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Applications of
Differential Equations
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�

�
�19.4

Introduction
Sections 19.2 and 19.3 have introduced several techniques for solving commonly occurring first-order
and second-order ordinary differential equations. In this Section we solve a number of these equations
which model engineering systems.
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Prerequisites
Before starting this Section you should . . .

• understand what is meant by a differential
equation

• be familiar with the terminology associated
with differential equations: order, dependent
variable and independent variable

• be able to integrate standard functions'
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Learning Outcomes
On completion you should be able to . . .

• recognise and solve first-order ordinary
differential equations, modelling simple
electrical circuits, projectile motion and
Newton’s law of cooling

• recognise and solve second-order ordinary
differential equations with constant
coefficients modelling free electrical and
mechanical oscillations

• recognise and solve second-order ordinary
differential equations with constant
coefficients modelling forced electrical and
mechanical oscillations
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1. Modelling with first-order equations

Applying Newton’s law of cooling
In Section 19.1 we introduced Newton’s law of cooling. The model equation is

dθ

dt
= −k(θ − θs) θ = θ0 at t = 0. (5)

where θ = θ(t) is the temperature of the cooling object at time t, θs the temperature of the
environment (assumed constant) and k is a thermal constant related to the object, θ0 is the initial
temperature of the liquid.

Task

Solve this initial value problem:

dθ

dt
= −k(θ − θs), θ = θ0 at t = 0

Separate the variables to obtain an equation connecting two integrals:

Your solution

Answer∫
dθ

θ − θs
= −

∫
k dt

Now integrate both sides of this equation:

Your solution

Answer

ln(θ − θs) = −kt + C where C is constant

Apply the initial condition and take exponentials to obtain a formula for θ:

Your solution

Answer
ln(θ0−θs) = C. Hence ln(θ−θs) = −kt+ln(θ0−θs) so that ln(θ−θs)− ln(θ0−θ0) = −kt

Thus, rearranging and inverting, we find:

ln

(
θ − θs

θ0 − θs

)
= −kt ∴

θ − θs

θ0 − θs
= e−kt giving θ = θs + (θ0 − θs)e

−kt.
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The graph of θ against t for θ = θs + (θ0 − θs)e
−kt is shown in Figure 4 below.

θ

θ0

θs

t

Figure 4

We see that as time increases (t → ∞), then the temperature of the object cools down to that of
the environment, that is: θ → θs.

We could have solved (5) by the integrating factor method, which you are now asked to do.

Task

We can write the equation for Newton’s law of cooling (5) as

dθ

dt
+ k θ = kθs, θ = θ0 at t = 0 (6)

State the integrating factor for this equation:

Your solution

Answer

e
R

k dt = ekt is the integrating factor.

Multiplying (6) by this factor we find that

ekt dθ

dt
+ kektθ = kθse

kt or, rearranging,
d

dt
(ektθ) = kθse

kt

Now integrate this equation and apply the initial condition:

Your solution

Answer
Integration produces ektθ = θse

kt + C, where C is an arbitrary constant. Then, applying the initial
condition: when t = 0, θ0 = θs + C so that C = θ0 − θs gives the same result as before:

θ = θs + (θ0 − θs)e
−kt,
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Modelling electrical circuits
Another application of first-order differential equations arises in the modelling of electrical circuits.
In Section 19.1 the differential equation for the RL circuit in Figure 5 below was shown to be

L
di

dt
+ Ri = E

in which the initial condition is i = 0 at t = 0.

E
+ −

R Li

Figure 5

First we write this equation in standard form {dy

dx
+ P (x)y = Q(x)} and obtain the integrating

factor.

Dividing the differential equation through by L gives

di

dt
+

R

L
i =

E

L

which is now in standard form. The integrating factor is e
R

R
L

dt = eRt/L.
Multiplying the equation in standard form by the integrating factor gives

eRt/L di

dt
+ eRt/L R

L
i =

E

L
eRt/L

or, rearranging,

d

dt
(eRt/L i) =

E

L
eRt/L.

Now we integrate both sides and apply the initial condition to obtain the solution.

