)F (z) = 1− (1− z−1)

1− az−1
→ 1− 0 = 1 as z → 1.

Note carefully that

F (z) =
z

z − 1
− z

z − a

has a pole at a (0 < a < 1) and a simple pole at z = 1.

The final value theorem does not hold for z-transform poles outside the unit circle

e.g. fn = 2n F (z) =
z

z − 2
Clearly fn →∞ as n →∞
whereas

(1− z−1)F (z) =

(
z − 1

z

)
z

(z − 2)
→ 0 as z → 1
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Exercises

1. A low pass digital filter is characterised by

yn = 0.1xn + 0.9yn−1

Two such filters are connected in series. Deduce the transfer function and governing difference
equation for the overall system. Obtain the response of the series system to (i) a unit step and
(ii) a unit alternating input. Discuss your results.

2. The two systems

yn = xn − 0.7xn−1 + 0.4yn−1

yn = 0.9xn−1 − 0.7yn−1

are connected in series. Find the difference equation governing the overall system.

3. A system S1 is governed by the difference equation

yn = 6xn−1 + 5yn−1

It is desired to stabilise S1 by using a feedback configuration. The system S2 in the feedback
loop is characterised by

yn = αxn−1 + βyn−1

Show that the feedback system S3 has an overall transfer function

H3(z) =
H1(z)

1 + H1(z)H2(z)

and determine values for the parameters α and β if H3(z) is to have a second order pole at
z = 0.5. Show briefly why the feedback systems S3 stabilizes the original system.

4. Use z-transforms to find the sum of squares of all integers from 1 to n:

yn =
n∑

k=1

k2

[Hint: yn − yn−1 = n2]

5. Evaluate each of the following convolution summations (i) directly (ii) using z-transforms:

(a) an ∗ bn a 6= b (b) an ∗ an (c) δn−3 ∗ δn−5

(d) xn ∗ xn where xn =

{
1 n = 0, 1, 2, 3
0 n = 4, 5, 6, 7 . . .
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Answers

1. Step response: yn = 1− (0.99)(0.9)n − 0.09n(0.9)n

Alternating response: yn =
1

361
(−1)n +

2.61

361
(0.9)n +

1.71

361
n(0.9)n

2. yn + 0.3yn−1 − 0.28yn−2 = 0.9xn−1 − 0.63xn−2

3. α = 3.375 β = −4

4.
n∑

k=1

k2 =
(2n + 1)(n + 1)n

6

5. (a)
1

(a− b)
(an+1 − bn+1) (b) (n + 1)an (c) δn−8 (d) {1, 2, 3, 4, 3, 2, 1}
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