Integrating the differential equation gives:

eRt/L i =
E

R
eRt/L + C

where C is a constant so

i =
E

R
+ Ce−Rt/L

Applying the initial condition i = 0 when t = 0 gives

0 =
E

R
+ C

so that C = −E

R
.

Finally, i =
E

R
(1− e−Rt/L).

Note that as t →∞, i → E

R
so as t increases the effect of the inductor diminishes to zero.
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Task

A spherical pill with volume V and surface area S is swallowed and slowly dissolves
in the stomach, releasing an active component. In one model it is assumed that
the capsule dissolves in the stomach acids such that the rate of change in volume,
dV

dt
, is directly proportional to the pill’s surface area.

(a) Show that
dV

dt
= −kV 2/3 where k is a positive real constant and solve this

given that V = V0 at t = 0.

(b) Experimental measurements indicate that for a 4 mm pill, half of the volume
has dissolved after 3 hours. Find the rate constant k (m s−1).

(c) Estimate the time required for 95% of the pill to dissolve.

(a) First write down the formulae for volume of a sphere (V ) and surface area of a sphere (S) and
so express S in terms of V by eliminating r:

Your solution

Answer

V =
4

3
πr3 S = 4πr2

From the V equation r =

(
3V

4π

)1/3

so S = (36π)1/3V 2/3 = kV 2/3 for constant k.

Now write down the differential equation modelling the solution:

Your solution

Answer
dV

dt
= −kV 2/3 (negative to represent a decrease with time)
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Using the condition V = V0 when t = 0, solve the differential equation:

Your solution

Answer
Solving by separation of variables gives

V =

{
1

3
(C − kt)

}1/3

and setting V = V0 when t = 0 means

V0 =

(
1

3
C

)3

so C = 3V
1/3
0 and the solution is

V =

{
V

1/3
0 − kt

3

}3

(b) Impose the condition that half the volume has dissolved after 3 hours to find k:

Your solution

Answer

V =

{
V

1/3
0 − kt

3

}3

and when t = 3, V =
V0

2
so(

V0

2

)1/3

= V
1/3
0 − k and so k = V

1/3
0 (1− (0.5)1/3)
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(c) First write down the solution to the differential equation inserting the value of k obtained in (b)
and then use it to estimate the time to 95% dissolving:

Your solution

Answer

V =

{
V

1/3
0 − V

1/3
0 (1− (0.5)1/3)

t

3

}3

i.e. V = V0

{
1− (1− (0.5)1/3)

t

3

}3

When 95% dissolved V = 0.05V0 so

0.05V0 = V0

{
1− (1− (0.5)1/3)

t

3

}3

so (0.05)1/3 = 1− (1− (0.5)1/3)
t

3

so

t = 3

{
1− (0.05)1/3

1− (0.5)1/3

}
≈ 9.185 ≈ 9 hr 11 min

2. Modelling free mechanical oscillations
Consider the following schematic diagram of a shock absorber:

Mass

Spring

Dashpot

Figure 6

The equation of motion can be described in terms of the vertical displacement x of the mass.

Let m be the mass, k
dx

dt
the damping force resulting from the dashpot and nx the restoring force

resulting from the spring. Here, k and n are constants.

Then the equation of motion is
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m
d2x

dt2
= −k

dx

dt
− nx.

Suppose that the mass is displaced a distance x0 initially and released from rest. Then at t = 0,

x = x0 and
dx

dt
= 0. Writing the differential equation in standard form gives

m
d2x

dt2
+ k

dx

dt
+ nx = 0.

We shall see that the nature of the oscillations described by this differential equation depends crucially
upon the relative values of the mechanical constants m, k and n. This will be explored in subsequent
Tasks.

Task

Find and solve the auxiliary equation of the differential equation

m
d2x

dt2
+ k

dx

dt
+ nx = 0.

Your solution

Answer
Putting x = eλt, the auxiliary equation is m λ2 + k λ + n = 0.

Hence λ =
−k ±

√
k2 − 4m n

2m
.

The value of k controls the amount of damping in the system. We explore the solution for various
values of k.

Case 1: No damping
If k = 0 then there is no damping. We expect, in this case, that once motion has started it will
continue for ever. The motion that ensues is called simple harmonic motion. In this case we have

λ =
±
√
−4m n

2m
, that is, λ = ±

√
n

m
i where i2 = −1.

and the solution for the displacement x is:

x = A cos

(√
n

m
t

)
+ B sin

(√
n

m
t

)
where A, B are arbitrary constants.
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Task

Impose the initial conditions x = x0 and
dx

dt
= 0 at t = 0 to find the unique

solution to the ODE:

Your solution

Answer

dx

dt
= −

√
n

m
A sin

(√
n

m
t

)
+

√
n

m
B cos

(√
n

m
t

)
When t = 0,

dx

dt
= 0 so that

√
n

m
B = 0 so that B = 0.

Therefore x = A cos

(√
n

m
t

)
.

Imposing the remaining initial condition: when t = 0, x = x0 so that x0 = A and finally:

x = x0 cos

(√
n

m
t

)
.

Case 2: Light damping
If k2 − 4mn < 0, i.e. k2 < 4mn then the roots of the auxiliary equation are complex:

λ1 =
−k + i

√
4mn− k2

2m
λ2 =

−k − i
√

4mn− k2

2m

Then, after some rearrangement:

x = e−kt/2m [A cos pt + B sin pt] in which p =
√

4mn− k2/2m.
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Task

If m = 1, n = 1 and k = 1 find λ1 and λ2 and then find the solution for the
displacement x.

Your solution

Answer

λ =
−1 + i

√
4− 1

2
= −1/2± i

√
3/2. Hence x = e−t/2

[
A cos

√
3

2
t + B sin

√
3

2
t

]
.

Impose the initial conditions x = x0,
dx

dt
= 0 at t = 0 to find the arbitrary constants and hence find

the solution to the ODE:
Your solution

Answer
Differentiating, we obtain

dx

dt
= −1

2
e−t/2

[
A cos

√
3

2
t + B sin

√
3

2
t

]
+ e−t/2

[
−
√

3

2
A sin

√
3

2
t +

√
3

2
B cos

√
3

2
t

]
At t = 0,

x = x0 = A (i)

dx

dt
= 0 = −1

2
A +

√
3

2
B (ii)

Solving (i) and (ii) we obtain

A = x0 B =

√
3

3
x0 then x = x0e

−t/2

[
cos

√
3

2
t +

√
3

3
sin

√
3

2
t

]
.

The graph of x against t is shown in Figure 7. This is the case of light damping. As the damping in
the system decreases (i.e. k → 0 ) the number of oscillations (in a given time interval) will increase.
In many mechanical systems these oscillations are usually unwanted and the designer would choose a
value of k to either reduce them or to eliminate them altogether. For the choice k2 = 4mn, known
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as the critical damping case, all the oscillations are absent.

t

x0

x

x0e
−t/2

x = x0e
−t/2

[
cos

√
3

2
t +

√
3

3
sin

√
3

2
t

]

Figure 7

Case 3: Heavy damping
If k2 − 4mn > 0, i.e. k2 > 4mn, then there are two real roots of the auxiliary equation, λ1 and λ2:

λ1 =
−k +

√
k2 − 4mn

2m
λ2 =

−k −
√

k2 − 4mn

2m

Then

x = Aeλ1t + Beλ2t.

Task

If m = 1, n = 1 and k = 2.5 find λ1 and λ2 and then find the solution for the
displacement x.

Your solution

Answer

λ =
−2.5±

√
6.25− 4

2
= −1.25± 0.75

Hence λ1, λ2 = −0.5,−2 and so x = Ae−0.5t + Be−2t
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Impose the initial conditions x = x0,
dx

dt
= 0 at t = 0 to find the arbitrary constants and hence find

the solution to the ODE.

Your solution

Answer
Differentiating, we obtain

dx

dt
= −0.5Ae−0.5t − 2Be−2t

At t = 0,

x = x0 = A + B (i)

dx

dt
= 0 = −0.5A− 2B (ii)

Solving (i) and (ii) we obtain A =
4

3
x0 B = −1

3
x0 then x =

1

3
x0(4e−0.5t − e−2t).

The graph of x against t is shown below. This is the case of heavy damping.

t

x0

x

Other cases are dealt with in the Exercises at the end of the Section.
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3. Modelling forced mechanical oscillations
Suppose now that the mass is subject to a force f(t) after the initial disturbance. Then the equation
of motion is

m
d2x

dt2
+ k

dx

dt
+ nx = f(t)

Consider the case f(t) = F cos ωt, that is, an oscillatory force of magnitude F and angular frequency
ω. Choosing specific values for the constants in the model: m = n = 1, k = 0, and ω = 2 we find

d2x

dt2
+ x = F cos 2t

Task

Find the complementary function for the differential equation

d2x

dt2
+ x = F cos 2t

Your solution

Answer
The homogeneous equation is

d2x

dt2
+ x = 0

with auxiliary equation λ2 + 1 = 0. Hence the complementary function is

xcf = A cos t + B sin t.

Now find a particular integral for the differential equation:
Your solution
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Answer

Try xp = C cos 2t+D sin 2t so that
d2xp

dt2
= −4C cos 2t−4D sin 2t. Substituting into the differential

equation gives

(−4C + C) cos 2t + (−4D + D sin 2t) ≡ F cos 2t.

Comparing coefficients gives −3C = F and − 3D = 0 so that D = 0, C = −1

3
F and

xp = −1

3
F cos 2t. The general solution of the differential equation is therefore

x = xp + xcf = −1

3
F cos 2t + A cos t + B sin t.

Finally, apply the initial conditions to find the solution for the displacement x:
Your solution

Answer
We need to determine the derivative and apply the initial conditions:

dx

dt
=

2

3
F sin 2t− A sin t + B cos t.

At t = 0 x = x0 = −1

3
F + A and

dx

dt
= 0 = B

Hence B = 0 and A = x0 +
1

3
F.

Then x = −1

3
F cos 2t +

(
x0 +

1

3
F

)
cos t.

The graph of x against t is shown below.

t

x0

x

If the angular frequency ω of the applied force is nearly equal to that of the free oscillation the
phenomenon of beats occurs. If the angular frequencies are equal we get the phenomenon of
resonance. Note that we can eliminate resonance by introducing damping into the system.
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4. Modelling forces on beams

Engineering Example 3

Shear force and bending moment of a beam

Introduction

The beam is a fundamental part of most structures we see around us. It may be used in many ways
depending as how its ends are fixed. One end may be rigidly fixed and the other free (called can-
tilevered) or both ends may be resting on supports (called simply supported). Other combinations
are possible. There are three basic quantities of interest in the deformation of beams, the deflection,
the shear force and the bending moment.

For a beam which is supporting a load of w (measured in N m−1 and which may represent the
self-weight of the beam or may be an external load), the shear force is denoted by S and measured
in N m−1 and the bending moment is denoted by M and measured in N m−1.

The quantities M , S and w are related by

dM

dz
= S (1)

and

dS

dz
= −w (2)

where z measures the position along the beam. If one of the quantities is known, the others can be
calculated from the Equations (1) and (2). In words, the shear force is the negative of the derivative
(with respect to position) of the bending moment and the load is the derivative of the shear force.
Alternatively, the shear force is the negative of the integral (with respect to position) of the load and
the bending moment is the integral of the shear force. The negative sign in Equation (2) reflects the
fact that the load is normally measured positively in the downward direction while a positive shear
force refers to an upward force.

Problem posed in words

A beam is fixed rigidly at one end and free to move at the other end (like a diving board). It only
has to support its own weight. Find the shear force and the bending moment along its length.

Mathematical statement of problem

A uniform beam of length L, supports its own weight wo (a constant). At one end (z = 0), the
beam is fixed rigidly while the other end (z = L) is free to move. Find the shear force S and the
bending moment M as functions of z.

Mathematical analysis

As w is a constant, Equation (2) gives

S = −
∫

wdz = −
∫

wodz = −woz + C.
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At the free end (z = L) , the shear force S = 0 so C = woL giving

S = wo (L− z)

This expression can be substituted into Equation (1) to give

M =

∫
Sdz =

∫
wo (L− z) dz =

∫
(woL− woz) dz = woLz − wo

2
z2 + K.

Once again, M = 0 at the free end z = L so K is given by K = −wo

2
L2. Thus

M = woLz − wo

2
z2 − wo

2
L2

The diagrams in Figure 8 show the load w (Figure 8a), the shear force S (Figure 8b) and the bending
moment M (Figure 8c) as functions of position z.

w = w0

L
Position (z)

Load (w)

Shear Force (S)

Bending Moment (M)

S = w0L

M = −w0L
2

Position (z)

Position (z)

L

L

(a)

(b)

(c)

Figure 8: The loading (a), shear force (b) and bending moment (c) as functions of position z

Interpretation

The beam deforms (as we might have expected) with the shear force and bending moments having
maximum values at the fixed end and minimum (zero) values at the free end. You can easily
experience this for yourselves: simply hold a wooden plank (not too heavy) at one end with both
hands so that it is horizontal. As you try this with planks of increasing length (and hence weight)
you will find it increasingly difficult to support the weight of the plank (this is the shear force) and
increasingly difficult to keep the plank horizontal (this is the bending moment).

This mathematical model is an excellent description of real beams.
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Engineering Example 4

Deflection of a uniformly loaded beam

Introduction

A uniformly loaded beam of length L is supported at both ends as shown in Figure 9. The deflection
y(x) is a function of horizontal position x and obeys the ordinary differential equation (ODE)

d4y

dx4
(x) =

1

EI
q(x) (1)

where E is Young’s modulus, I is the moment of inertia and q(x) is the load per unit length at
point x. We assume in this problem that q(x) = q a constant. The boundary conditions are (i) no
deflection at x = 0 and x = L (ii) no curvature of the beam at x = 0 and x = L.

y(x)

x

L

q
Beam

Load

Ground y

x

Figure 9: The bending beam, parameters involved in the mathematical formulation

Problem in words
Find the deflection of a beam, supported so that that there is no deflection and no curvature of the
beam at its ends, subject to a uniformly distributed load, as a function of position along the beam.

Mathematical statement of problem
Find the equation of the curve y(x) assumed by the bending beam that satisfies the ODE (1). Use
the coordinate system shown in Figure 9 where the origin is at the left extremity of the beam. In
this coordinate system, the boundary conditions, which require that there is no deflection at x = 0
and x = L, and that there is no curvature of the beam at x = 0 and x = L, are

(a) y(0) = 0

(b) y(L) = 0

(c)
d2y

dx2

∣∣
x=0

= 0

(d)
d2y

dx2

∣∣
x=L

= 0

(e)
d2y

dx2

∣∣
x=L

= 0

Note that
dy(x)

dx
and

d2y(x)

dx2
are respectively the slope and the radius of curvature of the curve at

point (x, y).
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Mathematical analysis

Integrating Equation (1) leads to:

EI
d3y

dx3
(x) = qx + A (2)

Integrating a second time:

EI
d2y

dx2
(x) = qx2/2 + Ax + B (3)

Integrating a third time:

EI
dy

dx
(x) = qx3/6 + Ax2/2 + Bx + C (4)

Integrating a fourth time:

EIy(x) = qx4/24 + Ax3/6 + Bx2/2 + Cx + D. (5)

The boundary conditions (a) and (b) enable determination of the constants of integration A, B, C,D.
Indeed, the boundary condition (a), y(0) = 0, and Equation (5) give

EIy(0) = q × (0)4/24 + A× (0)3/6 + B × (0)2/2 + C × (0) + D = 0

which yields D = 0.
The boundary condition (b), y(L) = 0, and Equation (5) give

EIy(L) = qL4/24 + AL3/6 + BL2/2 + CL + D.

Using the newly found value for D one writes

qL4/24 + AL3/6 + BL2/2 + CL = 0 (6)

The boundary condition (c) obtained from the definition of the radius of curvature,
d2y

dx2
(0) = 0, and

Equation (3) give

I
d2y

dx2
(0) = q × (0)2/2 + A× (0) + B

which yields B = 0 . The boundary condition (d),
d2y

dx2
(L) = 0, and Equation (3) give

EI
d2y

dx2
(L) = qL2/2 + AL = 0

which yields A = −qL/2 . The expressions for A, B, D are introduced in Equation (6) to find the last
unknown constant C. This leads to qL4/24 − qL4/12 + CL = 0 or C = qL3/24. Finally, Equation
(5) and the values of constants lead to the solution

y(x) = [qx4/24− qLx3/12 + qL3x/24]/EI. (7)

Interpretation
The predicted deflection is zero at both ends as required, and you may check that it is symmetrical
about the centre of the beam by switching to the coordinate system (X, Y ) with L/2 − x = X
and y = Y and verifying that the deflection Y (X) is symmetrical about the vertical axis, i.e.
Y (X) = Y (−X).
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Exercises

1. In an RC circuit (a resistor and a capacitor in series) the applied emf is a constant E. Given

that
dq

dt
= i where q is the charge in the capacitor, i the current in the circuit, R the resistance

and C the capacitance the equation for the circuit is

Ri +
q

C
= E.

If the initial charge is zero find the charge subsequently.

2. If the voltage in the RC circuit is E = E0 cos ωt find the charge and the current at time t.

3. An object is projected from the Earth’s surface. What is the least velocity (the escape velocity)
of projection in order to escape the gravitational field, ignoring air resistance.

The equation of motion is

m v
dv

dx
= −m g

R2

x2

where the mass of the object is m, its distance from the centre of the Earth is x and the radius
of the Earth is R.

4. The radial stress p at distance r from the axis of a thick cylinder subjected to internal pressure

is given by p + r
dp

dr
= A− p where A is a constant. If p = p0 at the inner wall (r = r1) and

is negligible (p = 0) at the outer wall (r = r2) find an expression for p.

5. The equation for an LCR circuit with applied voltage E is

L
di

dt
+ Ri +

1

C
q = E.

By differentiating this equation find the solution for q(t) and i(t) if L = 1, R = 100, C = 10−4

and E = 1000 given that q = 0 and i = 0 at t = 0.

6. Consider the free vibration problem in Section 19.4 subsection 2 (page 57) when m = 1, n = 1
and k = 2 (critical damping).

Find the solution for x(t).

7. Repeat Exercise 6 for the case m = 1, n = 1 and k = 1.5 (light damping)

8. Consider the forced vibration problem in Section 19.4 subsection 2 with m = 1, n = 25, k =
8, E = sin 3t, x0 = 0 with an initial velocity of 3.

9. This refers to the Task on page 55 concerning modelling the dissolving of a pill in the stomach.

An alternative model supposes that the pill is very rapidly permeated by stomach acids and the
small granules contained in the capsule dissolve individually. In this case, the rate of change
of volume is assumed to be directly proportional to the volume. Using the experimental data
given in the Task, estimate the time for 95% of the pill to dissolve, based on this alternative
model, and compare results.
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Answers

1. Use the equation in the form R
dq

dt
+

q

C
= E or

dq

dt
+

1

RC
q =

E

R
.

The integrating factor is et/RC and the general solution is

q = EC(1− e−t/RC) and as t →∞ q → EC.

2. q =
E0C

1 + ω2R2C2

[
cos ωt− e−t/RC + ωRC sin ωt

]
i =

dq

dt
=

E0C

1 + ω2R2C2

[
−ω sin ωt +

1

RC
e−t/RC + ω2RC cos ωt

]
.

3. vmin =
√

2gR. If R = 6378 km and g = 9.81 m s−2 then vmin = 11.2 km s−1.

4. p =
p0r

2
1

r2
1 − r2

2

(
1− r2

2

r2

)
5. q = 0.1− 1

10
√

3
e−50t(sin 50

√
3t +

√
3 cos 50

√
3t) i =

20√
3
e−50t sin 50

√
3t.

6. x = x0(1 + t)e−t

7. x = x0e
−0.75t(cos

√
7

4
t +

3√
7

sin

√
7

4
t)

8. x =
1

104

[
e−4t (3 cos 3t + 106 sin 3t)− 3 cos 3t + 2 sin 3t)

]
9. This leads to

dV

dt
= −kV and V = V0e

−kt where k =
1

3
ln 2. The time taken is about 4 hr

19 min. This is much less than the other model, as should be expected.
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